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Verification of the Thomson-Onsager reciprocity relation for spin caloritronics
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We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent
Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single
Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a thermal bias. In
the low bias regime, we observe similar spin signals as well as background responses, as required by the
Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs in the voltage-current
relationships, dominated by nonlinear contributions of the temperature-dependent transport coefficients. By
systematic modeling of these nonlinear thermoelectric effects and measuring higher-order thermoelectric
responses for different applied biases, we identify the transition between the two regimes as the point at which
Joule heating starts to dominate over Peltier heating. Our results signify the importance of local equilibrium
(linearity) for the validity of this phenomenological reciprocity relation.
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A linear response description of near equilibrium processes
linearly relates generalized fluxes Ji to their generalized
driving forces Xj through the Onsager or transport coefficients
Lij as Ji = ∑

j LijXj [1–3]. The Onsager reciprocity relations
(ORR) that express the coupled transport of two or more
processes state that Lij = Lji . These symmetry relations,
widely applicable in thermoelectrics [1,2], mesoscopic charge
transport studies [4], spintronics [5,6], and spin caloritronics
[7,8], are useful in reducing the number of independent trans-
port coefficients [9] and understanding the underlying physics.
In thermoelectrics, the Thomson (Kelvin) relation links the
Seebeck coefficient (S), which describes the efficiency of ther-
movoltage generation in response to a temperature gradient, to
the Peltier coefficient (�), which describes the reverse process,
as [1,2]

� = ST0, (1)

where T0 is the operating temperature. In a linear response, the
transport coefficients are assumed constant (independent of
temperature and the driving forces) [10]. This means that the
generalized fluxes are linearly related to the generalized forces
via these (constant) transport coefficients. In real physical
systems, however, these transport coefficients can depend on
the driving forces and their gradients due to, for example,
the application of large bias. Any nonlinear contributions
can therefore lead to deviations from Eq. (1), resulting in
Lij �= Lji . Spin-dependent thermoelectric coefficients are also
expected to follow this relation. Separate measurements of
these coefficients in nonlocal [11,12] and pillar spin valves
[13–15], for different measurement conditions, showed that
the spin-dependent Seebeck SS and spin-dependent Peltier
�S = SST0 coefficients also obey ORR. The formal validation
of the ORR, however, requires that both coefficients be
measured in the linear regime and, more importantly, in a single
device [3]. Recent observations of the ORR for “charge-only”
thermoelectric transport in mesoscopic quantum [16] and
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microscopic transition ferromagnetic films [17] benefited from
these two strategies.

In this Rapid Communication, we verify the ORR between
these two coefficients by measuring both the spin-dependent
Seebeck effect (SDSE) and the spin-dependent Peltier effects
(SDPE) in a single nanopillar spin valve under identical device
conditions. The device, shown in Figs. 1(c) and 1(d), can
be subjected to either an electrical or a thermal bias. An
electrically isolated thermocouple is used to generate heat
(in SDSE measurements) or record temperature differences
(in SDPE measurements). We find that this relation is strictly
valid in the linear (low bias) regime while deviation from the
ORR is observed for the nonlinear (large bias) regime.

In the SDSE, an ac current I = I0 sin(2πf t) through the
thermocouple (contacts 1 and 2) results in Peltier heating
or cooling (∝I ) at the NiCu-Au and Au-Pt interfaces and
Joule heating (∝I 2) along the entire current path. The
resulting vertical temperature bias across the nanopillar results
in the injection of a spin current js ∝ SS�Tpillar from the
ferromagnet (F) to the nonmagnet (N). Here SS = S↑ − S↓
is the spin-dependent Seebeck coefficient in the ferromagnet
[11,14,18–20] and �Tpillar is the temperature bias across the
nanopillar. It is possible to modulate this spin current and the
associated spin accumulation μs = μ↑ − μ↓ by changing the
magnetic state of the nanopillar [14,18]. Figure 1(a) shows the
electrochemical potential profile for spin-up and spin-down
electrons [21] for a nanopillar spin valve subjected to a
temperature bias, in the antiparallel configuration. The sum
of the two voltage drops �V at the F/N interfaces is what is
measured experimentally, using contacts 3 and 4.

