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The tunneling anisotropic magnetothermopower (TAMT) and the tunneling anisotropic spin-Seebeck (TASS)
effects are studied for a magnetic tunnel junction (MTJ) composed of a ferromagnetic electrode, a zinc-blende
semiconductor, and a normal metal. We develop a theoretical model for describing the dependence of a thermally
induced tunneling current across the MTJ on the in-plane orientation of the magnetization in the ferromagnetic
layer. The model accounts for the specific Bychkov-Rashba and Dresselhaus spin-orbit interactions present in
these systems, which are responsible for the C2v symmetry we find in the TAMT and the TASS.
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I. INTRODUCTION

Magnetothermoelectric phenomena have been thoroughly
studied for a long time [1,2]. More than twenty years ago
Johnson and Silsbee investigated thermoelectric magnetization
transport across ferromagnetic-paramagnetic interfaces [3].
However, only during the last lustrum thermoelectric transport
has been able to account for the electronic spin degree
of freedom [4,5], mainly due to the the discovery of the
spin-Seebeck effect [6–8]. This has given birth to the field
of spin caloritronics [9,10], which covers the nonequilibrium
phenomena related to heat, charge, and spin transport in small
magnetic structures.

A three-layer magnetic tunnel junction (MTJ) is a het-
erostructure consisting of a ferromagnetic conductor, a tunnel
barrier, and a ferromagnetic or normal conductor, which are
all grown one on top of the other. In the growth direction,
the dimension of the MTJ layers is on the nanometric scale;
thereby quantum effects have to be considered. Additionally,
electric fields, spin voltages and temperature gradients are used
to probe their physical properties. These forces create measur-
able currents that transport charge, spin, and/or heat across the
MTJ, making them promising systems for investigating spin
caloritronic phenomena [10–18].

Experimentally, it has been observed that the resistance
of a MTJ depends on the magnetization orientation with
respect to the crystallographic axes of the ferromagnetic
layers [19–24]. This effect is known as tunneling anisotropic
magnetoresistance (TAMR). Surprisingly, TAMR has also
been observed in MTJs with a single magnetic layer [25–27].
However, the behavior of the TAMR varies depending on (i)
the specific composition of the MTJ, (ii) whether it has one or
two magnetic electrodes, and (iii) whether the magnetization
is rotated within a plane perpendicular to the ferromagnetic
layer (out-of-plane TAMR) or in the plane of the ferromagnetic
layer (in-plane TAMR). MTJs can be made of several kinds of
materials. (Ga,Mn)As magnetic semiconductors are the most
commonly used ferromagnetic electrodes [19–23,25]; however
TAMR has also been observed in MTJs using Fe (Ref. [26])
and Co (Ref. [27]) or CoFe alloys [24]. Regarding the tunnel
barrier, TAMR has been seen with both semiconductor barriers
(e.g., GaAs, AlAs, or ZnSe) [19–23,26] and insulator barriers
such as Al2O3 or MgO (Refs. [24,25,27]). For the case of
single magnetic layer MTJs, Au is the most commonly used
nonmagnetic electrode [25–27]. TAMR phenomena are not

restricted to MTJs; they have been observed, for example,
in single Co atoms [28]. Recently, anisotropic electric spin
injection has also been achieved for ferromagnetic-silicon
interfaces [29].

The anisotropy of the tunneling magnetoresistance is due
to spin-orbit interaction (SOI) [30]. However, the role SOI
plays depends on the specific composition of the MTJ. In
(Ga,Mn)As based MTJs, the origin of the TAMR seems to be
the anisotropic density of states (DOS) of the ferromagnetic
semiconductor with respect to magnetization, due to its strong
SOI in the valence band, combined also with uniaxial strain ef-
fects [22,23,25,31]. For MTJs with transition-metal electrodes
and an insulating barrier, the Rashba shift of the interface
resonant states can produce TAMR [24,32,33], although the
anisotropy in the DOS also might induce TAMR [27]. Finally,
for MTJs fabricated with transition-metal electrodes and a
zinc-blende type semiconductor barrier, TAMR is proposed
to be due to interface Bychkov-Rashba (BR) and Dresselhaus
(D) SOI [26,34–36].

Recently, an experiment has been performed in the all-
semiconductor MTJ (Ga,Mn)As/GaAs/Si:GaAs, in which
electric current was driven by a thermal gradient—instead
of an electric field—in order to study the in-plane tunnel-
ing anisotropic magnetothermopower effect (TAMT) [37].
The thermopower measures the voltage (or current, for the
case of closed circuits) induced by a temperature gradi-
ent. Hence, for the case of MTJs this quantity is dubbed
tunneling magnetothermopower. Naydenova et al. [37] have
measured an anisotropic dependence of the thermopower on
the magnetization orientation of the ferromagnetic electrode
with respect to a reference crystallographic axis. As in the
TAMR case, the anisotropy is likely due to the effect of the
strong SOI on the DOS of the ferromagnetic semiconductor.
Theoretically, the anisotropy induced by SOI has been investi-
gated in the magnetothermopower of a normal-metal/helical-
multiferroic/ferromagnetic MTJ [38] and through ab initio
investigations in a Cu/Co/Cu trilayer [39], and more recently
in thermogalvanomagnetic transport of ferromagnetic fcc
CoxPd1−x alloys from first principles [40].

In this paper, we investigate TAMT and the tunneling
anisotropic spin-Seebeck effect (TASS). The former describes
the anisotropy of the thermopower (also called Seebeck
coefficient), while the latter effect describes the anisotropy
of the spin-Seebeck coefficient. We focus on MTJs composed
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of transition-metal electrodes, a zinc-blende semiconductor
barrier, and with a single ferromagnetic layer. The calculation
is based on the model introduced in Refs. [26,34], which
accounts for the BR and D SOIs that are likely to be the
cause of the anisotropy for these kind of MTJs. The main
result of this work is the characteristic C2v symmetry found
for the TAMS and the TASS, similar to the one observed for
the TAMR in the same system [26].

The paper is organized as follows. The theory is presented
in Sec. II: The TAMT and the TASS are defined in Sec. II A,
the tunneling current is computed in Sec. II B, and the model
for describing the MTJ is presented in Sec. II C, namely, the
Hamiltonian (Sec. II C 1), the tunneling states (Sec. II C 2), and
the transmission probability (Sec. II C 3). The effects of finite
temperature are incorporated at a phenomenological level in
the model calculations, as explained in Sec. II D. The results
are presented in Sec. III, where a phenomenological model
is used for describing qualitatively the results (Sec. III A).
Finally, a summary is given in Sec. IV.

