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Movement of dislocations dressed with 3He impurities in 4He crystals
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Solid 4He is a unique example of crystal where dislocations may move at macroscopic speeds with impurities
attached to them. In 4He crystals, the only impurities are 3He atoms, whose concentration can be reduced to zero
and measured down to the ppt (10−12) level. We present measurements of the mobility of dislocations dressed
with 3He impurities as a function of the crystal purity. They show that the damping of dislocation motion is
proportional to the concentration of 3He bound to these dislocations. It has allowed us to measure the 3He binding
energy EB to dislocations without any ambiguity. Our results solve the controversy concerning EB : We confirm
our previously measured value 0.7 ± 0.1 K, and we demonstrate that it cannot be 0.2 or 0.4 K as estimated by
other authors. Finally, we present a simple model for the damping magnitude, where dissipation is due to the
emission by moving 3He impurities of transverse waves along the dislocation lines.
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Solid 4He is an interesting system for the study of
dislocation effects, which strongly influence the mechanical
properties of crystals [1,2]. This is because of the extraordinary
purity of solid 4He, where the only impurity is 3He whose
concentration can be lowered to zero [3,4] and accurately
measured down to the ppt level (10−12). Dislocation motion is
highly sensitive to the presence of tiny amounts of impurities.
In 4He crystals, large quantum fluctuations have at least two
important consequences. First, 3He atoms move freely at
velocities of order 1 cm/s through the lattice [5,6]. They
can also bind to dislocations [7,8], in which case there is a
thermodynamic equilibrium between the bound 3He atoms
in the potential well of dislocation cores and a gas of
free 3He quasiparticles in the bulk crystal. By binding to
dislocations, 3He atoms damp the dislocation motion, which
is free otherwise, even at low temperature, because of a
second consequence of quantum fluctuations: They reduce
the classical “Peierls barriers” against dislocation motion to
a negligible value, possibly to zero as proposed by Haziot
et al. [4,9]. Recent work [4,6,9–11] has demonstrated that the
mechanical properties of hcp 4He crystals can be understood
by modeling their dislocations as elastic strings that can move
back and forth at kHz frequencies between pinning points [1]
under the action of an ac-driving strain. Around 0.2 K,
the mobility is very large without measurable dissipation. It
induces a “giant plasticity,” a spectacular phenomenon due
to the vanishing of the shear modulus in certain directions.
At higher temperature, the dislocation motion is damped by
scattering with thermal phonons while at lower temperature it
is damped or pinned by 3He binding.
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By studying oriented 4He single crystals, we have demon-
strated that dislocations glide parallel to the basal planes of
the hcp structure. Thanks to a detailed understanding of the
scattering by thermal phonons, which is well described by
the “fluttering mechanism” [1,12,13], we could measure the
density � of dislocation length per unit volume. It varies
between 104 cm−2 and 106 cm−2 depending on growth
conditions. We could also measure the “network length” LN

between network nodes, which are strong pinning points
where dislocations intersect: It is well represented by a wide
distribution around an average value of order 100 μm.

From a study of the shear modulus as a function of driving
strain amplitude and frequency, Haziot et al. [6] discovered
an original phenomenon. In usual crystals, dislocations zig
zag between impurities which are fixed and form quenched
disorder. 3He atoms are mobile in 4He crystals but still, Haziot
et al. have found that at large amplitude, large frequency, and
low temperature, the dislocations are really pinned by 3He
which cannot move fast enough. However, at amplitude and
frequency small enough that the dislocation speed is less than
45 μm/s, 3He move bound to them, so that the motion is
damped but not pinned. Haziot et al. [6] realized that there
are two different regimes: pinning or damping. The damping
regime was not understood. The present study clarifies it.

In previous work [6,8,11,14], it was assumed that the
damping was proportional to the concentration xd of 3He
bound to the dislocation and their binding energy EB was found
equal to 0.7 ± 0.1 K. However, Kim et al. [15] and Iwasa [16]
made the estimates EB = 0.4 and 0.2 K, respectively. If instead
of being proportional to the concentration xd , the damping had
been proportional to x2

d , our previous measurements would
imply EB = 0.35 K, in better agreement with Iwasa and Kim
et al. As explained below, our new series of measurements
is consistent with a damping proportional to xd , not with x2

d .
The present experiment solves the running controversy [17].
Furthermore, we present a simple model at the end of
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this Rapid Communication, which qualitatively explains the
magnitude of the measured damping.