The SDPE describes the reverse process, heating or cooling
of the F/N interfaces, as a result of a spin current jS = j↑ − j↓
[13,22] due to a gradient in μs . In this measurement a charge
current flowing through the nanopillar (using contacts 3 and
4) generates a μs in the N. Because �S = 0 in N, a spin
current in N does not transport heat to or away from the
F/N interface. However, in F, �s �= 0 and a spin current
is associated with a net transport of heat depending on the
magnetization of F. The resulting temperature change of �T ∝
�Sjs at the two F/N interfaces is measured using contacts
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FIG. 1. (Color online) (a) SDSE in a nanopillar spin valve in the
antiparallel configuration. Thermally driven spin current in the bulk
of F, when injected into N, causes a spin accumulation profile shown
below, resulting in a voltage drop �V at the two F/N interfaces.
(b) SDPE in a voltage-biased nanopillar spin valve. Spin accumulation
in N drives a spin current that heats or cools the interface, leading
to a temperature change �T at the F/N interfaces. (c) Scanning
electron microscope image and (d) schematic diagram of the device.
The electrically isolated thermocouple (contacts 1 and 2) is used to
generate (detect) the temperature changes. The top Au (yellow) and
bottom Pt contact (gray) sandwiches the nanopillar spin valve [green
rectangle in (c)].

1 and 2. Figure 1(b) shows this temperature profile for a
nanopillar spin valve subjected to a voltage bias.

In the experiments, we look for similar first-order responses
both in the SDPE and SDSE as proof for ORR. Assuming a
nonlinear response of up to the third order, the total voltage
response can be written as V = IR1 + I 2R2 + I 3R3, where

Ri (i = 1,2, . . .) is the ith order response. To distinguish these
various responses we employ a multiple lock-in detection
technique [11,23]. The first, second, and third harmonic rms
voltages measured at the lock-in amplifiers are related to Ri as
[23,24]

V 1f = R1I0 + 3

2
R3I

3
0 (in phase), (2a)

V 2f = 1√
2
R2I

2
0 (90◦ out of phase), (2b)

V 3f = −1

2
R3I

3
0 (in phase). (2c)

In the large biasing regime, the first harmonic resistance
R1f = V 1f /I0 is not equal to the first-order response R1

obtained from Eq. (2a), in which case a correction for the
contribution from the third harmonic is needed, as discussed
later. All electrical measurements are performed at room
temperature with slowly varying ac current such that steady
state temperature distribution is reached.

Figure 2 summarizes the main results of this Rapid Com-
munication where the first harmonic response R1f is plotted
as a function of applied magnetic field for various values
of current. The contact configurations and the root-mean-
square values of the charge current used are also specified in
Fig. 2(a). The red curves correspond to a SDPE measurement
(I: 3–4 and V: 1–2) and the blue curves are when the role
of the current and voltage leads is reversed (I: 1–2 and V: 3–4).
In the SDSE, for a current of 0.25 mA through the thermocou-
ple, we observe a spin signal R

1f

P − R
1f

AP of −0.10 m� due
to the Peltier-heating-induced vertical temperature gradient
across the nanopillar. In the SDPE, for a similar current
through the nanopillar, the observed background and spin
valve signals are identical to the ones observed in the SDSE,
with both measurements collapsing on each other into one
indistinguishable curve within the noise level. This indicates
that the SDSE voltage across the nanopillar, governed by SS , is
equal to the SDPE-induced thermovoltage at the thermocouple

µ0H (mT) µ0H (mT) µ0H (mT) µ0H (mT)

trace

retrace

(a) (c)(b) (d)

FIG. 2. (Color online) Current-dependent measurements of SDSE (blue) and SDPE (red) for an rms current of (a) 0.25, (b) 0.5, (c) 0.75,
and (d) 1 mA. The current and voltage contacts are also shown in (a). Four abrupt jumps in R1f occur when the relative magnetic configuration
of the nanopillar goes from the parallel (P) to antiparallel (AP) state and back. At the low bias regime ORR is valid both for the background
and spin signals. At the large bias regime deviation from ORR is observed due to nonlinear thermoelectric effects. Dipolar (magnetostatic)
coupling of the two F layers favors the antiparallel state at zero field.
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FIG. 3. (Color online) Second-order response R2 obtained from
the measured V 2f via Eq. (2b) as a function of applied magnetic field
for (a) SDSE and (b) SDPE at a current of 1 mA.

governed by �S . In other words, Eq. (1) is also valid for the
spin-dependent counterparts of the charge Seebeck and Peltier
coefficients. In the large biasing regime, say, 1 mA, the spin
signal of about −0.2 m� in the SDSE is twice larger than that
in the SDPE. Furthermore, the background signal in the SDSE
is also larger. These differences can be ascribed to deviation
from the linear response regime due to higher-order (nonlinear)
thermoelectric effects.