II. THEORY

A. Definitions

In general, the induced current across a MTJ associated
with the spin-σ channel, Iσ , is given by the constitutive
equation [41,42]

Iσ = −Gσ

(
�μσ

e
+ Sσ �T

)
, (1)

where σ =↑ , ↓. Gσ and Sσ are the conductance and the
Seebeck coefficient of the spin-σ channel, respectively, μσ

is the spin-σ electrochemical potential, and �T an applied
thermal gradient. Using Eq. (1) we can write

Ic = −G

(
�μ

e
+ P

�μs

2e
+ S�T

)
, (2a)

Is = −G

(
P

�μ

e
+ �μs

2e
+ Ss�T

)
, (2b)

where Ic/s = I↑ ± I↓ is the charge/spin current, μ = (μ↑ +
μ↓)/2 and μs = μ↑ − μ↓ are the charge electrochemical
potential and the spin accumulation, respectively, and P =
Gs/G, where G = G↑ + G↓ is the conductance and Gs =
G↑ − G↓ the spin conductance. Furthermore,

S = 1

G
(G↑S↑ + G↓S↓) (3)

is commonly referred to as the thermopower (or Seebeck
coefficient) [10,43,44], and

Ss = 1

G
(G↑S↑ − G↓S↓), (4)

which in the following we shall name the spin-dependent
Seebeck coefficient. Additionally, although the quantities

S+ = S↑ + S↓, (5a)

S− = S↑ − S↓ (5b)

appear neither in Eq. (1) nor in Eqs. (2a) and (2b), they as well
are relevant material properties. In the literature, S− is com-

TABLE I. The material property described by the ratio between an
electrochemical potential (spin accumulation) gradient, �μ (�μs),
and a temperature gradient, �T , depends on �μs (�μ), Ic, and Is . The
material properties S, S+, S−, and Ss are defined in Eqs. (3), (5a), (5b),
and (4), respectively. The check mark symbol (�) means that the
corresponding quantity is finite.

Ratio �μ �μs Ic Is Material Property

−�μ/e�T � 0 0 � S

−�μ/e�T � � 0 0 S+/2
−�μs/2e�T � � 0 0 S−/2
−�μs/2e�T 0 � � 0 Ss

monly referred to as the spin-Seebeck coefficient [15,38,43–
45], while hereinafter we shall refer to S+ as the effective
thermopower.

Table I shows how the measurement of the aforementioned
material properties depends on �μ, �μs , Ic, and Is . For
example, in an open circuit setup (Ic = 0), the ratio �μs/�T is
related to the spin-Seebeck coefficient S− [Eq. (5b), whereas
the ratio �μ/�T will be related either to the thermopower
S [Eq. (3)] or to the effective thermopower S+ [Eq. (5a)],
depending on whether there is a finite spin accumulation
gradient or not. However, in a closed circuit setup (Ic �= 0),
Table I shows that the ratio �μs/�T is now related to the
spin-dependent Seebeck coefficient Ss [Eq. (4)].

The tunneling anisotropic magnetothermopower measures
the relative dependence of the thermopower [Eq. (3)] or the
effective thermopower [Eq. (5a)] on the in-plane magnetization
orientation; hence, we have that

TAMT(φ) = S(0) − S(φ)

S(φ)
or (6a)

TAMT[+](φ) = S+(0) − S+(φ)

S+(φ)
, (6b)

where φ is the angle spanned between the magnetization vector
and a reference crystallographic axis [x] in the ferromagnet
layer (see Fig. 1). Likewise, the tunneling anisotropic spin-
Seebeck ratio measures the relative dependence of the spin-
Seebeck coefficient [Eq. (5b)] or the spin-dependent Seebeck
coefficient [Eq. (4)] on the in-plane magnetization orientation;
hence, we have that

TASS[−](φ) = S−(0) − S−(φ)

S−(φ)
or (7a)

TASS(φ) = Ss(0) − Ss(φ)

Ss(φ)
. (7b)

In the remaining, in order to compute the Seebeck co-
efficient Sσ of the spin-σ channel, we consider solely a
temperature gradient as the driving force responsible for the
tunneling current across the MTJ. Thus, Eq. (1) reduces to

Iσ = −GσSσ �T . (8)
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FIG. 1. (Color online) Scheme of a three-layer magnetic tunnel
junction. A thermally induced current tunnels across the semi-
conductor from the ferromagnet electrode into the normal metal.
Spin-orbit interaction is responsible for an anisotropic dependence
of the (effective) thermopower, and the spin-dependent Seebeck and
spin-Seebeck coefficients on the in-plane magnetization orientation n
(green arrow) with respect to a reference crystallographic axis, which
in the present case has been taken as the GaAs [110] direction.

B. Tunneling current

The net current that flows across the MTJ for the spin-σ
channel is [5]

Iσ = 1

e

∫
gσ (E)[fL(E) − fR(E)]dE, (9)

where fL(E)/fR(E) is the Fermi-Dirac distribution of the
left/right electrode,

gσ (E) = e2

h

1

(2π )2

∫
Tσ (k‖,E)d2k‖, (10)

and Tσ (k‖,E) is the transmission probability of the spin-σ
channel, namely, the probability of an electron with spin-σ
to tunnel through a potential barrier. The integrals in Eqs. (9)
and (10) are performed over the energy, E, and the transverse
modes, k‖ (see next section).

In the linear response regime, the Seebeck coefficient
associated with the spin-σ channel, Sσ , that appears in
Eqs. (3), (4), (5a), and (5b) is

Sσ = − 1

Gσ

∫
gσ (E)

(
−∂f0

∂E

) (
E − μ0

eT0

)
dE, (11)

where

Gσ =
∫

gσ (E)

(
−∂f0

∂E

)
dE (12)

is the conductance of the spin-σ channel, and μ0 and T0 are
the chemical potential and the temperature of the electrodes
in equilibrium, respectively (see Appendix A). Notice that
all the microscopic information regarding the MTJ is now
encoded in the transmission probability Tσ and the Fermi-
Dirac distribution.