To describe the dislocation dynamics and its consequences
on mechanical properties, we follow Granato’s approach [1]
and describe them as elastic strings moving between pinning
points in response to an oscillating stress with no effect of the
lattice potential. This dislocation motion results in a strain εdis

that adds to the strain εel only due to the elastic deformation
of the lattice [18]. The additional strain εdis causes the shear
modulus μ to decrease from the intrinsic value μel:

μ = μel

1 + εdis/εel
. (1)

The magnitude of the softening (μel − μ)/μel can approach 1
if the dislocations move freely, but it is reduced by the damping
of dislocation motion, which is due, in the case of 4He, to bound
3He impurities or thermal phonons. The equation of motion of
the dislocation is

Aξ̈ 2 + Bξ̇ − C
∂2ξ

∂y2
= bσ, (2)

where ξ (y,t) is the dislocation displacement as a function
of time t and position y between its pinning points, A =
πρb2 = 8.2 × 10−17 kg/m is the dislocation’s effective mass
per unit length in a material with density ρ = 191 kg/m3,
b = 0.367 nm the Burgers vector amplitude, B is the
damping force per unit length, and σ the applied stress.
For an edge dislocation, the line tension C is given by
C = [μelb

2 ln (R/r)]/[4π (1 − ν)] ≈ 2.3 × 10−12 N, where
ν = 0.33 is Poisson’s ratio of the material in an isotropic
approximation, R ≈ LN ≈ 100 μm is an average distance
between dislocations, and r ≈ 1 nm is the core radius [19].

We define a relaxation time,

τ = BL2/π2C, (3)

where the length L equals LN in the absence of pinning by
3He, and we have [11]

εdis

εel
= α�L2

N

1 − iωτ

1 + (ωτ )2 , (4)

where ω/2π is the driving frequency, and α =
32 (1 − ν) /π4 ln (R/r) ≈ 0.019. Equations (1) and (4) show
that as B increases, μ increases to its intrinsic value μel and the
dissipation Q−1 = Im[μ] /Re[μ] passes through a maximum
at ωτ =

√
1 + α�L2

N [11]. We use Eqs. (1) and (4) along with
measurements in the phonon damping regime to determine
� and LN for a given crystal [10], and then use Eqs. (1)
and (4) along with measurements on the same crystal in the
3He damping regime to determine the 3He damping coefficient.

Our crystal growth and shear modulus measurement tech-
niques are explained in previous publications [4,11]. Inside
the measurement cell, two piezoelectric shear plates face each
other with a separation of 0.7 mm, forming a narrow gap that
can be filled with an oriented 4He crystal (Fig. 1 inset). The
orientation of single crystals is determined from photographs
of growth shapes. Applying a voltage V to one transducer
produces a shear strain ε = V d15 in the 4He crystal, where
d15 = 0.095 nm/V below 1K [4]. The resulting stress σ in
the 4He is measured with the opposite transducer. The shear
modulus is then given by μ = σ/ε. For the present study, we
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FIG. 1. (Color online) (Solid curves) Dissipation measurement
on cooling C2 (3He concentration x3 = 2.3 × 10−8) at ω/2π =
16 037 Hz and driving strain ε = 2.3 × 10−6. The three different
colors correspond to measurements on three different days, which
demonstrate excellent reproducibility. The dashed line shows the
linear variation of Q−1 in the low ωT 3 limit, which is predicted
by Eq. (6) and allows a determination of the average network length
LN = 158 μm and dislocation density � = 4.1 × 105 cm−2. (Inset)
The measurement cell (see text).

have used three different helium samples whose 3He purity was
carefully measured as 2.5×10−8 (commercial 4He from Air
Liquide, probably originating from Qatar where the isotopic
impurity concentration is much lower than in Texas [20]),
3.8×10−7 and 2.3×10−6, respectively. Single crystals were
grown at 1.4 K so that any small liquid droplets that could
trap 3He solidified as the crystal was cooled below 1 K. In
order to verify that the latter was true, we compared with
polycrystals grown by cooling the cell at constant volume,
starting typically from liquid at 67 bar and 2.8 K, ending with
a cell completely full of solid at 37 bar and 2 K. As shown
by Figs. 3 and 4, results obtained with single crystals are
perfectly compatible with results obtained with polycrystals.
We used the method of Maris and Balibar [21] to relate the
shear modulus of polycrystals to the elastic coefficients cij of
single crystals.