In addition to the first-order response due to Peltier heating,
we also observe higher-order responses (Figs. 3 and 4). The
magnetic field dependence of the second-order response R2,
for the SDSE [Fig. 3(a)] and SDPE [Fig. 3(b)], shows a spin
signal R2S of −1.9 and −0.2 V A−2, respectively. The physical
origin of the spin signal in the SDSE is identical to that in
Fig. 2, but it is now due to the Joule-heating-induced vertical
temperature gradient across the nanopillar. The spin signal of
observed in the SDPE [Fig. 3(b)] is not, however, related to the
spin-dependent Seebeck coefficient. Rather, it originates from
the change in the nanopillar resistance (and associated Joule
heating) when the magnetic state of the nanopillar changes
from the P to AP configuration [13].

In the large biasing regime, a spin signal is also observed
in the third-order response R3 of the SDSE measurement
[Fig. 4(a)] while no spin signal (above the noise level) is
present in the SDPE [Fig. 4(b)]. This observation, which
points to the presence of nonlinear thermoelectric effects, is
consistent with the nonlinear bias dependence observed in
Fig. 2. From Eq. (3) it becomes clear that the combined effect of
Joule and Peltier heating or concurrent changes in the material
properties of both the nanopillar and thermocouple can lead to
the third-order response [23]. In this regime, the first harmonic
voltage V 1f is not strictly linear with the applied current and
hence should be corrected for the contribution from the third
harmonic response as V1 = V 1f + 3V 3f [see Eq. (2a)].

Next, we discuss the bias dependence of the spin signals,
the difference between the parallel and antiparallel voltages,
for each of the first-order (V1S = R1SI ), second-order (V2S =
R2SI

2), and third-order (V3S = R3SI
3) responses (Fig. 5).

While the uncorrected first harmonic signal in the SDSE
[shown in the inset of Fig. 5(a)] is rather nonlinear with
applied bias, the corrected first-order response [main plot
of Fig. 5(a)] scales linearly with the applied bias, both in
the SDPE (triangles) and SDSE (circles). The slopes of the
linear fits are also close to each other, within 20%, indicating
the validity of the ORR over the entire bias range studied
here. The current dependence of the second-order spin signal

FIG. 4. (Color online) Third-order response R3 obtained from
the measured V 3f via Eq. (2c) as a function of applied magnetic
field for (a) SDSE and (b) SDPE at a current of 1 mA.

is also shown in Fig. 5(b). The absence of any deviation
from the expected quadratic dependence on the applied bias
supports our assumption of nonlinear response up to the third
order. Note that the current at which V2S = V1S marks the
point at which Joule heating is equal to Peltier heating. These
current values of 50 μA (in SDSE) and 0.5 mA (in SDPE)
can be taken as threshold values beyond which nonlinear
thermoelectric processes become relevant for our nanopillar
spin valves, which is consistent with Fig. 2.

For the sake of completeness, the bias dependence of the
third-order spin signal is shown in Fig. 5(c). Because these
higher-order effects are only visible in the large biasing regime,
only V3S data at a current of 1 mA are shown. The solid
lines are cubic dependencies extrapolated to the linear regime.
These third-order response spin signals are subtracted from
the measured first harmonic spin signal (shown in Fig. 2) in
order to obtain the first-order spin signals in Fig. 5(a).

To understand the deviation from the ORR we look at the
thermovoltage in the VSDSE ∝ SS�Tpillar when the local device
temperature increases by δT = T − T0. Noting that SS is linear
with temperature as SS(T ) = SS(T0)(1 + γ δT ), where γ =
1/T0 [23], the nonlinear thermovoltage signal reads

VSDSE ∝ SS(T0)�Tpillar + γ SS(T0)�TpillarδT . (3)

When δT and �Tpillar are a sizable fraction of T0, the second
term in Eq. (3) becomes important, leading to a deviation from
the ORR. Similarly, the thermovoltage in the SDPE can be
nonlinear due to the temperature dependencies of the S (of the
thermocouple) and SS (of the ferromagnet).