C. Model

1. Hamiltonian

To study essential effects of anisotropic thermopower and
Seebeck effects, we use the model system introduced earlier

in Refs. [26,34] to explain TAMR experiments in Fe/GaAs/Au
tunnel junctions. This model allows an analytical calculation
of the spin-dependent tunneling transmission probability Tσ in
the presence of SOI and, in our view, can serve as a benchmark
for analyzing TAMT and TASS effects.

The structure we model is shown Fig. 1. The metallic layers
are described as free and independent electron gases [46] in
a semi-infinite space (meaning that the only boundaries are
the interfaces between the electrodes and the semiconductor
layer). A more sophisticated description is given for the
GaAs layer, where the extended Kane model is used [5].
This model accounts for the bulk inversion asymmetry of the
GaAs semiconductor (due to its zinc-blende crystal structure)
and the structure inversion asymmetry of the MTJ. The
former asymmetry causes a D-SOI field, while the latter
one causes a BR-SOI field. The combination of both spin-
orbit fields leads to an overall anisotropic SOI with the
required C2v symmetry observed in TAMR experiments using
a Fe/GaAs/Au MTJ [26]. Ab initio calculations have confirmed
that the origin of this symmetry is the atomic structure at both
interfaces of the MTJ [47,48].

An external magnetic field, Bext, is used to control the
magnetization orientation of the ferromagnetic electrode. This
occurs in the saturation limit, where the strength of the
magnetic field is such that the magnetization is forced to
remain parallel to Bext. However, the Zeeman splittings due
to Bext are negligible compared to the exchange energy in
the ferromagnet. Furthermore, the orbital effects due to Bext

can be safely neglected as long as the magnetization remains
in-plane [36].

We use two different models to describe the tunneling
barrier, namely, a rectangular potential barrier and a Dirac-
delta function potential barrier (Fig. 2). Both models have
been successful in describing TAMR experiments [26], while
the latter one has been used for describing TAMT experiments
as well [37]. A version of the rectangular barrier model in the
absence of SOI has recently been applied to the theoretical

V0

zrz l z2 [001]

[100]

V(z)

n
Fe (1) Au (3)

d

θ 0

GaAs (2)

FIG. 2. (Color online) Schematics of the two models used for
describing the tunneling barrier (Table II). The solid (dashed) light
(dark) blue line represents the rectangular barrier (delta function)
model, where d and V0 correspond to the thickness and the height
of the GaAs layer, respectively. Additionally, the figure shows the
relative orientation θ of the in-plane magnetization n (green arrow)
with respect to the [100] crystallographic axis of the GaAs layer.
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TABLE II. The rectangular barrier and delta function models. The subscripts 1, 2, and 3 correspond to the Fe, GaAs, and Au layers,
respectively, and in the rectangular barrier model l and r refer to the left and right interfaces (Fig. 2). The magnetization direction is given by the
unit vector n, the exchange energy by the parameter �, and θ (z) is the Heaviside step function. The Bychkov-Rashba coupling strength at the
Fe/GaAs and GaAs/Au interfaces are given by the parameters αl and αr , respectively, and δ(z) is the Dirac-delta function. The bulk Dresselhaus
coupling strength is γ , and γ̄ is the linearized Dresselhaus parameter [34]. The parameter α describes the BR SOI in the Dirac-delta function
barrier limit.

Rectangular Potential Barrier Dirac-delta Function Potential Barrier

m(z) m1θ (−z + zl) + m2θ (z − zl) + (m3 − m2)θ (z − zr ) m1θ (−z + z2) + m3θ (z − z2)

V(z) V0I[θ (z − zl) − θ (z − zr )] (V0d)Iδ(z − z2)

H(z) −�nθ (−z + zl) −�nθ (−z + z2)

VBR
1
�

(pxσy − pyσx)[αlδ(z − zl) − αrδ(z − zr )] α

�
(pxσy − pyσx)δ(z − z2)

VD
1

�3 γ (pxσx − pyσy)pz[θ (z − zl) − θ (z − zr )]pz
γ̄

�
(pxσx − pyσy)δ(z − z2)

investigation of the tunneling magnetothermopower in MTJs
with two magnetic electrodes [49]. We shall next discuss
the Hamiltonian for the system and, in the following, the
differences between both models will be indicated in Table II.

With all this in mind, the Hamiltonian we use for describing
the MTJ is

H = T + V + VZ + VBR + VD. (13)

Since the MTJ is a heterostructure, the effective mass of the
electrons is, in general, different in each layer (although we
take it to be constant within each one), meaning the mass
becomes position dependent, and so does the kinetic energy
operator T [50],

T (z) = p ·
[

1

2m(z)
p
]
I, (14)

where p = −i�� is the momentum operator, m(z) is the
position-dependent effective mass (see Table II), and I is the
unit matrix in spinor space. The second term in Eq. (13), V ,
describes the semiconductor tunneling barrier (see Table II).
The third term,VZ , accounts for the exchange energy due to the
magnetization in the ferromagnetic lead (Stoner model) [51],

VZ (z) = 1

�
H(z) · S. (15)

H(z) is the effective exchange field (see Table II), S = (�/2)σ
is the spin operator, and σ = (σx,σy,σz) are the Pauli matrices.
H(z) is taken to be in-plane, meaning n = (cos θ, sin θ,0),
where θ defines the angle between the magnetization and
the GaAs [100] crystallographic axis. In previous experiments
with Fe/GaAs/Au MTJs [26], the reference axis was taken
as the GaAs [110] direction. Therefore, we prefer to express
the magnetization direction relative to the [110] axis by
introducing the angle shifting φ = θ − π/4. Finally, the terms
VBR andVD in Eq. (13) account for the BR-SOI and the D-SOI,
respectively (see Table II).

