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Model for the spin-dependent Seebeck coefficient of InSb in a magnetic field
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We develop a simple theory for the spin-dependent Seebeck effect in n-doped InSb in an external magnetic
field. We consider spin-1/2 electrons in the conduction band of InSb with a temperature gradient parallel to the
applied magnetic field. In the absence of spin-orbit interactions, a Boltzmann equation approach leads to a spin
current parallel to the field and proportional to the temperature gradient. The calculated spin-dependent Seebeck
coefficient oscillates as a function of magnetic field B; the peak positions are approximately periodic in 1/B.
The oscillations arise when the Fermi energy crosses the bottom of a Landau band.
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I. INTRODUCTION

It is well known that spin currents can be generated in
many materials by the flow of heat current. The so-called
spin Seebeck effect arises when this spin motion leads to
the production of a voltage, usually by the inverse spin
Hall effect (ISHE). A number of recent experiments have
demonstrated the occurrence of a spin Seebeck effect in
a variety of materials [1–4] and in both transverse and
longitudinal experimental configurations [2–4]. The materials
involved can be metallic ferromagnets, magnetic insulators,
and even doped nonmagnetic semiconductors (such as Te-
doped InSb) in a strong magnetic field. Several papers have
discussed possible explanations for such behavior in a range
of materials [4–11]. Another related effect, which also arises
from interaction of spins with heat currents, is known as the
spin-dependent Seebeck effect. This involves the production
of a bulk spin current by an applied temperature gradient, but
unlike the spin-Seebeck effect does not require an ISHE, which
arises from spin-orbit interactions.

In this paper, we present a simple calculation for spin
transport, and specifically for the spin-dependent Seebeck
coefficient in n-doped InSb in the presence of a temperature
gradient and an external magnetic field. Our model is based on
the Boltzmann equation, but applied to the bands formed by
the Landau levels in an n-type semiconductor when there is a
strong magnetic field parallel to the temperature gradient. The
model readily leads to spin-dependent transport. The results
we obtain are relevant to the spin-dependent Seebeck effect in
n-doped InSb, but do not directly apply to the experiments
of Ref. [1] where the transverse spin Seebeck coefficient
was measured. The coefficient we calculate, however, does
show the characteristic oscillations with inverse magnetic field
seen in Ref. [1], and we believe that if the spin-dependent
Seebeck effect were explicitly measured in n-doped InSb,
similar oscillations would be found. In the future, by including
spin-orbit interactions, it may be possible to calculate the
measured transverse spin Seebeck effect in InSb.

The band structures of InSb and other zinc-blende semicon-
ductors have been extensively investigated, both theoretically
and experimentally. Early theoretical studies by Kane [12],
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Dresselhaus [13], and Parmenter [14] explain the effects of
symmetry on the conduction band electronic states. In other
early studies, the effects of a magnetic field on the band
structure of InSb were investigated by Roth et al. [15,16] and
by Pidgeon et al. [17]. These theoretical and experimental
studies led to a better understanding of the beats observed in
Shubnikov-de Haas oscillations in III-V semiconductors [18].
Other experiments showed that the lowest conduction band
state in InSb has the spherically symmetric �6 symme-
try [13,19], and that the effective mass of the conduction
band electrons is only a small fraction of the free electron
mass [19].

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the relevant macroscopic transport
equations describing the coupled heat, electronic, and spin
transport. In Sec. III, we present a theory for these transport
coefficients based on a microscopic Hamiltonian combined
with the Boltzmann equation. The Hamiltonian includes the
Landau Hamiltonian for electrons in a magnetic field and the
Zeeman interaction between the spins and the magnetic field.
The Boltzmann equation is then linearized, and solved to yield
the thermoelectric and spin-dependent Seebeck coefficients. In
Sec. IV, we present numerical solutions of this model for the
various transport coefficients as a function of magnetic field at
a temperature T = 4.5 K. In Sec. V, we give a brief concluding
discussion. An Appendix gives explicit expressions for the
various Onsager coefficients.

