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Frustrated spin systems on kagome lattices have long been considered to be a promising candidate for realizing
exotic spin-liquid phases. Recently, there has been a lot of renewed interest in these systems with the discovery of
materials such as volborthite and herbertsmithite that have kagomelike structures. In the presence of an external
magnetic field, these frustrated systems can give rise to magnetization plateaus of which the plateau at m = %
is considered to be the most prominent. Here, we study the problem of the antiferromagnetic spin—% quantum
XXZ Heisenberg model on a kagome lattice by using a Jordan-Wigner transformation that maps the spins onto
a problem of fermions coupled to a Chern-Simons gauge field. This mapping relies on being able to define a
consistent Chern-Simons term on the lattice. Such a lattice Chern-Simons term had previously only been written
for the square lattice and was used to successfully study the unfrustrated Heisenberg antiferromagnet on the
square lattice. At a mean-field level, these ideas have also been applied to frustrated systems by ignoring the
details of the Chern-Simons term. However, fluctuations are generally strong in these models and are expected to
affect the mean-field physics. Using a recently developed method to rigorously extend the Chern-Simons term to
the frustrated kagome lattice, we can now formalize the Jordan-Wigner transformation on the kagome lattice. We
then discuss the possible phases that can arise at the mean-field level from this mapping and focus specifically
on the case of % filling (m = % plateau) and analyze the effects of fluctuations in our theory. We show that in
the regime of XY anisotropy, the ground state at the % plateau is equivalent to a bosonic fractional quantum Hall
Laughlin state with filling fraction % and that at the g plateau it is equivalent to the first bosonic Jain daughter

state at filling fraction %
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I. INTRODUCTION

Kagome lattice spin systems have been a topic of intense
research for quite some time. It is believed that the high level
of frustration in these systems can give rise to exotic spin-
liquid phases. A good model to look for these phases is the
nearest-neighbor Heisenberg antiferromagnet on the kagome
lattice. In the past, many theoretical and numerical methods
have been used to study such frustrated spin systems. More
recently, with the discovery of materials such as volborthite
and herbertsmithite, there is the possibility of realizing some
of these phases in actual experiments.

The ground state of the quantum Heisenberg antiferromag-
net on the kagome lattice is considered to be a promising
candidate for realizing spin-liquid phases. However, so far the
many theoretical and numerical studies still remain inconclu-
sive. Recent numerical and theoretical studies strongly agree in
favor of a gapped Z, spin-liquid state [1,2]. Other studies argue
instead in favor of a gapless U(1) Dirac spin-liquid state [3,4].
A few other studies also indicate the possibility of a valence-
bond-crystal (VBC) type of crystalline state [5—7], while some
other studies find symmetry-breaking states [8] or even a
chiral spin-liquid state [9,10]. Further, recent experiments on
herbertsmithite do indicate that its ground state may indeed be
a quantum spin liquid [11].

In the presence of an external magnetic field, frustrated
quantum antiferromagnets are expected to give rise to mag-
netization plateaus of which the plateau at m = % should be
most prominent and, for this reason, there has been a lot of
work analyzing the properties of these plateaus. Numerical
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works focusing on the isotropic and Ising regimes of the
quantum Heisenberg antiferromagnet in an external magnetic
field do identify magnetization plateaus at many different
values. However, in the Ising regime, the simulations favor
a valence-bond-crystal (VBC) type state with an enlarged
unit cell based on a +/3 x ﬁ structure at these plateaus
[12-14].

Experimentally, it is difficult to observe these magnetization
plateaus in herbertsmithite (the most structurally perfect
kagome compound) since its exchange coupling is quite high,
J = 170 K, which implies that it would require fields close to
200 T to be able to observe the % plateau. As aresult, Okamoto
et al. looked at volborthite (with J &~ 77 K) and vesignieite
(with J =~ 55 K) and found a plateau at m = 0.4 which is a
little off from the expected value at m = % [15]. Another study

did observe the m = % plateau in another kagome compound
(Cu-titmb). However, the plateau is unstable in Cu-titmb and
the nearest-neighbor interactions and next-nearest-neighbor
interactions are comparable in this material [16], complicating
the physics of the plateaus.

Common approaches used to study frustrated spin systems
involve either representing the spin operators in terms of
slave fermions [17,18] or in terms of slave bosons [5,19].
These methods have been used extensively in theoretical
and numerical works. Both these approaches work well at
the mean-field level but suffer from the limitation that there
is no small parameter about which the fluctuations can
be treated in a consistent manner. Controlled calculations
have been performed by generalizing the SU(2) quantum
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Heisenberg antiferromagnetic model to an SU(N) or Sp(N)
spin model on the kagome lattice [5,20] but it is not clear if
the results obtained in the large-N limit remain valid for the
experimentally relevant case of N = 2.

Here, we present an alternative approach based on a
lattice Chern-Simons theory on a kagome lattice which imple-
ments a two-dimensional Jordan-Wigner transformation that
maps hard-core bosons (flipped spins of the antiferromagnet)
onto spinless fermions coupled to the Chern-Simons gauge
fields [21]. Lattice Chern-Simons theories were defined for
a system on a square lattice [21,22], and within a consistent
lattice Chern-Simons approach, they were used to study the
nearest-neighbor Heisenberg antiferromagnet on the square
lattice [23].

