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Vortex arrays in a rotating superfluid 4He nanocylinder
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Within density functional theory, we investigate stationary many-vortex structures in a rotating 4He
nanocylinder at zero temperature. We compute the stability diagram and compare our results with the classical
model of vortical lines in an inviscid and incompressible fluid. Scaling the results to millimeter-size buckets,
they can be compared with experiments on vortex arrays conducted in the past. Motivated by recent experiments
that have used atomic impurities as a means of visualizing vortices in superfluid 4He droplets, we have also
considered the formation of chains of xenon atoms along a vortex line and the interaction between xenon atoms
inside the same vortex and on different neighboring vortex lines.
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I. INTRODUCTION

At temperatures low enough, 4He droplets and confined
clouds of ultracold boson gases are paradigms of superfluid
quantum droplets. Small parahydrogen clusters are likely
superfluid [1], although no definite conclusion has been
experimentally drawn yet [2]. Together with the frictionless
displacement of impurities at velocities below the Landau
critical velocity [3], the appearance of quantized vortices is the
recognized hallmark of superfluidity in liquid 4He [4,5] that
appear at temperatures below 2.17 K, the superfluid transition
temperature.

Due to its superfluid character, 4He remains at rest when
its container rotates until a critical angular velocity is reached,
leading to the appearance of vortices with quantized velocity
circulation in units of h/M , where h is the Planck constant and
M is the 4He atomic mass. Free—or attached to impurities—
linear vortices have been theoretically studied using methods
of different complexity; see Refs. [6–11] and references
therein. In the case of cold gases, vortices have been nucleated
using methods such as the rotation of the magnetic trap or the
thermal cloud during the evaporative cooling process [3,12].
These methods bear some similarity with the “rotating bucket”
way of nucleating vortices in superfluid liquid helium [13].

While vortex arrays in cold gases can be optically identified
after the condensate has expanded upon removing the magnetic
or optical trap, vortex distributions in liquid helium have been
only visualized by doping them. They were first imaged by
Packard and co-workers [14,15] with the spots of light on
a phosphorescent screen caused by the hitting of electrons
originally attached to vortex lines. More recently, quantized
vortices have been visualized by suspending micron-sized
solid particles of hydrogen in superfluid 4He at relatively high
temperatures T ∼ 2 K [16,17], where they are found to arrange
themselves with nearly equal spacing along vortex lines, or
at lower temperatures T < 0.6 K by He∗

2 through excimers
created in situ by ionization in a strong laser field [18].
Coalescence of gold nanoclusters inside vortices in superfluid
4He has been observed [19] and further discussed in Ref. [20].

The equilibrium configurations of vortex arrays in rotating
superfluid helium were computed in Refs. [21–23] within
the classical vortex theory of an inviscid and incompressible

fluid that incorporates the quantum effect of quantization of
circulation around vortex lines. A comprehensive review of
the activity on quantized vortices in superfluid liquid helium
before the 1990s can be found in the book by Donnelly [24].

With the advent of helium droplet experimental facilities in
the 1990s [25], the issue whether nanodroplets are superfluid or
not became a subject of intense experimental and theoretical
activity [26–29]. Helium droplets are created by expanding
a cold helium gas and attain a limiting temperature below
0.4 K [30,31], lower than the superfluid transition temperature.
The experimental confirmation of superfluidity in helium
droplets was provided by Toennies and co-workers, who
established that an OCS molecule inside a 4He droplet displays
a neat ro-vibrational spectrum, indicating that the molecule
may rotate without dissipation, at variance with its behavior
in a normal-fluid 3He droplet [32]. It is worth mentioning that
the minimum number of atoms in the droplet for displaying
superfluid features is amazingly small, about 60 atoms.

Several theoretical studies have been conducted for a single
linear vortex in helium droplets taking for granted that they
could be nucleated inside them [33–37]. Experimentally, the
appearance of quantum vortices [38–41] and the frictionless
displacement of swift impurities in helium droplets [42,43]
have been recently established. In both cases, foreign atoms
were used as tracers or swift impurities. The motion of tracer
particles in superfluid 4He has been addressed in a number of
papers; see, for instance, Refs. [44–46] and references therein.