II. MACROSCOPIC TRANSPORT EQUATIONS

We begin by writing down the appropriate macroscopic
transport equations for the system of interest, which we
visualize as a doped semiconductor such as n-InSb in a
magnetic field B taken parallel to the z axis. In this case,
there are three current densities to consider: the heat current
density JQ, and the charge current densities J+ and J− for
spin-up and spin-down charge carriers.

These currents are expected to be linearly related to
corresponding fields, which will be −∇T , and −∇μ±, where
T is the temperature and the μ± are the electrochemi-
cal potentials for spin up and spin down charge carriers.
As noted by Brechet and Ansermet [20] (see also Bauer
et al. [4] and Uchida et al. [21]), the linear Onsager
relations between these currents and fields may be written
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as ⎛
⎜⎝

JQ

J+
J−

⎞
⎟⎠ =

⎛
⎜⎝

LQQ LQ+ LQ−
L+Q L++ L+−
L−Q L−+ L−−

⎞
⎟⎠

⎛
⎜⎝

−∇T

−∇μ+
−∇μ−

⎞
⎟⎠ . (1)

Instead of the currents J+ and J−, it may be more convenient
to consider the charge current density Je = J+ + J− and the
spin current density JS = (�/2q)(J+ − J−) (where q = −e

is the charge of the current carriers and we assume a spin
�/2 per carrier). Similarly, rather than the −∇μ±, it is more
convenient, following Valet and Fert [22], to introduce the
quantities μav and �μ via the relation

μ± = μav ± �μ + qV. (2)

Here μav is the average of the two chemical potentials at zero
applied voltage, V is the electrostatic potential, and �μ =
1
2 (μ+ − μ−).

We can now write down the linear transport equations in
terms of these new fields and currents. The result is⎛

⎜⎝
JQ

Je

JS

⎞
⎟⎠ =

⎛
⎜⎝

LQQ LQe LQS

LeQ Lee LeS

LSQ LSe LSS

⎞
⎟⎠

⎛
⎜⎝

−∇T

E
− �

2q
∇(�μ)

⎞
⎟⎠ , (3)

where the various L coefficients are all certain linear combi-
nations of the coefficients in Eq. (1) and E = E + ∇μ

|e| is the
effective electric field.

Equation (3) applies if the spin polarization is parallel to
the direction of the spin current. If the spin polarization is
not parallel to the direction of spin current flow, then there
are three spin current vectors, to be called JS,i with i = x, y,
and z, corresponding to current densities of the x, y, and z

components of electron spin. In this case, Eq. (3) should be
replaced by a 5×5 matrix equation, corresponding to the five
current densities JQ, Je, and the three JS,i’s. Since we will not
consider this situation in the present paper, we will not write
down this equation explicitly.

III. THEORY FOR TRANSPORT COEFFICIENTS IN INSB

Next, we present a theory for some of the above transport
coefficients in an n-type semiconductor, such as Te-doped
InSb, in a magnetic field. We are particularly interested in
the coefficient LSQ, which is the induced spin current density
in the z direction when a temperature gradient is applied in that
direction, as indicated in Eq. (3). As discussed in Ref. [23], we
envision that an experiment to measure this coefficient could
be carried out in a wire that is part of an open electric circuit (no
electrical current flowing), as shown schematically in Fig. 1.
As indicated in the figure, both a uniform magnetic field B and
a uniform temperature gradient ∇T are parallel to the wire,
which is assumed to lie in the z direction. A further analysis
of the relevant boundary conditions for this geometry is given
later in the paper.

A. Electronic energies and wave functions

The conduction band of InSb is nondegenerate, and the
low-lying electronic states in this band have the spectrum of
a free electron (of effective mass m∗) in a magnetic field.