2. Tunneling states

The wave functions describing the conduction electrons are
obtained by solving the stationary Pauli-Schrödinger equation

Hψ(R) = Eψ(R), (16)

for the Hamiltonian given in Eq. (13), where

ψ(R) =
(

ψ↑(R)
ψ↓(R)

)
(17)

is a spinor which components correspond to the wave functions
for spin-up and spin-down electrons, respectively, and R =
(x,y,z). The solutions of Eq. (16) are the eigenenergies, E,
and eigenstates of the system. Since the transversal modes, p‖,
are conserved,

ψσ (R) = eik‖·rϕσ (z), (18)

where ϕσ (z) is a solution of the Pauli-Schrödinger equation
for the longitudinal modes, r = (x,y), k‖ = (kx,ky), and p‖ =
�k‖. Notice that the longitudinal (out-of-plane) modes have
decoupled from the transverse (in-plane) modes. Replacing
Eq. (18) in Eq. (16) allows us to solve analytically the resulting
one-dimensional stationary Pauli-Schrödinger equation (see
Appendices C and D). We find that

ϕi(z) = 1√
k1σ

eik1σ zνσ , (19a)

ϕt (z) = (tσ,σ νσ + tσ̄ ,σ ν σ̄ )eik3z, (19b)

where

k1σ =
√

2m1E

�2
+ k2

Fσ
− k2

‖, (20a)

k3 =
√

2m3E

�2
+ κ2

F
− k2

‖, (20b)

and

νσ = 1√
2

(
1

σeiθ

)
, (21)

where σ =↑ (1), ↓ (−1), E is the energy measured from
the Fermi level, k

Fσ
is the Fermi wave vector amplitude

corresponding to the spin-σ channel in the magnetic electrode,
and κ

F
is the Fermi wave vector amplitude in the normal-metal

region.
The subscripts i and t in Eqs. (19a) and (19b) stand for the

incident and the transmitted wave functions, respectively. The
coefficient tσ,σ /tσ̄ ,σ represents the transmission probability
amplitude for a tunneling process in which the electron spin
is preserved/flipped. These amplitudes are computed analyt-
ically by solving the set of linear equations obtained when
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imposing the boundary conditions to the wave functions (19a)
and (19b). The expressions obtained for tσ,σ /tσ̄ ,σ within the
rectangular barrier and the delta function models are given
in Eq. (C11a)/(C11b) (Appendix C) and Eq. (D5a)/(D5b)
(Appendix D), respectively.

3. Transmission probability

In general, the transmission probability is defined as

T = J (t)
z

J
(i)
z

, (22)

where J (i)
z and J (t)

z are the incident and transmitted probability
current densities across the MTJ, respectively. The probability
current density is given by the expression

Jz(z) = e�

2im(z)

[
ψ† ∂

∂z
ψ −

(
ψ† ∂

∂z
ψ

)∗]
. (23)

Therefore, using the wave functions for the incident and trans-
mitted electrons computed in the previous section [Eqs. (19a)
and (19b)], we find that the corresponding current probability
densities are

J (i)
z = − �e

m1
, (24a)

J (t)
z = − �e

m3
k3(|tσ,σ |2 + |tσ̄ ,σ |2). (24b)

Finally, the transmission probability for a spin-σ incoming
electron is found by replacing Eqs. (24a) and (24b) in Eq. (22),

Tσ (E,k‖) = m1

m3
k3(|tσ,σ |2 + |tσ̄ ,σ |2). (25)

D. Temperature effects

With the aim to investigate finite-temperature effects on
the TAMT, TAMT[+], TASS[−], and TASS (see Sec. II A), we
include the temperature dependence of the relevant system
parameters.

We assume that the temperature dependence of the spin
polarization of the density of states in the magnetic region is
similar to Bloch’s law, i.e.,

Pg(T ) = Pg(0)(1 − ηT 3/2), (26)

where

Pg(0) = k
F↑ − k

F↓

k
F↑ + k

F↓
(27)

is the spin polarization of the density of states at zero tem-
perature, η is a phenomenological parameter to be extracted
from experimental data, and k

F↑ and k
F↓ are the Fermi wave

vectors of the spin-up and spin-down channels, respectively.
An assumption similar to that in Eq. (26) has been successfully
used for the phenomenological description of the temperature
dependence of the TMR effect in MTJs [52,53].

In order to account for the temperature dependence of
the spin polarization in the magnetic electrode we introduce
effective, temperature-dependent wave vectors,

kμσ =
√

2m1μσ

�2
, (28)

where μσ is the chemical potential corresponding to the spin-σ
channel in the magnetic lead. The generalization of Eq. (27)
then reads as

Pg(T ) = k
μ↑(T ) − k

μ↓(T )

k
μ↑(T ) + k

μ↓(T )
. (29)

For temperatures such that k
B
T � μ, the particle density can

be approximated as

n(T ) ≈ 1

6π2

(
k3

μ↑ + k3
μ↓

)
. (30)

Combining the equations above and taking into account the
conservation of the number of particles [i.e., n(0) = n(T )], we
find

k
μσ

(T ) =
[

k3
F↑ + k3

F↓

2 + 6P 2
g (T )

]1/3

[1 + σPg(T )]. (31)

Thus, by replacing the Fermi wave vectors k
Fσ

by the effective,
temperature-dependent ones, k

μσ
(T ), we can introduce the

temperature dependence of the spin polarization P (T ). Such
a dependence is characterized by the parameter η, which we
extract by fitting the experimental data of the temperature
dependence of the TAMR (see Ref. [54]) to our theory.

The temperature also influences the size of the energy
gap in the semiconducting region and, therefore, the height
of the tunneling barrier too. The temperature dependence of
the band gap can be estimated by using Varshni’s empirical
relation [55,56],

Eg(T ) = Eg(0) − aT 2

T + b
, (32)

where a and b are system parameters, which for the case
of GaAs, for example, take the values a = 5.5 × 10−4 eV/K
and b = 225 K [56]. For the case of an Fe/GaAs/Au MTJ the
height of the barrier is about half the GaAs fundamental gap.
Therefore the temperature dependence of the tunneling barrier
height is determined by

V0(T ) = V0 − aT 2

2(T + b)
. (33)

Here V0 represents the height of the barrier at zero temperature.
The BR and D SOI parameters depend relatively weakly

on the temperature [5,57] and we, therefore, neglect the
temperature effects on such parameters.