Quantized ring vortices have been theoretically predicted to
accompany the sinking of cations produced by photoionization
of the neutral species sitting at the surface of 4He droplets under
very well controlled experimental conditions [47]. Their effect
on physical observables that might allow one to experimentally
detect them remains inconclusive yet.

Very recently, in a femtosecond x-ray coherent diffractive
imaging experiment the existence of vortex arrays has been
demonstrated for helium droplets [48]. The diffraction images
revealed characteristic Bragg patterns from Xe clusters trapped
in the vortex cores present in the helium droplets made of
N = 108–1011 helium atoms produced by fragmentation of a
cryogenic fluid.

Theoretically addressing vortex arrays in helium droplets is
a challenge irrespective of the method one uses. It is currently
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beyond the capabilities of quantum Monte Carlo methods that
even for one single vortex yield different results depending
on whether the fixed node or the fixed phase approximation
is used [7,8,10]. To determine the equilibrium configuration
of a vortex array within the classical vortex theory of an
inviscid and incompressible fluid, it has to be imposed as a
boundary condition that the vortex lines perpendicularly hit
the droplet surface, which is not a trivial issue [33,35]. This
condition is built-in within the density functional theory (DFT)
approach [11,36], that however has as a practical limitation
the computing time needed to determine the structure of
large enough droplets capable to host many vortex lines,
thus hampering any systematic study of their appearance as
a function of the rotating angular velocity.

As a first step towards a DFT description of vortex arrays
in helium droplets we present here the simpler case of vortex
arrays in a rotating self-bound 4He nanocylinder infinitely
extended along the axial direction. On the one hand, it will
allow to assess the applicability of the DFT method to vortex
array configurations and on the other hand to address the
cylindric configuration attained in rotating bucket experiments,
for whose description only the classical vortex theory of
an inviscid and incompressible fluid has been used in the
past [21–23].

Since the rotating droplets have been found [48] to flatten
out in the presence of vortex arrays in such a way that the
vortices of the array are practically linear, the results for the
cylinder might be more relevant for the discussion of vortex
arrays in droplets than expected. In this work we refrain from
exploring this possibility, as work is now in progress to address
vortex arrays in droplets.

Finally, we complement this study determining for some
cases of study, the structure of vortices doped with Xe atoms
because of their relevance to these recent experimental studies
of vortex arrays in superfluid 4He nanodroplets.

II. MODEL

We consider a self-bound superfluid 4He cylinder rotating
around its symmetry z axis with a constant angular velocity
ω. A complex wave function �(r,t) represents the superfluid
helium state, with atomic density ρ(r,t) = |�(r,t)|2. To
investigate the emergence of vortex structures in this system,
we look for solutions of the time-dependent density functional
equation in a rotating frame of reference with constant angular
velocity ω (corotating frame):

i�
∂�(r,t)

∂t
= [Ĥ − ωL̂z]�(r,t), (1)

where L̂z is the z component of the orbital angular momentum
operator. In the above equation, Ĥ is the DFT Hamiltonian
resulting from the functional variation of the energy density
functional of Ref. [49], modified to handle highly inhomoge-
neous helium density profiles as those appearing, e.g., around
very attractive impurities [50]. More specifically,

Ĥ = − �
2

2M
∇2 + δE[ρ]

δρ(r)
, (2)

where E[ρ] is the potential energy density per unit vol-
ume [49,50].

We have not included the velocity-dependent backflow
term proposed in Ref. [49] because it is ill behaved at the
low densities unavoidably found in some regions of finite or
confined helium systems. The reason for this behavior is that
the backflow term explicitly includes the velocity of the super-
fluid that is obtained from the current dividing it by the helium
density. Including the backflow contribution into the general
density-functional framework is still an unsolved problem. Its
contribution is expected to influence the dynamics of vortex
creation/evolution. Yet, not including it cannot affect much the
results in the present case where only the stationary states and
their relative energies are considered.