FIG. 1. (Color online) Schematic of an idealized experimental
configuration, showing the orientation of the magnetic field, thermal
gradient, and the positions of the nonmagnetic contacts (red) used to
probe the spin-dependent Seebeck coefficient in InSb (shown in tan).
The thermal gradient and applied magnetic field are oriented along z.
Depending on the boundary conditions, as discussed this coefficient
may be determined by the longitudinal voltage difference measured
between the red contacts [see Eq. (24)] [4].

The spin-independent part of the effective-mass Hamiltonian
describing these states is thus

H0 = 1

2m∗

[
+

(
− i�

∂

∂x
+ qBy

)2

− �
2 ∂2

∂y2
− �

2 ∂2

∂z2

]
,

(4)

where we have used SI units and a gauge such that the vector
potential A = (−By,0,0), where B = ∇×A is the applied
magnetic field.

The solutions of the spin-independent Hamiltonian given
in Eq. (4) are standard. The total energy is a function of a wave
vector kz and the Landau level index n, and can be written as

En(kz) = �
2k2

z

2m∗ +
(

n + 1

2

)
�ωc, (5)

where ωc = eB/m∗ is the cyclotron frequency. Each level has
a degeneracy per spin σz of

Nn,σz
= LxLyB

�0
, (6)

where �0 = h/2e is the magnetic flux quantum.
In the absence of spin-orbit interaction, the spin-dependent

part of the electronic Hamiltonian, denoted Hs , consists of a
Zeeman interaction between the conduction electron and the
applied magnetic field, which may be written as

Hs = gμBB · σ . (7)

Here g is the electronic g factor, which is assumed independent
of the magnetic field strength, μB is the Bohr magneton, and
σ is the vector of the three Pauli spin matrices for a spin-
1/2 particle. The eigenvalues of H0 + Hs are characterized by
quantum numbers n, kz, and σz = ±1/2, and are given by

En,σz
(kz) = En(kz) + gμBBσz, (8)

with a spin σz parallel to z and a degeneracy given by Eq. (6).

B. Electrical, thermal, and spin currents

Next, we will obtain the various electronic transport
coefficients for an n-type semiconductor such as InSb, using
the Boltzmann equation. In the presence of a magnetic field,
the conduction band is broken up into many one-dimensional
bands, labeled by a Landau level index n and a spin index
σz (σz = ±). Each band is also highly degenerate, with
degeneracy Nn,σz

as given in Eq. (6). The Boltzmann equation
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for an electron of spin σz in band n can be written in the
standard way (see, e.g., Ref. [25]) as

∂gn,σz

∂t
+ vnσz

(kz) · ∇rgn,σz
+ F

�
· ∇kz

gn,σz
=

(
∂gn,σz

∂t

)
coll

.

(9)

Here gn,σz
(r,kz,t) is the probability that an electron in a state

kz in the nth band with spin σz at a position r is occupied at
time t , F = −eE = −eE − ∇μ, and vnσz

(kz) is the velocity of
an electron in the state described by kz, σz and n.

As is conventional, we make the relaxation time approxi-
mation so that the collision term is rewritten as(

∂gn,σz

∂t

)
coll

∼ −δgn,σz
(r,kz,t)

τ
, (10)

where δgn,σz
is the deviation of gn,σz

from its equilibrium value
g0

n,σz
. The function g0

n,σz
is set equal to the Fermi function given

by

g0
n,σz

(kz) = 1

exp
[
β
(
En,σz

(kz) − μ
)] + 1

, (11)

where β = 1/kBT , T is the temperature, kB is Boltzmann’s
constant, and μ is the chemical potential.

We seek a steady-state solution and thus the first term on
the left-hand side of Eq. (9) vanishes. We also linearize the
Boltzmann equation by assuming that both ∇rgn,σz

and F are
small, so that the factor gn,σz

in both the second and the third
terms of Eq. (9) can be approximated as g0

n,σz
. Combining these

conditions, we obtain the linearized steady-state Boltzmann
equation in the relaxation time approximation, which, after
simplification, is

−δgn,σz
(kz)

τ
= En,σz

(kz) − μ

T

(
−∂g0

n,σz

∂E

)
∇T · vn,σz

(kz)

+ F · vn,σz
(kz)

(
∂g0

n,σz

∂E

)
, (12)

where we evaluate E at E = En,σz
(kz).