III. RESULTS

Here we investigate the behavior of the coefficients TAMT,
TAMT[+], TASS, and TASS[−] (see Sec. II A) for both the
thin-barrier limit for which we use the Dirac-delta function
barrier model and the thick-barrier limit which is treated
within the rectangular barrier approach. The calculations were
performed for an Fe/GaAs/Au tunnel junction. For such a
system, the height of the semiconducting barrier is V0 =
0.75 eV. The Fermi momenta in Fe and Au are k

F↑ = 1.05 ×
108 cm−1, k

F↓ = 0.44 × 108 cm−1, and κ
F

= 1.2 × 108 cm−1,
respectively. The electron effective mass in GaAs was taken as
m2 = 0.067m0, while for the metallic regions the bare electron
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mass m0 was assumed. For the Dresselhaus SOI parameter in

the GaAs barrier we used the value γ = 24 eV Å
3

[5].
Previous calculations have shown that for the description

of the TAMR only the BR-SOI at the Fe/GaAs interface
is relevant [34]. For the sake of simplicity we first adopt
such an approximation by setting αr = 0 and αl = α. The
effects of finite αr will be considered later on in this
section. The calculations discussed below were done for two
different values of the BR parameter corresponding to the

Fe/GaAs interface, α = 33.52 eV Å
2

and α = −23.35 eVÅ
2
.

These values were obtained by fitting the experimental
data of the TAMR measured in an Fe/GaAs/Au MTJ at
T = 4 K [54]. Furthermore, by fitting the experimentally
measured temperature dependence of the TAMR we obtained
the values η = 1.5 × 10−4 K−3/2 and η = 0.66 × 10−4 K−3/2

for the phenomenological parameter introduced in Sec. II D.
The two values of the α and η parameters correspond to
the experimentally used bias voltages, −90 mV and 90 mV,
respectively. For the Dirac-delta function barrier model we
took the effective barrier height as V0d with d = 20 Å. The
linearized Dresselhaus parameter was estimated as γ̄ = γ q0,
with q0 =

√
2m2V0/�2.

The left and right panels of Fig. 3 show, respectively, the
TAMT [Eq. (6a)] and the TAMT[+] [Eq. (6b)] as functions of
the magnetization orientation. The upper panels [(a) and (b)]
correspond to the Dirac-delta function barrier approach while
the lower ones [(c) and (d)] show the results of the rectangular
barrier model. The solid (dashed) lines were obtained by

using the values α = 33.52 eV Å
2

(α = −23.35 eVÅ
2
) and

η = 1.5 × 10−4 K−3/2 (η = 0.66 × 10−4 K−3/2). Similar cal-
culations of the angular dependence of the TASS[−] [Eq. (7a)]
and the TASS [Eq. (7b)] are shown in Fig. 4. As can be seen,
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FIG. 3. (Color online) Tunneling anisotropic magnetother-
mopower [Eqs. (6a) and (6b)] dependence on the angle φ spanned
between the magnetization and the GaAs [110] direction. (a), (b)
Results of the Dirac-delta model. (c), (d) Results of the rectangular
barrier model. Solid (dashed) lines were computed by using the values
α = 33.52 eV Å2 (α = −23.35 eV Å2) and η = 1.5 × 10−4 K−3/2

(η = 0.66 × 10−4 K−3/2). The average temperature between left and
right leads has been set to the value T = 4 K and the width of the
rectangular barrier is d = 80 Å.
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FIG. 4. (Color online) Tunneling anisotropic spin-Seebeck
[Eqs. (7a) and (7b)] dependence on the angle φ spanned between the
magnetization and the GaAs [110] crystallographic axis. Description
as in Fig. 3.

all the curves in Figs. 3 and 4 exhibit a twofold symmetry with
respect to the magnetization orientation. Such a symmetry is
a signature of the C2v symmetry of the Fe/GaAs interface.

By comparing the curves in Figs. 3(a) and 3(c) one can
conclude that the size of the TAMT strongly changes when
going from the thin to the thick barrier limits. The changes in
the amplitude range from one to three orders of magnitude. A
similar behavior is obtained for the TAMT[+] [see Figs. 3(b)
and 3(d)]. Furthermore, the signs of both the TAMT and
TAMT[+] change when the sign of the BR SOI is inverted.
However, while for a given value of α the sign of the TAMT
changes also when going from the thin to the thick barrier limit,
the sign of the TAMT[+] remains the same. The TAMT and
TAMT[+] differ also quantitatively; the former is, for both the
Dirac-delta function and rectangular barriers, about one order
of magnitude larger. It is worth remarking that, in general,
one cannot expect that apart from the symmetry properties,
the TAMT and TAMT[+] exhibit a similar behavior. After all,
these quantities obey different definitions [Eqs. (6a) and (6b)]
and different physical situations (see Table I). The same applies
for the TASS and TASS[−], whose magnetization orientation
dependence is shown in Fig. 4.

As for the TAMT and TAMT[+], the TASS and TASS[−]

amplitudes obtained in the thin and thick barrier limits appear
to be different (see Fig. 4), although in this case the difference
is not three but one order of magnitude. The large differences
between the results in the thin and thick barrier limits originate
from the intrinsically different nature of the energy dependence
of the transmissivity function, which within the Dirac-delta
function model exhibits a power-law dependence while for the
rectangular barrier is dominated by an exponential behavior.
Further differences are introduced by the distinct levels of
approximation of the Dresselhaus SOI, which is linear in
momentum in the Dirac-delta function barrier model but cubic
in the rectangular barrier approximation (see Table II).

The temperature dependence of the amplitude of the TAMT
(left panel) and TAMT[+] (right panel) is shown in Fig. 5.
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FIG. 5. (Color online) Amplitude of the tunneling anisotropic
magnetothermopower [Eqs. (6a) and (6b)] as a function of tem-
perature for magnetization oriented along the [1̄10] crystallographic
direction (φ = 90◦). (a), (b) Results of the Dirac-delta model. (c), (d)
Results of the rectangular barrier model. Solid (dashed) lines were
computed by using the values α = 33.52 eV Å2 (α = −23.35 eV Å2),
and η = 1.5 × 10−4 K−3/2 (η = 0.66 × 10−4 K−3/2). In (c) and (d) the
pairs of solid and dashed lines with the largest, middle, and smallest
absolute values of the TAMT and TAMT[+] at T = 0 K correspond
to barrier thicknesses d = 60, 80, 120 Å, respectively.