Vortices in the cylinder can be nucleated by letting it
rotate in real-time according to Eq. (1). This method has
been successfully applied to Bose-Einstein condensates [51]
and likely might also be applied to superfluid helium within
time-dependent density functional theory [43]. However,
the density functional for helium is much more involved
than the density-dependent Gross-Pitaevskii approach. For
this reason, we have followed a more efficient strategy
looking for stationary solutions in the corotating frame,
�(r,t) = e−ıμt/��0(r), where the chemical potential μ and
the time-independent effective helium wave function �0

are obtained by solving the time-independent version of
Eq. (1),

[Ĥ − ωL̂z]�0(r) = μ�0(r). (3)

To determine �0(r) describing a configuration where Nv

vortex lines are present we follow the “imprinting” strategy,
i.e.. we start the imaginary-time evolution of Eq. (3) leading
to the minimum energy configuration with a helium wave
function [11]

�0(r) =
√

ρ0(r)
Nv∑
j=1

[
(x − xj ) + i(y − yj )√
(x − xj )2 + (y − yj )2

]
, (4)

where ρ0(r) is the density of the vortex-free configuration
and (xj ,yj ) is the initial position of the j -vortex core with
respect to the axis of the cylinder. We remark that during the
functional minimization the vortex coordinates (xj ,yj ) will
change to provide, at convergence, the lowest energy vortex
configuration; we also define rj ≡

√
x2

j + y2
j as the radial

position of the j th vortex. Details on how Eq. (3) has been
solved can be found in Ref. [52]. Both the density and wave
function have been discretized in Cartesian coordinates using
a spatial grid fine enough to guarantee well converged results.
The spatial derivatives have been calculated with 13-point
formulas. Fast-Fourier techniques [53] have been employed
to efficiently calculate the energy density and mean-field
potential.

We impose three-dimensional periodic conditions on the
He density at the boundary of the simulation cell: in the x-y
plane the He system is bounded by its cylindrical surface,
and a wide enough portion of empty space is present in the
calculation cell to avoid the interaction of the He cylinder
with its repeated images along the x-y plane. Periodicity is
also imposed along the z direction (the axis of rotation along
which all the vortices are oriented), where the He density
is constant when no impurities are present, i.e., the system
has translational invariance leading to rectilinear vortices of
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FIG. 1. Vortex core structure.

virtually infinite length. In this case the system is essentially
two dimensional. However, the presence of Xe atoms breaks
the translational symmetry along z, and in that case the system
is truly three dimensional.

Within DFT approximation the vorticity field has a singu-
larity along one or several lines, the vortex cores, where the
density vanishes and the velocity diverges. The helium density
around one such vortex line is shown in Fig. 1. In accordance
with previous studies, the vortex structure is characterized by
a core region of size ac ∼ 1 Å.

III. RESULTS

A. Undoped vortices

By using the imprinting method described above, for a
given angular velocity ω we have computed a number of
lowest energy configurations with a fixed number of vortices
Nv . If more than one configuration is obtained with the same
Nv—depending on the initial guess for the vortex distribution
embodied in Eq. (4)—we choose the one with lower total
energy.

The configurations of a vortex array in a rotating cylinder
can be completely characterized [21], within the Onsager-
Feynman model, by the dimensionless free energy per unit
length F ≡ (M/ρπ�

2)F (that at zero temperature coincides
with the energy per unit length), the dimensionless angular
velocity � ≡ R2Mω/�, and the scaled radial positions of the
vortices ri/R, where ρ = 0.0218 Å−3 is the atom density of
liquid 4He and R the cylinder radius. We will use these units
in the following, thus making it easier to compare our results,
obtained for a system of nanoscopic size, with experimental
results characterized by much larger values of R and much
smaller values of ω.