We are interested in the case of an applied temperature
gradient and effective electric field oriented along the z axis
[see Eq. (3)]. We can now express the electric, heat, and spin
currents in terms of δgn,σz

(kz), as obtained from Eq. (12). Two
of these expressions are given, for a spherical band, by, e.g.,
Ref. [25]. These general expressions need to be modified to
take account of the degeneracy of the Landau bands as we do
below. The mathematical form of the spin current density, JS,

is similar to that of the electrical current density, Je.
To be explicit, we can write out the current densities in the

system as follows:

Je = Lz

V

∑
n,σz

∫
dkz

2π
(−e)Nn,σz

vn,σz
(kz)δgn,σz

(kz), (13)

JQ = Lz

V

∑
n,σz

∫
dkz

2π
Nn,σz

�En,σz
vn,σz

(kz)δgn,σz
(kz), (14)

JS,i = Lz

V

∑
n,σz

∫
dkz

2π
μB〈σn,i〉Nn,σz

vn,σz
(kz)δgn,σz

(kz), (15)

where the limits of the integral are ±∞ and �En,σz
=

En,σz
(kz) − μ.

In Eqs. (13)–(15), JQ is the heat current, vn,σ (kz) =
�

−1∇kEn,σz
(kz) is the velocity of the electron in the band

labeled by (n,σz), and 〈σn,i〉 is the expectation value of the
ith component of spin in the band (n,σz) (i = x,y,z). In the
absence of spin-orbit interaction, only JS,z, that is, the current
density associated with the z component of spin, is nonzero.

For an electron in the conduction band the velocity,
vn,σz

(kz) = vn,σz
(kz)ẑ is given by

vn,σz
(kz) = �kz

m∗

= ± �

m∗

√
2m∗

�2

(
En,σz

(kz) − E0
n,σz

)
, (16)

where the + and − signs apply when kz > 0 and kz < 0,
respectively, and E0

n,σz
is defined as the minimum energy for

the band (n, σz) given by

E0
n,σz

= (
n + 1

2

)
�ωc + σzgμBB. (17)

In order to calculate the various transport coefficients in
Eqs. (13)–(15), we need the chemical potential μ. μ can be
calculated given the conduction electron density ρ = Ne/V ,
where Ne is the total number of conduction electrons in volume
V . For the present case, the chemical potential μ is obtained
from

ρ = B

π�0

∑
n,σz

∫ ∞

0
g0

n,σz
(kz)dkz (18)

where Eq. (18) is an implicit equation for μ(T ,B).
Since the experiments of Ref. [1] are done at a very

low temperature (T = 4.5 K), we have approximated μ (or
equivalently, the Fermi energy EF ) by its value at T = 0. In
this case, g0

n,σz
is just a step function, and EF is given implicitly

by

ρ =
∑
n,σz

B

π�0

(
2m∗

�2

(
μ − E0

n,σz

)) 1
2

, (19)

where E0
n,σz

is defined in Eq. (17) and the sum runs only over
Landau bands with nonzero electron occupation at T = 0.

C. Transport coefficients

We obtain the transport coefficients of interest by using
Onsager’s linear relationship between the currents and the
forces generating the currents [26]. For the present problem,
this relation is given by Eq. (3). These may be written in
condensed form as

Ji =
∑

j

LijFj , (20)

where i = e,Q,S runs over the three currents in the system
and j runs over the forces acting on the conduction electrons.
In this paper, we consider only longitudinal spin currents,
i.e., we assume that only 〈σz〉 �= 0. The explicit form of
the measured transport coefficients can then be obtained by
combining Eq. (3) with Eqs. (12)–(16).
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For example, the electrical conductivity, σe, is given by the
Onsager coefficient Lee. Similarly, the thermal conductivity,
κ , is given by [25]

κ = LQQLee − LQeLeQ

Lee

, (21)

where the Onsager coefficients are given in Appendix and
shown in Fig. 4.