Solid and dashed lines correspond to two different sets of
α and η parameters. In the temperature range considered,
the amplitude of the TAMR was experimentally found to
decrease with temperature [54]. Like the TAMR, the abso-
lute value of the amplitudes of the TAMT, TAMT[+], and
TASS[−] computed for the rectangular barrier model [see
Figs. 5(c), 5(d), and Fig. 6(d), respectively] decrease with tem-
perature. However, the other curves shown in Figs. 5(a), 5(b),
and Figs. 6(a), 6(b), and 6(c) do not, in general, exhibit such a
trend in their temperature dependence. This reveals that the
temperature dependence of the Seebeck and spin-Seebeck
related coefficients is more complex than the one measured
in the TAMR experiments. The decreasing of TAMR with
temperature is a consequence of the fact that the anisotropy
of the conductance decreases with the spin polarization,
which in turn decreases with temperature. However, the
Seebeck coefficient related to the spin-σ channel, Sσ , does
not depend only on the conductance but rather on the ratio
between the integral,

∫
gσ (E)[−∂f0(E)](E − μ0)dE, and the

conductance [see Eq. (11)]. The anisotropy of both the integral
and the conductance decrease with the spin polarization
and, therefore, with temperature. However, the temperature
dependence of the anisotropy of the ratio Sσ is determined by
the competition between the decreasing rates of the integral
and the conductance. As a consequence the anisotropy of
the Seebeck and spin-Seebeck related ratios do not necessary
decrease with temperature over all the temperature range. At
higher temperatures, where our simplified model calculations
are no longer valid, the anisotropy should again decrease and
eventually vanish when the temperature is higher than the
Curie temperature of the magnetic lead. Thus, our results
suggest that the anisotropy of the Seebeck and spin-Seebeck
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FIG. 6. (Color online) Amplitude of the tunneling anisotropic
spin-Seebeck ratio [Eqs. (7b) and (7a)] as a function of temperature
for magnetization oriented along the [1̄10] crystallographic direction
(φ = 90◦). (a), (b) Results of the Dirac-delta model. (c), (d) Results
of the rectangular barrier model. Solid (dashed) lines were computed
by using the values α = 33.52 eV Å2 (α = −23.35 eV Å2) and
η = 1.5 × 10−4 K−3/2 (η = 0.66 × 10−4 K−3/2). In (c) and (d) the
pairs of solid and dashed lines with the smallest, middle, and largest
absolute values of the TASS and TASS[−] at T = 0 K correspond to
barrier thicknesses d = 60, 80, 120 Å, respectively.

related coefficients may exhibit a nonmonotonic temperature
dependence.

As shown in Figs. 5(c) and 5(c), in the temperature
range investigated, the absolute value of both the TAMT and
TAMT[+] increase as the thickness of the barrier decreases. An
opposite behavior is found for the TASS and the TASS[−] (at
least up to T ≈ 150 K, where the TASS[−] inverts its behavior),
as displayed in Figs. 6(c) and 6(c), respectively.

In order to investigate the possible effects of the BR-SOI at
the GaAs/Au interface (which until now have been neglected)
we have computed the dependence of the amplitudes of the
TAMT and TASS (see Fig. 7) and the TAMT[+] and TASS[−]

(see Fig. 8) as functions of both the BR-SOI parameters of
the Fe/GaAs and the GaAs/Au interfaces (i.e., αl and αr ,
respectively).

According to Fig. 7, the amplitudes of both the TAMT and
the TASS depend very weakly on αr and are dominated by
the BR-SOI at the Fe/GaAs interface (i.e., by αl). A similar
behavior was previously found for the TAMR [34]. For the
cases of the TAMT[+] and TASS[−] (see Fig. 8) the dependence
on αr appears to be stronger than in the TAMT and TASS
cases. Nevertheless, while switching off the BR SOI at the
GaAs/Au interface (i.e., setting αr = 0) does not necessarily
lead to vanishing TAMT[+] and TASS[−], the anisotropic
effects vanish when αl = 0. Therefore, the SOI parameter at
the Fe/GaAs (αl) together with the D SOI strength (γ ) can
still be regarded as the physically crucial parameters for the
anisotropic effects.

Finally, it is worth remarking that the values of the ampli-
tudes of the TAMT, TAMT[+], TASS, and TASS[−] predicted
by our calculations are all within current experimentally
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FIG. 7. (Color online) Amplitudes of the TAMT [(a) and (b)] and
the TASS [(c) and (d)] as functions of the BR-SOI parameters αl and
αr . The results correspond to an 80 Å thick rectangular barrier.

accessible resolution. Even though the amplitudes of the
TAMT and TAMT[+] are seemingly small [see, for example,
Figs. 5(c) and 5(d)], the corresponding thermovoltages that
lead to those values are, in principle, still measurable.
Typically, in these systems the thermovoltages measured are
in the range of hundreds of μV [37]; hence, taking this as a
reference, an anisotropy of the order of 10−3% can be detected
by measuring the thermovoltage with a resolution of the order
of nV.

A. Phenomenological model

Inspired by the phenomenological model developed in
Ref. [34], we have found that the conductance for the spin-σ
channel is

Gσ (E,φ) = Giso
σ (E) + Ganiso

σ (E) cos(2φ), (34)
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FIG. 8. (Color online) Same as in Fig. 7 but for the TAMT[+] [(a)
and (b)] and the TASS[−] [(c) and (d)].

where Giso
σ and Ganiso

σ are phenomenological parameters [60]
that satisfy that Giso

σ � Ganiso
σ . For the special case where

no SOI fields are present the anisotropy disappears, meaning
Ganiso

σ = 0.
Thereupon, taking advantage of Mott’s relation for the

Seebeck coefficient of the spin-σ channel [see Appendix B
Eq. (B5)] in Eqs. (6a), (6b), (7a), and (7b), respectively, and
using Eq. (34) for G and Gs , we find that the TAMT, TAMT[+],
TASS[−], and TASS are all proportional to (1 − cos 2φ). For
each case, the corresponding amplitude is a specific function of
Giso

σ and Ganiso
σ . Within the phenomenological approach these

parameters cannot be computed, meaning that no quantitative
predictions can be made. Nevertheless, this description is
good enough in order to describe qualitatively the angular
dependence found in Figs. 3 and 4. The quantitative results are
obtained using the theory described in the previous section.