We show in Fig. 2(a) few stationary configurations with
Nv = 4 to Nv = 9. The radius of the nanocylinder at rest is R =
71.4 Å. It has been chosen rather arbitrarily as a compromise
between numerical affordability and the need of disposing of
a “nanobucket” that could host many vortex lines.

FIG. 2. (Color online) Stationary, lowest energy vortex configu-
rations with Nv = 4 to Nv = 9. The portion of the simulation cell
shown is 180 × 180 Å wide. The color scale used to display the
density values is the same as in Fig. 5.

The stability diagram is shown in Fig. 3, where the energy
per unit vortex length in the corotating frame, i.e.. E ≡ (〈Ĥ 〉 −
ω〈L̂z〉)/L, is shown as a function of the dimensionless angular
velocity � for up to Nv = 7. Here L is the length of the
simulation cell along the vortex axis. The crosses between the
different Nv lines, indicated by upside down triangles, yield
the critical rotational velocities for Nv-vortex nucleation.

Within each stability region, the calculated energies show
an almost linear behavior with �. This behavior is strictly
linear for Nv = 1, as the centered single vortex state is an
eigenstate of the total angular momentum. For other Nv values
this is not so and E(�) bends. However, this happens outside
the corresponding stability region. As a consequence, the
average slope of each stability region in Fig. 3 changed of
sign does represent the total angular momentum per unit
length. DFT yields for 〈L̂z/L〉/ρL, ρL being the number of
helium atoms in the cylinder per unit length, a value of 1
for Nv = 1, and of 7.081 for Nv = 9. It is possible to use
linear response theory around the equilibrium configurations
corresponding to each � value to determine the moment of
inertia per unit length around the symmetry axis of the cylinder
Iz [2,54]. However, the mentioned linear behavior of E ≡
(〈Ĥ 〉 − ω〈L̂z〉)/L allows one to obtain Iz in a much simpler
way, writing within each stability region 〈L̂z/L〉/ρL = Iz�.
Iz displays a steplike behavior as a function of �, being zero
in the absence of vortices.

It is illustrative to compare the DFT results with those
obtained using the classical vortex theory of inviscid and
incompressible fluids [21]. It turns out that both yield results in
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FIG. 3. Stability diagram for a number of vortex lines
Nv = 0,1,2, . . . ,7 as a function of the dimensionless angular velocity
� = R2Mω/�. The horizontal line marks the energy of the vortex-
free system. The vertical axis is the energy per unit vortex length in
the rotating frame expressed in units of ρπ�

2/M; see text. The upside
down triangles mark the crossings between different stability lines.

agreement with each other. In particular, the DFT values for the
total angular momentum per unit length expressed in reduced
units,L = 〈L̂z〉/(ρπ�R2), are very close to the classical theory
ones given by the expression [21]

∑Nv

i=1(1 − r2
i /R2), where ri

is the distance of the ith vortex from the rotation axis. Indeed,
for the values of Nv shown in Fig. 3 they agree to within �1%.

However, a larger discrepancy is found for the critical
rotation velocity for the nucleation of a single vortex that
within the classical vortex theory is given by [24]

ωc = �

MR2
ln

(
R

ac

)
. (5)

Hence �c = ln(R/ac). Using our system values for R and ac

the above equation yields �c = 4.3, whereas the DFT value,
given by the intersection of the Nv = 1 line in Fig. 3 with the
horizontal line representing the vortex-free energy, is �c =
5.1. There would be needed much smaller a vortex core value
(ac = 0.44 Å) to reconcile the classical theory with the DFT
results.

In the case of two linear vortices symmetrically placed
with respect to the axis of the cylinder, the energy of the pair
as computed from the classical theory is [21]

E2 = 2ρπ�
2

M

[
ln

(
R

ac

)
+ ln

(1 − p2)

2
− 1

2
ln p − �(1 − p)

]
,

(6)

where p ≡ (d/2R)2 with d being the vortex-vortex distance.
The equilibrium condition dE2/dp = 0 yields

3p2 + 1 − 2�p(1 − p2) = 0, (7)

which admits a p > 0 solution as long as � > �0 =√
9/4 + 3

√
3/2 = 2.202.