The thermopower α is generally defined as the ratio of
the z component of the electric field to the negative of the
thermal gradient (also assumed to be in the z direction) under
the condition of zero electrical current in the z direction. We
write this condition as E = α(−∇T )Je=0 [25]. It is readily
shown that the α can be expressed in terms of the Onsager
coefficients as

α = −LeQ

Lee

. (22)

We can also calculate the coefficient LSQ, which describes
spin current parallel to the magnetic field and driven by
a temperature gradient. A possible geometry for measuring
this coefficient is shown in Fig. 1, as already mentioned.
In this geometry, the n-type InSb is placed between two
nonmagnetic contacts in an open circuit (no charge current),
and a temperature difference is maintained between the two
contacts.

The analysis of spin and thermal transport in this config-
uration has been discussed in Ref. [23] for a ferromagnetic
metallic wire, and can also be used for the present case. As
discussed there, the results depend on the boundary conditions
at the ends of the wire, which are likely to fall between two
possible limiting cases. In our notation, these are (i) �μ = 0
at each end of the wire; and (ii) JS = 0 at the two ends. For
case (i), we can solve Eqs. (3) taking Je = 0 and �μ = 0 to
obtain E = (LeQ/Lee)∇T and

JS =
(

LSQ − LSeLeQ

Lee

)
(−∇T ). (23)

In our notation, this is equivalent to the result obtained in
Ref. [23] for position-independent temperature gradient and
boundary condition (i). For boundary condition (ii), one can
solve Eq. (3) under the conditions Je = 0, JS = 0 to obtain

E = LSSLeQ − LeSLSQ

LeeLSS − LeSLSe

(24)

and

− �

2q
∇(�μ) = LeeLSQ − LSeLeQ

LeeLSS − LeSLSe

. (25)

Thus, various observable quantities (spin current density,
induced electric field) are sensitive to the spin-dependent
Seebeck coefficient LSQ. The results would be modified when
spin-flip scattering is included, as described in Ref. [23].
The thermally induced spin accumulation (i.e., �μ) or spin
current can also be detected nonlocally, by allowing the spin
to diffuse into a nonmagnetic material, as discussed by Slachter
et al. [24].

TABLE I. Numerical parameters used in the calculation of the
Onsager coefficients given in Appendix. The estimate τ ∼ 10−12 s is
inferred from the electron mobility quoted in Ref. [1].

Assumed values for the physical properties of InSb

Quantity Value Ref.

g −49.0 [27]
m∗ 0.013me [19]
τ ≈1×10−12 s [1]

IV. NUMERICAL RESULTS

We now turn to numerical results based on the present
simplified model. We first calculate the chemical potential
μ(T ,B) at T = 0 K, assuming parameters appropriate to the
conduction band of InSb and the experiments of Ref. [1], as
given in Table I.

The resulting Fermi energy is shown in Fig. 2 as a
function of B, assuming a conduction electron density of ρ =
3.7×1015 cm−3, as used in the experiments of Ref. [1]. The
results show, as already obtained in Ref. [1], that μ(T = 0,B)
is a nonmonotonic function of B, with discontinuous changes
in slope wherever the minimum of one of the spin subbands
rises through the Fermi energy and becomes unoccupied.