IV. SUMMARY

We have studied thermally induced spin-dependent trans-
port across a three-layer MTJ with a single ferromagnetic
electrode in the presence of interfacial spin-orbit coupling.
Prompted by previous works where TAMR was observed
for Fe/GaAs/Au MTJs [26], we have shown that a similar
anisotropy can be found in the (effective) thermopower and
in the spin-dependent Seebeck and spin-Seebeck coefficients,
when rotating the magnetization in the ferromagnetic lead with
respect to a reference crystallographic axis. This anisotropy
is due to the combined effect of the Bychkov-Rashba and the
Dresselhaus spin-orbit fields, which posses a characteristic C2v

symmetry that appears in the TAMT, TAMT[+], TASS[−], and
TASS, as was the case for the TAMR. Finally, since the TAMT
effect has recently been experimentally observed in an all-
semiconductor MTJ [37], we believe that the TAMT, TAMT[+],
TASS[−], and TASS effects predicted in this work might also
be measurable in similar experiments for Fe/GaAs/Au MTJs.
Furthermore, inspired by recent experiments where anisotropic
electric spin-injection for ferromagnetic-silicon interfaces has
been observed [29], we hope this work may encourage the
observation of anisotropic thermal spin injection.
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APPENDIX A: LINEAR RESPONSE

The Fermi-Dirac distribution is

fL(R)(E) = 1

1 + e(E−μL(R))/kBTL(R)
, (A1)

where μL = μR + eVbias, TL = TR + �T , μL/μR and TL/TR

are the chemical potential and the temperature of the left/right
electrode, respectively, and Vbias and �T correspond to a bias
voltage and a temperature gradient applied to the system,
respectively. In the linear response regime,

fL − fR �
(

−∂f0

∂E

)(
eVbias + �T

T0
(E − μ0)

)
, (A2)
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where μ0 and T0 are the equilibrium values, i.e., when Vbias = 0
and �T = 0. Since

Sσ = − 1

Gσ

Iσ

�T
(A3)

[see Eq. (8)], taking Vbias = 0 and replacing Eqs. (9) and (A2)
in Eq. (A3) leads to Eq. (11) for the Seebeck coefficient for
the spin-σ channel.

APPENDIX B: MOTT’S LAW

Replacing Eq. (A2) in Eq. (9) yields

Iσ = 1

e

∫
Kσ (E)

(
−∂f0

∂E

)
dE, (B1)

where

Kσ (E) :=
(

Vbias + E − μ0

eT0
�T

)
gσ (E). (B2)

Using now the Sommerfeld expansion [46], we find that

Iσ = Kσ (μ0) +
∞∑

n=1

an(kBT0)2n d2n

dE2n
Kσ

∣∣∣∣
E=μ0

, (B3)

where

an = 2(22n−1 − 1)
π2n

(2n)!
Bn, (B4)

and Bn are the Bernoulli numbers. Taking Vbias = 0 and n =
1 (which is a good approximation for low temperatures) in
Eq. (B3), and replacing it together with Eq. (B2) in Eq. (A3)
we obtain

Sσ = −k2
B

e

π2

3

(
d

dE
log gσ (E)

∣∣∣∣
E=μ0

)
T0. (B5)

This expression is the analog to Mott’s law [58], but for the
spin-σ channel. Finally, replacing Eq. (B5) in Eq. (3) we arrive
at

S = −k2
B

e

π2

3

(
d

dE
log g(E)

∣∣∣∣
E=μ0

)
T0, (B6)

which is nothing other than the well-known Mott relation for
the thermopower [58], where g = g↑ + g↓.

APPENDIX C: RECTANGULAR POTENTIAL
BARRIER MODEL

The one-dimensional stationary Pauli-Schrödinger equa-
tion for the longitudinal modes is(

h(z) s(z)
s∗(z) h(z)

)(
ϕ↑(z)
ϕ↓(z)

)
= E

(
ϕ↑(z)
ϕ↓(z)

)
, (C1)

where

h(z) = �
2k2

‖
2m(z)

+ pz

(
1

2m(z)
pz

)
+ V0[θ (z − zl) − θ (z − zr )],

(C2a)

s(z) = −�

2
e−iθ θ (−z + zl) − ik‖αe−iθ‖δ(z − zl)

−γ (z)

�2
k‖eiθ‖p2

z +
∑
j=l,r

δ(z − zj )(δjl − δjr )
(γ

�

)

× ik‖eiθ‖pz, (C2b)

where θ‖ = arg(ky/kx). Note that, for simplicity, we have taken
αr = 0 and αl = α. The stationary solutions of Eq. (C1) in
the electrodes are the incident and transmitted wave functions
given in Eqs. (19a) and (19b), respectively, and the reflected
wave function:

ϕr (z) = rσ,σ e−ik1σ zνσ + rσ̄ ,σ e−ik1σ̄ zν σ̄ , (C3)

where k1σ and νσ are given by Eqs. (20a) and (21), respectively,
and rσ,σ and rσ̄ ,σ are the reflection probability amplitudes,
analogous to the transmission probability amplitudes dis-
cussed in the main text. Furthermore, the solution of Eq. (C1)
in the tunnel barrier is

ϕ2(z) =
∑
i=±

(Cσ,ie
k2i z + Dσ,ie

−k2i z)ν2i , (C4)

where

k2± = 1√
1 ∓ 2m2γ k‖

�2

√
2m2

�2
(V0 − E) + k2

‖ (C5)

and

ν2± = 1√
2

(
1

±e−iθ‖

)
. (C6)

Finally, boundary conditions are imposed on the wave
functions and their derivatives for computing the reflection
and the transmission probability amplitudes. First, the wave
functions must be continuous at the interfaces

ϕ1(zl) = ϕ2(zl), (C7)

ϕ2(zr ) = ϕ3(zr ). (C8)

And second, the derivatives of the wave functions must satisfy
the following equations:

�
2

2

(
1

m1

∂ϕ1↑
∂z

∣∣∣∣
z=zl

− 1

m2

∂ϕ2↑
∂z

∣∣∣∣
z=zl

)
− ik‖αe−iθ‖ϕ1↓(zl) + k‖γ eiθ‖ ∂ϕ2↓

∂z

∣∣∣∣
z=zl

= 0, (C9a)

�
2

2

(
1

m1

∂ϕ1↓
∂z

∣∣∣∣
z=zl

− 1

m2

∂ϕ2↓
∂z

∣∣∣∣
z=zl

)
+ ik‖αeiθ‖ϕ1↑(zl) + k‖γ e−iθ‖ ∂ϕ2↑

∂z

∣∣∣∣
z=zl

= 0, (C9b)
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for the left barrier, and