We plot in Fig. 4 the calculated vortex-vortex equilibrium
distance for the two-vortex array as a function of the angular

FIG. 4. Vortex-vortex equilibrium distance for the two-vortex
array as a function of the dimensionless angular velocity � =
R2Mω/�. Open squares: DFT result for the empty vortex cores. Filled
squares: DFT result for the Xe-filled vortex cores. Solid line: vortex
model result, Eq. (7). The inset shows the DFT empty vortex-pair
equilibrium configuration at the closest approach.

velocity and compare it with the value obtained from Eq. (7).
The agreement is good at low �, up to the limiting value �0

(which is the lowest displayed value with the solid line). At
high values of � the DFT results level off. This is due to
the superposition of the core structures which prevents further
decrease in the distance, and the classical vortex theory does
not hold because of the inhomogeneities in the density profile,
shown in the inset of Fig. 4, where the vortex structure at
closest approach is displayed. For angular velocities larger
than those displayed in the figure with open squares, the whole
4He cylinder becomes unstable and the DFT minimization
procedure fails.

As for the equilibrium structures, the DFT results are
in agreement with those of the classical vortex theory [23]
for a rotating cylinder of superfluid 4He. The energetically
favored structures for Nv > 5 are made of rings of vortices
plus one vortex at the center of the cylinder. The tendency
of rings of vortices to form was observed long ago in a
rotating bucket experiment [15]. Our findings are consistent
with this observation and with other fine details. In particular,
for Nv = 6 besides the stable fivefold ring of vortices plus a
vortex at the center, a metastable state made of a six vortex
ring is experimentally observed; in our calculations this state
is almost degenerate with the stable one. Both configurations
were also found within the classical vortex theory [23], but
with the six-vortex ring fairly higher in energy than the stable
state.

A configuration with a larger number of vortices, namely
Nv = 18, is shown in Fig. 5. This equilibrium vortex structure
again coincides with the lowest energy structure of classical
vortex theory [55]. Within such theory, the areal density of
vortex lines n0 is proportional to the angular velocity, n0 =
2Mω/h = �/πR2 [4,22]. Assuming a triangular distribution
for the vortex lines, the areal density would be n0 = 2/(

√
3d2),
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FIG. 5. (Color online) Nv = 18 state at � = 29.6. Lengths are in
Å. The vertical scale shows the displayed values of density, between
ρ = 0 and ρ = 0.03 Å−3.

where d is the mean intervortex distance. By equating these
two expressions for n0, with the value � = 29.6 used to obtain
the distribution shown in Fig. 5, one gets d/R =

√
2π/

√
3� =

0.35. From Fig. 5 one can estimate an average vortex-vortex
distance d ∼ 24 Å, i.e., d/R = 0.34, which compares well
with the result of the classical vortex theory.

We remark at this point that the scaled lengths and
frequencies r/R and � ≡ R2Mω/� which characterize the
vortex array configurations [21] allow one to compare the
results for a nanoscopic system, like the ones presented here,
to the actual experiments where typical lengths and frequencies
differ by many orders of magnitude. This is proven, for
instance, by looking at the rotating bucket experimental results
of Ref. [15]. Figure 2(e) in this reference shows the fivefold
ring of vortices nucleated in a rotating bucket of radius
R = 1 mm with angular velocity ω = 0.45 s−1. The average
scaled distance between neighboring vortex cores can be read
directly from that figure, d/R ∼ 0.32–0.33. From our DFT
calculations for a fivefold ring of vortices at the same value of
the dimensionless frequency � = 28.5 in a nanobucket with
R = 71.4 Å we get a ratio d/R = 0.34, which is compatible
with the experimental one.