Given the Fermi energy, or at finite temperature the chem-
ical potential μ(T ,B), we can calculate a variety of transport
coefficients. Here we calculate the components of electrical
and thermal conductivities, and of the thermopower, parallel
to the field, under the appropriate experimental conditions as
described above. We also calculate the transport coefficient
LSQ [Eq. (3)], which represents the spin current density in
the z direction per unit applied temperature gradient in the
z direction. Expressions for the relevant Onsager coefficients
are given in Appendix. All the coefficients are functions of
both the applied magnetic field B and the temperature T . The

0.0

5.0

10.0

15.0

20.0

 0  1  2  3  4  5  6

En
er

gy
 (m

eV
)

Magnetic Field (T)

(0,+)(0,-)(1,+)(1,-)

(2,+)(2,-)

FIG. 2. (Color online) Calculated Fermi energy at T = 0 K plot-
ted as a function of an applied magnetic field along the z direction
as indicated in Fig. 1. We also show the first three Landau bands
(n = 0,1,2); each band is labeled by its band index n and spin σz as
(n, σz), where σz = ±. Straight lines correspond to the minima of the
various Landau subbands, as labeled in the figure. Scalloped curve
represents the T = 0 Fermi energy EF as a function of magnetic field.
In this figure, EF is calculated neglecting spin-orbit coupling.
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0

0.5

1.0

1.5x10-3

 0  1  2  3  4  5

σ e
 (1

/Ω
-m

)

1/B(T-1)

FIG. 3. The calculated electrical conductivity σe, given in
Eq. (A1), plotted as a function of the inverse magnetic field 1/B at
T = 4.5 K, and neglecting spin-orbit interactions. The maxima in the
conductivity occur when the Fermi energy crosses the bottom of the
Landau band as plotted in Fig. 2. The highest-field maximum occurs
at approximately B = 1.2 T, which corresponds to the Fermi energy
crossing the (0,−) Landau level. This curve is calculated neglecting
spin-orbit interaction and using the T = 0 Fermi energy.

integrals in the transport coefficients are all dominated by
energies within kBT of EF , since the energy derivative of the
Fermi function, which is a factor in each of the integrals, is
strongly peaked near EF .

The results of these calculations are shown in Figs. 3–6.
In each case, we have plotted the transport coefficients at
T = 4.5 K as functions of the inverse magnetic field. The
various numerical parameters used in the calculations are given
in Table I. We plot the transport coefficients in this manner in
order to show that the positions of the peaks in these quantities
vary periodically with 1/B. The oscillations are examples of
the de Haas- van Alphen-like oscillations normally seen in
the magnetotransport coefficients of metals [28]. In particular,
the spin-dependent Seebeck coefficient LSQ shows these
oscillations, which are similar to those seen in experiments
(but the experiments measure the transverse spin-dependent
Seebeck coefficient).

0

3.0

6.0x10-5

 0  1  2  3  4  5

κ 
(W

/m
-K

)

1/B(T-1)

FIG. 4. Calculated thermal conductivity, κ , given in Eq. (21),
plotted as a function of 1/B at T = 4.5 K. The maxima in κ occur, like
those of σe, when the field-dependent Fermi energy crosses the bottom
of a Landau level. This curve is calculated assuming no spin-orbit
interaction and the values of the T = 0 K Fermi energy.

0.0

0.05

0.1

0.15x10-4

 0  1  2  3  4  5

α 
(V

/m
-K

)

1/B(T-1)

FIG. 5. The calculated thermopower, as obtained using Eq. (22),
plotted versus 1/B at T = 4.5 K. The maxima occur in the same
manner as in Figs. 3 and 4. This curve is calculated assuming no
spin-orbit interaction and the values of the T = 0 K Fermi energy.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have given a simple model for the
spin-dependent Seebeck coefficient in InSb. In our model, the
electronic energy levels of n-type InSb in a magnetic field
are given as Landau levels and the various electronic transport
coefficients, including the spin-dependent Seebeck coefficient,
are obtained from a simple Boltzmann equation approach for
each Landau subband. The oscillations of this coefficient in
a magnetic field occur when the Fermi energy crosses the
minima of the various Landau subbands as the magnetic field
is varied.