We used high drive, high frequency measurements to
determine LN and � for all crystals, as in [10]. Let us
consider the example of crystal C2. Figure 1 shows the
dissipation measured on cooling C2 at a driving frequency
ω/2π = 16 037 Hz and an rms driving strain ε = 2.3 × 10−6.
Measurements made on three different days demonstrate their
high degree of reproducibility. The high ε prevented 3He atoms
from binding to the dislocations, so that all the dissipation
was due to phonon scattering. In this regime, the damping
coefficient is Bph = 14.4k3

BT 3/π2
�

2c3 ≈ 2.1 × 10−8T 3 Pa s
where c is the sound speed [12,13], and the relaxation time is
τph = BphL

2
N/π2C. Substitutingτph for τ in Eq. (4) and using

Eq. (1) yields, at low temperatures where the phonon damping
is small, a maximum softening,


μ

μel
≡ μel − μ

μel
= α�L2

N

1 + α�L2
N

, (5)
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TABLE I. Results obtained with different types of crystals.

Y3 Z5 E1 F1 C1 C2

x3 (×10−6) 0.025 0.025 0.025 0.38 2.3 2.3
LN (μm) 73 96 68 81 189 169
� (×105 cm−2) 7.6 7.9 15 37 4.7 3.6
EB (K) 0.65 0.67 0.60 0.71 0.65 0.73

and a dissipation,

Q−1 = 
μ

μel
ωτph = 
μ

μel

14.4k3
B

π4�2c3

L2
N

C
ωT 3. (6)

The dashed line in Fig. 1 shows that Q−1 varies linearly in
the low ωT 3 limit, as predicted by Eq. (6). The nonlinear
behavior at higher ωT 3 was explained in Ref. [11]. We
determined LN = 158 μm and � = 4.1 × 105/ cm2 by using
Eqs. (5) and (6) after measuring a maximum softening

μ/μel = 0.664 and a low temperature slope Q−1/ωT 3 =
1.55 × 10−5 s/K3. We used the same method for all crystals
and we obtained respective values 2.5 × 10−6, 5 × 10−6, 2.5 ×
10−5, 1.75 × 10−5, 2.4 × 10−6, and 5 × 10−6 for crystals Y3,
Z5, C1, and C2, and polycrystals E1 and F1 (see Table I).

After having characterized the dislocation network, we
determined the 3He damping coefficient by using a low drive
and a low frequency, so that the dislocation speed v is less than
45 μm/s. Figure 2 shows the temperature dependence of μ and
Q−1 obtained when cooling crystal C1. The shear modulus
increases monotonically as 3He atoms bind to the dislocations
and damp their motion. Because the measurements in Fig. 2
are at low frequency, damping by thermal phonons is now
negligible and B = B3 is only due to 3He bound to the
dislocations. At the lowest temperatures, μ = μel. Near the
midpoint of the temperature variation of μ at each frequency,
Q−1 reaches a maximum at a temperature Tp.

Figure 3 shows six sets of data corresponding to six different
crystals with various concentrations x3. For each crystal,
the relaxation time is obtained from τ = (1/ω)

√
1 + α�L2

N

at the peak dissipation temperature Tp and the damping
coefficient B3 from Eq. (3). Let us now assume that B3

scales with some power n of the 3He concentration on the
dislocation xd = x3 exp (EB/kBT ). This may be written as
B3 = B0x

n
3 exp (nEB/kBT ). Figure 4 shows a graph of the

prefactor B0x
n
3 , which is obtained by extrapolating to 1/T = 0

on Fig. 3, as a function of x3. Our results are well compatible
with n = 1, not with n = 2. It justifies the use of Eq. (2) with
a damping force proportional to the dislocation velocity. In
2010, Syshchenko et al. [14] made frequency measurements
on polycrystals where x3 could be 2×10−7. Assuming that
their values for λ and LN were the same as for F1 that was
grown in similar conditions, we found that the present results
are consistent with their preliminary results.