B. Doped vortices

We next study the changes in the vortex structures induced
by the capture of atomic impurities inside the vortex cores.
We consider the particular case of Xe atoms because of their
use as vortex tracers in recent experiments [48]. Due to the
large mass of the Xe atom as compared to that of the He atom,
their effect on the liquid is incorporated through an external
potential VHe-Xe (which is taken from Ref. [56]), i.e., Ĥ in
Eq. (2) is replaced by Ĥ + ∑

I VHe-Xe(|r − RI|), where RI is
the position of the I th Xe atom.

The equilibrium density profile around a Xe impurity
trapped inside a vortex core is shown in Fig. 6. Due to the
periodic boundary conditions inherent to the use of the fast-
Fourier method [53], this configuration actually corresponds
to a linear chain of Xe atoms separated one from another by

FIG. 6. (Color online) Helium density around a Xe impurity
trapped inside a vortex line. Lengths are in Å and densities in Å−3 .

a distance equal to the length of the simulation cell along the
vortex axis, which in the present case is 30 Å. Since the Xe
distance between periodically repeated images is so large, the
interaction between images can be safely neglected and in
practice that configuration represents indeed an isolated Xe
atom attached to the vortex. We have calculated the binding
energy of the Xe atom to the vortex line as [11]

BXe = (EXe − E0) − (EXe+V − EV ), (8)

where EXe+V , EXe, EV , and E0 are the energies of the (vor-
tex + Xe), (Xe), (vortex), and pure 4He cylinder, respectively.

We have found BXe = 3.2 K, to be compared with earlier
estimates [34], where a value close to BXe = 5 K was found
using a different functional. Since the present computational
method is more accurate, the value given here is likely more
reliable. The positive value of BXe implies that the Xe impurity
is energetically stabilized inside the vortex line.

We have also computed the energy of two Xe atoms within
the same vortex line as a function of the Xe-Xe distance. To
model the Xe-Xe interaction we have used the pair potential
function computed in Ref. [56]. The results are shown in Fig. 7,
where the energy difference with respect to the configuration
of two Xe atoms well apart from each other is shown as a
function of the atoms separation. As was also found for other
impurities [57], the Xe atoms are free to move along the vortex
line, and the lowest energy state is the one where the Xe atoms
have formed a dimer, whose bond length almost coincides with
that of the Xe dimer in vacuum.

Additional Xe atoms trapped within the same vortex line
can in principle form a one-dimensional atomic structure
completely filling the vortex core. The structure of such Xe
structure is shown in Fig. 8. The mutual Xe-Xe interaction
at zero temperature produces a one-dimensional solidlike
structure where the Xe atoms residing in the minimum of
the interaction potential form an ordered chain of equidistant
atoms.

The helium density close to the Xe atoms appear to be rather
structured, with values that locally exceed the bulk density by
a factor of 2–3. It was experimentally found that the atomic
impurities are trapped in vortex lines in the form of regularly
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FIG. 7. Energy of two xenon atoms in a vortex line vs Xe-Xe
distance d .

spaced atomic clusters, rather than forming atomic chains
[38–41]. Actually, the relatively large size of such clusters
allows one to use them to effectively image the vortex
itself [48].

While being certainly interesting because of its relevance
to the experimental studies of the elusive vortices in superfluid
4He nanodroplets, the theoretical study of atomic clusters in
vortex lines is beyond the scope of this paper. We rather address
briefly here the simpler case of a vortex line filled with Xe
atomic chain. Albeit being aware of its limitations, we believe
nevertheless that it might be a useful first attempt to address
the rather complex issue of impurity aggregates inside vortex
arrays. It is worth mentioning that cluster merging inside the
same vortex line may be hampered by the existence of energy
barriers—to which the very structured helium density around
impurities contribute in a non-negligible way—and that there
are experimental [58,59] and theoretical [60,61] examples of
metastable structures made of nearly isolated impurities or
impurity clusters coexisting in helium droplets. The specific
characteristics of the formation of atomic clusters in helium
droplets have been reviewed in Ref. [62].