�
2

2

(
1

m2

∂ϕ2↑
∂z

∣∣∣∣
z=zr

− 1

m3

∂ϕ3↑
∂z

∣∣∣∣
z=zr

)
− k‖γ eiθ‖ ∂ϕ2↓

∂z

∣∣∣∣
z=zr

= 0, (C10a)

�
2

2

(
1

m2

∂ϕ2↓
∂z

∣∣∣∣
z=zr

− 1

m3

∂ϕ3↓
∂z

∣∣∣∣
z=zr

)
− k‖γ e−iθ‖ ∂ϕ2↑

∂z

∣∣∣∣
z=zr

= 0, (C10b)

for the right barrier. The first and second terms on the left-hand side of these equations are the so called BenDaniel-Duke
boundary conditions [59], which correspond to the generalization for heterostructures of the requirement that the derivatives of
the wave functions should also be continuous at the interfaces. The third and fourth terms in Eqs. (C9a) and (C9b) are due to the
BR-SOI and D-SOI at the Fe/GaAs interface, respectively. And the third term in Eqs. (C10a) and (C10b) is due to the D-SOI at
the GaAs/Au interface.

The exact expressions for the transmission amplitudes tσ,σ and tσ,σ̄ are quite lengthy. However, a simplified analytical
expressions for tσ,σ and tσ,σ̄ can be obtained in the limit k2±d � 1. In such case, one finds the following approximate relations
for the tunneling amplitudes:

tσ,σ = −Dσ,σ

D
, (C11a)

tσ,σ̄ = −Dσ,σ̄

D
, (C11b)

where D = f−(−)f+(−) − f−(+)f+(+), with

f±(λ) = d

2

(
m0

m±λ

k2∓λ − ik3

)
(1 − λσei(θ−θ‖)) (C12)

and

1

m±
= 1

m2

(
1 ± 2m2γ k‖

�2

)
. (C13)

Furthermore, we have

Dσ,σ = 2m0d

m+
k2−f−(+)g− − 2m0d

m−
k2+f−(−)g+, (C14a)

Dσ,σ̄ = 2m0d

m+
k2−f+(−)g− − 2m0d

m−
k2+f+(+)g+. (C14b)

In these equations we introduced the notation

g± =
id

√
k1σ

[(
f0 ∓ h1 − m0d

m±
k2∓

)(
1 ± σei(θ−θ‖)

) ∓ h2
(
1 ∓ σei(θ−θ‖)

)]
e−k2±d

h2
2 + (

f0 − h1 − m0d

m+
k2−

)(
f0 + h1 − m0d

m−
k2+

) , (C15)

where f0 = i(k1σ + k1σ̄ )d/2 and

h1 = iσd

2
(k1σ − k1σ̄ ) cos(θ − θ‖) − αk‖Q

V0
sin(2θ‖),

(C16a)

h2 = −σd

2
(k1σ − k1σ̄ ) sin(θ − θ‖) − i

αk‖Q
V0

cos(2θ‖),

(C16b)

where Q = 2m0V0d/�
2. Note that the effective mass in the

metallic leads has been taken as the bare electron mass
(i.e., m1 = m3 = m0). The obtained approximate expressions
for the tunneling coefficients are valid up to first order in
exp(−k2±d). This approximation is therefore appropriate for
treating junctions with high and not too thin potential barriers.
Taking the Fermi energy as the zero of the energy scale, the
height of the barrier is about V0 ≈ 0.75 eV.

APPENDIX D: DIRAC-DELTA FUNCTION
BARRIER MODEL

The discussion of this model is analogous to the discussion
of the rectangular barrier model carried out in the previous
section. Therefore, onwards we only highlight the differences
between both models. First, Eqs. (C2a) and (C2b) become

h(z) = �
2k2

‖
2m(z)

+ pz

(
1

2m(z)
pz

)
+ V0d δ(z − z2), (D1a)

s(z) = −�

2
e−iθ θ (−z + zl) − k‖(iαe−iθ‖ − γ̄ eiθ‖ )δ(z − z2),

(D1b)

the solutions of which in the electrodes are the same as in the
rectangular barrier model. Second, the boundary conditions
become

ϕ1(z2) = ϕ3(z2), (D2)
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and

�
2

2

(
1

m1

∂ϕ1↑
∂z

∣∣∣∣
z=z2

− 1

m3

∂ϕ3↑
∂z

∣∣∣∣
z=z2

)

+V0dϕ1↑(z2) − [k‖(iαe−iθ‖ − γ̄ eiθ‖ )]ϕ1↓(z2) = 0,

(D3)

�
2

2

(
1

m1

∂ϕ1↓
∂z

∣∣∣∣
z=z2

− 1

m3

∂ϕ3↓
∂z

∣∣∣∣
z=z2

)

+V0dϕ1↓(z2) + [k‖(iαeiθ‖ + γ̄ e−iθ‖ )]ϕ1↑(z2) = 0.

(D4)

And finally, the transmission amplitudes are

tσ,σ = −8d2
√

k1σ (k1σ̄ + k3 + iQ)

�
+ 8id

√
k1σ (U · Sσ,σ )

�
,

(D5a)

tσ,σ̄ = −8id
√

k1σ (U · Sσ,σ̄ )

�
, (D5b)

where

� = �+(−)�−(+) − �+(+)�−(−), (D6)

with

�±(λ) = d(k1,±σ + k3 + iQ) (1 ± λ) + 2i(U · S±σ,λσ ),

(D7)

and λ = ±1. The vectors Sσ,±σ are given by

Sσ,±σ = ν†
σσν±σ , (D8)

where U = (2m0d/�
2)w with

w = (−αky + γ̄ kx,αkx − γ̄ ky,0). (D9)
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[25] C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G. M. Schott,
R. Giraud, K. Brunner, G. Schmidt, and L. W. Molenkamp,
Phys. Rev. Lett. 93, 117203 (2004).

[26] J. Moser, A. Matos-Abiague, D. Schuh, W. Wegscheider,
J. Fabian, and D. Weiss, Phys. Rev. Lett. 99, 056601 (2007).

[27] R. S. Liu, L. Michalak, C. M. Canali, L. Samuelson, and
H. Pettersson, Nano Lett. 8, 848 (2008).
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