While our model holds, in principle, for any temperature
T , we have carried out the calculations of the transport
coefficients only at low T (T ∼ 4.5 K) and specifically
calculated the chemical potential at T = 0 K (see Fig. 2).
While the difference between the chemical potential at T = 0
and T = 4.5 K is small, it could affect both the magnitude and
position of the Landau level crossings. This change could give
quantitatively different results, but the qualitatively picture of
the oscillations would remain the same.

0.0

0.2

0.4

0.6x105

 0  1  2  3  4  5

L S
Q 

(A
/K

-m
2 )

1/B(T-1)

FIG. 6. The calculated spin-dependent Seebeck coefficient LSQ

given by Eq. (A4), plotted versus 1/B at T = 4.5 K but using the
T = 0 K Fermi energy. The maxima occur when the minima of the
various Landau subbands cross the Fermi energy, as in Figs. 3–5.
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Finally, we discuss how our simple model might be
modified to produce a transverse spin-dependent Seebeck
effect. The present model omits spin-orbit interaction, which is
known to have a large effect on the band structure of InSb and
similar compound semiconductors. The spin-orbit interaction
couples the spatial momentum to various components of the
electronic spin. In particular, some forms of this interaction
couple momenta in one direction with spin components in
other directions. Such coupling could lead to expectation
values of the spin vector which are tilted relative to the
electronic momentum. This could, in turn, produce a nonzero
value of JS,x and JS,y along the z direction. If the spin vector
is tilted relative to the direction of spin current, this will lead
to a transverse electric field via the inverse spin Hall effect
(ISHE) [29]. An ISHE electric field would also be produced
if the spin is oriented in the z direction but the corresponding

spin current has a component in the x or y direction. A model
for this transverse spin-dependent Seebeck effect based on this
picture is a subject for future work.
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APPENDIX: ONSAGER COEFFICIENTS

Here we give expressions for the various Onsager coeffi-
cients discussed and calculated in the text. In our model, the
Onsager coefficients are

Lee = Lz

V

∑
n,σz

∫ ∞

−∞

dkz

2π
e2Nn,σz

[
vn,σz

(kz)
]2

τ
∂g0

n,σz
(E,T )

∂E
; (A1)

LeQ = Lz

V

∑
n,σz

∫ ∞

−∞

dkz

2π
eNn,σz

[
vn,σz

(kz)
]2

τ
�E

T

∂g0
n,σz

(E,T )

∂E
; (A2)

LSe,i = −Lz

V

∑
n,σz

∫ ∞

−∞

dkz

2π
eμB〈σi(kz)〉Nn,σz

[
vn,σz

(kz)
]2

τ
∂g0

n,σz
(E,T )

∂E
; (A3)

LSQ,i = −Lz

V

∑
n,σz

∫ ∞

−∞

dkz

2π
μB〈σi(kz)〉Nn,σz

[
vn,σz

(kz)
]2

τ
�E

T

∂g0
n,σz

∂E
; (A4)

LQQ = Lz

V

∑
n,σz

∫ ∞

−∞

dkz

2π
Nn,σz

(�E)2

T

[
vn,σz

(kz)
]2

τ
∂g0

n,σz

∂E
, (A5)

where LeQ = LQe and �E = En,σz
(kz) − μ. In Eqs. (A1)–

(A5), the derivative ∂g0
n,σz

(E,T )/∂E = −βeβ(E−μ)/

[eβ(E−μ) + 1]2, with β = 1/(kBT ), and E = En,σz
(kz).

In our calculations, the integrals given above are
converted to integrals over energy using the relationship
dkz = dE/[dE/dkz]. All the integrals are dominated

by the energy range within kBT of the Fermi energy,
because ∂g0

n,σz
/∂E is strongly peaked around E = EF .

In practice, the integrands all become vanishingly small
beyond an energy of ∼3kBT on either side of EF . In
all the above expressions, vn,σz

(kz) is obtained from
Eq. (16).
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