Because it is difficult to keep track of the interdependent
changes in the material parameters, we use a three-dimensional
spin-dependent finite element model (3D-FEM) [11,23,25] to
understand these nonlinear effects. The spin-dependent charge
current �J↑,↓ and heat current density �Q are extended to include
the temperature dependence of the input-material parameters
as( �J↑,↓

�Q
)

= −
(

σ↑,↓(T ) σ↑,↓(T )S↑,↓(T )
σ↑,↓(T )�↑,↓(T ) k(T )

)( �∇V↑,↓
�∇T

)
,

(4)

where σ↑,↓(T ) = σ↑,↓/(1 + αT �T ) is the temperature-
dependent electrical conductivity, and αT is the temperature
coefficient of resistance. The bulk values of αT are well
tabulated in the literature (∼10−3) and those of thin films
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FIG. 5. (Color online) Current dependence of the (a) V1S , (b) V2S , and (c) V3S in the SDPE (triangles) and SDSE (circles). Deviation from
the expected scaling with bias (lines) occurs when Joule heating dominates over Peltier heating. The error bars in (a) indicate the maximum
noise level. The inset in (a) is the spin signal as obtained directly from the measured first harmonic response in the SDSE showing nonlinearity
due to a contribution from V3S [see Eq. (2a)].

are known to be lower than the bulk value due to, for
example, enhanced electron scattering at the boundaries [26],
which we use in our model. κ(T ) is the electronic thermal
conductivity defined using the Wiedemann-Franz relation that
is valid for metals at the temperatures of our experiments
[27]. Following Ref. [25], we define the spin-dependent
electrical conductivity as σ↑,↓ = σ (1 ± Pσ )/2, where Pσ =
(σ↑ − σ↓)/(σ↑ + σ↓) is the spin polarization of the electrical
conductivity. The spin-dependent Seebeck coefficient is given
by S↑,↓ = S − 1

2 (1 ∓ Pσ )SS . The material parameters for the
modeling are taken from the literature [15,27].

In order to calculate the spin signals observed in Fig. 5 we
first extract Pσ from a separate measurement of the electrical
spin valve (not shown here). The spin polarization of the
Seebeck coefficient PS was also obtained from a separate
measurement of the SDSE based on the Pt-Joule heater (also
not shown here but discussed elsewhere [14,15]). Using the
obtained values of Pσ = 0.58 and PS = 0.35 we calculate the
SDPE and SDSE signals using the 3D-FEM. For the SDPE, we
obtain spin signals of R1S = −95 μ�, R2S = −0.19 V A−2,
and R3S = −6 V A−3 for the first-, second-, and third-order
signals, respectively, in agreement with the measured values.
For the SDSE, the calculated values of R1S = −93 μ� and
R2S = −1.8 V A−2 are close to the measured values (see
Fig. 5). The third-order response R3S = −125 V A−3 in the
SDSE is, however, three times larger. Although we do not
understand this difference, owing to the good agreement of
the calculated signals with the measured values, we conclude

that nonlinear thermoelectric effects, as modeled here in terms
of the temperature dependence of the transport coefficients,
can describe both the linear and higher-order responses.

In summary, we experimentally tested and verified the
Onsager-Kelvin reciprocity relation for the spin-dependent
Seebeck and Peltier coefficients and also provided the extent
to which this reciprocity relation is respected. At small
biases, when Joule heating is small, the Onsager reciprocity
relation holds while, at large thermal or electrical biases, the
temperature dependence of both the thermal and electrical
transport coefficients drives the system into a nonlinear regime
where the basic assumptions for the ORR are no longer
valid. This deviation from ORR reciprocity is due mainly
to nonlinear thermoelectric effects. It is therefore important
to take nonlinear thermoelectric contributions into account in
analyzing charge, spin, and heat transport, especially when the
temperature gradient across a device is large. We also showed
that higher-order thermoelectric contributions, when not taken
into account, could lead to an apparent deviation from the
ORR.
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