This is an important result which solves the running
controversy on the interpretation of our measurement of slopes
in Arrhenius plots like the one of Fig. 3. These slopes measure
the binding energy EB of 3He atoms to dislocations, not
any function of EB like 2EB . Here we found the respective
values 0.65, 0.67, 0.65, 0.73, 0.6, and 0.71 K for crystals Y3,
Z5, C1, C2, E1, and F1. The small scatter in these values
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FIG. 2. (Color online) The dissipation and shear modulus of
crystal C1 whose 3He concentration was 2.3×10−6. Measurements
made on cooling at a low rms driving strain of 2.7 × 10−9 and low
frequency, where the low temperature damping is due to the binding
of 3He impurities only.

perfectly agrees with the distribution around 0.7 K found by
Fefferman et al. in Ref. [11], also with preliminary results by
Syshchenko et al. [14]. A numerical calculation could show if
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FIG. 3. (Color online) A semilog plot of the relaxation time vs
inverse temperature. Different symbols correspond to six different
crystals with various 3He concentrations. The measurements were
made at low driving strain ε = 2.7 × 10−9 and at frequencies in the
range 1–100 Hz. This plot is used to determine the binding energy of
3He atoms to dislocations (see text).
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FIG. 4. (Color online) The dependence on 3He concentration x3

of the prefactor of the exponential in the expression of the damping
coefficient B3 (see text). x3 is measured within 5% in two different
mass spectrometers. The agreement with n = 1 demonstrates that the
damping is proportional to x3 (i.e., n = 1), not to x2

3 (i.e., n = 2).

the particular value of this binding energy is consistent with the
predicted splitting of dislocations [22]. Our results contradict
the assumptions by Iwasa [16] or Kim et al. [15]. As for the
magnitude B3 of the damping due to bound 3He, Fig. 4 shows
that it is equal to B0x3 with B0 = 0.15 Pa.s.

Let us now present a simple model for the magnitude of
the damping B0. The dislocation line moves in the direction x

at an average velocity v. Bound 3He atoms move at the same
average velocity v but they probably lag behind, so that, in the
moving frame of the dislocation, their position x(t) oscillates
back and forth:

x(t) = −a1 − a1 cos (2πvt/a), (7)

where a = 0.3 nm is the periodicity of the lattice in the x

direction. This oscillatory motion emits waves of amplitude
a1, which should be of order the core radius r = 1 nm. These

waves are emitted in both directions away from the 3He
atom and they should decay into heat via some interaction
with bulk phonons. Suppose that the velocity of transverse
waves along dislocations is cd , the energy of two such waves
represents a dissipation per 3He atom and per unit time q̇ =
4π2A(a1v/a)2cd ≈ 400Av2cd , where A = 8.2×10−17 kg/m
is the mass already mentioned in Eq. (2). Note that the
dissipation q̇ has the right proportionality to v2 corresponding
to a force linear in v as assumed in Eq. (2) and verified in
our experiments. Since the concentration of 3He atoms is
xd = x3 exp (EB/kBT ), and assuming that the density of 4He
atoms is 1/a along the line, we find

B0 = 400Acd/a. (8)

Taking cd equal to the transverse sound speed 250 m/s,
we obtain B0 = 0.027 Pa s. This is about 6 times smaller
than the experimental value 0.15 Pa s, but the simple model
above contains several rough approximations. The splitting
of dislocations into partials [22] should be considered in a
more accurate estimate of the speed of such transverse waves.
The estimated dissipation could be increased if 3He motion is
periodic but not sinusoidal, also if the motion of 3He directly
emits phonons. Our model is a simple starting point for more
precise future calculations. One may like to verify that the
energy loss per 3He atom and per lattice period is smaller
than the binding energy EB = 0.7 K. Even at the highest
velocity v = 45 μm/s of the damping regime, this energy loss
is B0va2 ≈ 0.05 K only.

In summary, we have shown that, when dislocations move
dressed with 3He atoms, the damping of their motion is
proportional to the density of 3He attached to them. Our work
solves the controversy on the value of the binding energy. We
propose that the damping is due to the emission of transverse
waves along them.

This work was supported by grants from ERC (AdG
247258-SUPERSOLID), from NSERC Canada, and NSF
under Grant No. DMR 0965728.
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