FIG. 8. (Color online) Xe chain embedded inside a vortex line.
The chain is made by a periodically repeated motif of four equidistant
Xe atoms at r = 0 and z = −8.8, − 4.4, 0, and 4.4 Å. The mutual
Xe-Xe distance is chosen as the equilibrium one for the Xe pair inside
a single vortex line. Lengths are in Å and densities in Å−3 .

FIG. 9. (Color online) Vortex structure around an annulus made
by filling the central vortex line with Xe atoms at the dimer distance.
The angular velocity is � = 19 and the radius of the rotating 4He
cylinder is 50 Å. Lengths are in Å and densities in Å−3 .

By completely filling the core of a single vortex with a
chain of Xe atoms at the dimer equilibrium distance, the
liquid helium is expelled from the region around the axis
of the cylinder constituting an annulus of inner radius about
that of the Xe-He pair-potential core that replaces the vortex
line. An annular geometry was used by Vinen in his classical
experiment on quantized circulation [5], showing that above
a certain angular velocity a quantized circulation of the
superfluid velocity appeared around the axis of the annulus,
and that increasing further the angular velocity vortices could
appear. Low-lying states of rotating superfluid 4He in an
annulus were studied by Stauffer and Fetter [22] with the
classical inviscid fluid model finding that the vortices lie on
a ring midway between the boundaries of the annulus. The
number of vortices in the ring increases with increasing angular
velocity, with the possibility of forming more than one ring.
The same phenomenology appears in DFT simulations, as
shown in Fig. 9, where we show the calculated structure with
a stable five-vortex ring enclosing the annulus in the center
formed by a Xe-filled central vortex line.

The filling of neighboring vortex lines with atomic im-
purities/clusters is likely having observable effects on the
vortex distribution in a multivortex configuration, like the ones
recently observed in 4He nanodroplets [48]. As a first step
towards understanding the effect of cluster doping on a vortex
array, we consider here the interaction between a pair of doped
vortices, similar to what was done for the “empty” vortex pair,
but with the cores completely filled by a chain of Xe atoms.
Any effect should show up in changes of the vortex mutual
distance as a function of the rotational frequency, as compared
to the case of empty vortices. The results of our calculations
are shown in Fig. 4 with filled squares. It appears that there is
no evident change in the vortex-vortex distance induced by the
Xe adsorption (apart when the two vortex cores are very close
to one another), in spite of the additional rotational energy
ML(d/2)2ω2 due to the Xe mass (ML being the Xe mass per
unit vortex length) rotating with the vortex pair. Although
such contribution is small in the present case, due to the
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nanoscopic dimension of our system, it could become relevant
in an experimental situation, altering the distribution of vortex
lines containing Xe clusters, especially at the periphery of
the droplet. Such effect seems to have been observed in the
experimental images of Ref. [48].

IV. SUMMARY AND OUTLOOK

Within the zero temperature density functional approach,
we have studied the formation of vortex arrays in a rotating
4He cylinder of nanoscopic dimension. We have found that the
simple scaling relations that characterize the classical theory
of quantized vortices in incompressible and inviscid fluid can
be used to determine, starting from the nanoscale DFT results
presented here, the structure of vortex arrays in the millimeter-
sized samples used in rotating bucket experiments.

Motivated by current experiments on 4He nanodroplets, we
have also addressed the effect of doping the vortex cores with
Xe impurities. Somewhat unexpectedly, we have found that

adding these impurities does not introduce sensible changes
in the intervortex distance. Since such changes have been
experimentally observed at the periphery of droplets [48], there
remains to be seen whether they are due to the role played by
the geometry: unlike the case of an infinitely extended cylinder,
in a spherical drop quite some Xe atoms/clusters are located
not far from its curved surface where the vortex cores are wider
and the helium density lower. We are currently undertaking the
study of vortex arrays within 4He nanodroplets, which will be
the subject of a forthcoming work.
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