Chern-Simons theories have been very successful in study-
ing and explaining fractional quantum Hall (FQH) type states.
These theories yield reliable results in gapped systems and
thus may present some new insight into the problem of
frustrated quantum systems. For these reasons, they have been
used for quite some time to study quantum antiferromagnets
on frustrated lattices (triangular, kagome, Shastry-Sutherland,
and others) yielding intriguing results of possible spin-liquid
phases [9,24]. In these works, these systems were treated
only at the level of the average field approximation, and
the role of the quantum fluctuations of the Chern-Simons
gauge field were ignored. These fluctuations are crucial to
the physics of these systems. This is a well-known issue
from the analogous theories of the FQH fluids where these
fluctuations play a key role in the physics of the excitations,
and in particular their fractional statistics (for a detailed
recent discussion of this problem in the FQH fluids, see
Ref. [25]).

However, the existing lattice Chern-Simons theory [21]
(and its more refined and consistent version by Eliezer and
Semenoff [22]) can only be used for systems on a square lattice
and, in particular, it cannot be used for frustrated systems
on nonbipartite lattices. The Chern-Simons action encodes
two key features: (1) the local constraint requiring the states
to be locally gauge invariant (in the form of a Gauss-type
law) and (2) a definition of the canonical pairs of fields.
The first condition, which for a Chern-Simons theory is a
relation between the charge on a site and the gauge flux in
an adjacent “plaquette,” must be obeyed at all sites of the
lattice and not just on average. This condition requires that
the gauge fluxes on different “plaquettes” must commute with
each other since otherwise the constraints do not commute
with each other (even though they may still commute locally
with the Hamiltonian). This consistency condition sets a
restriction on the commutation relations of the gauge fields.
Eliezer and Semenoff [22] showed how to impose these
conditions consistently for the case of square lattice, at the
expense of making the Chern-Simons action less local than
would have been naively expected [21]. It is easy to see
that these constraints, even in a nonbipartite lattice, can only
be imposed consistently provided that there is a one-to-one
correspondence between sites and “plaquettes” of the lattice.
In this paper, we will show that this can be done for
the (nonbipartite) kagome lattice. In a separate publication,
we discuss the generalizations of this construction to more
complex lattices. However, this approach does not work for
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the triangular lattice, for which there are two different adjacent
triangles (“plaquettes”) for each site of the lattice. Similarly,
this procedure does not work for the (bipartite) hexagonal
lattice for which two sites are associated with each hexagon.

In this paper, we study the nearest-neighbor XXZ frustrated
quantum Heisenberg antiferromagnet on the kagome lattice
using a generalization of the construction of the Chern-Simons
gauge theory of Eliezer and Semenoff to the nonbipartite
kagome lattice which we present here. This construction is
one of the main results of this paper. The generalization of
this construction for a class of frustrated two-dimensional
(2D) lattices is presented elsewhere [26]. In this picture, the
flipped spins are represented by hard-core bosons which in
turn are described as a problem of fermions coupled to a
Chern-Simons gauge field on the same lattice. Further, the
effect of an external magnetic field can also be easily mimicked
by adjusting the density of fermions in the equivalent problem.
More importantly, this approach will also allow us to go beyond
mean-field theory and analyze the effect of fluctuations in such
systems. It is here that the effects of the consistent constriction
are crucial. Here, we will focus on the simpler case of the %
magnetization plateau.

Within our approximations we find that, in the XY limit
and for a wide range of the anisotropy parameter A, the
ground state of the % magnetization plateau of the XXZ model
on the kagome lattice is equivalent to a Laughlin fractional
quantum Hall state of hard-core bosons with filling fraction
%. This fully gapped state is a topological fluid with a broken
time-reversal invariance. This is a state with spin currents in
the ground state, and with a fractional Hall spin conductance
has a twofold ground-state degeneracy on the torus, has a
single chiral gapless edge state on a disk geometry, and
that the excitations of this state are semions. We also found
two other plateaus states, one at magnetization % (which
is equivalent to the % plateau) and another one at g the
plateau at g magnetization is also a topological fluid and
is equivalent to the first Jain daughter state of the Laughlin
FQH state for bosons at filling fraction % In this case, the
state has two chiral edge states, has a threefold ground-state
degeneracy on the torus, and the excitations are anyons with
statistical angle m/3. We also showed that, as expected,
the spin-spin correlation functions decay exponentially as a
function of distance while exhibiting an oscillatory behavior
which reflects the breaking of time-reversal symmetry. For
large enough anisotropy, we find a quantum phase transition
to time-reversal-invariant states which extend all the way
to the Ising limit, where it has been shown [12] that the
ground state is governed by a quantum order-by-disorder
mechanism and that it is equivalent to a complex valence-
bond solid. A possible time-reversal-invariant Z, spin liquid
has been conjectured to exist at intermediate values of the
anisotropy.

The paper is organized as follows. In Sec. II, the spin—%
quantum Heisenberg model on the kagome lattice is introduced
and the Jordan-Wigner transformation is summarized along
with the difficulties related to defining a Chern-Simons term
on a lattice. The procedure to obtain a consistent Chern-Simons
theory on the kagome lattice is described in Sec. Il A. A more
detailed discussion on the lattice Chern-Simons theory and
when such a procedure works will be presented elsewhere [26].
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In Sec. III, we analyze the consequences of this theory at
the mean-field level and set up the saddle-point equations
for the nearest-neighbor XXZ model after performing the
Jordan-Wigner transformation. The mean-field theory of the
magnetization plateaus is presented in Sec. III. Section III B
deals with the simpler case of the XY regime, and the
possible magnetization plateaus that can arise are discussed
at the mean-field level where this problem reduces to a
problem of interacting fermions hopping on a kagome lattice
in the presence of a background statistical gauge field. This
mean-field state closely resembles integer quantum Hall type
states, typical of the composite fermion approach to the FQH
states. In Sec. III C, we discuss the é, and 2 plateaus and
analyze the full XXZ Heisenberg antlferromagnetlc model
at these fillings. The effect of fluctuations on the % and

(53 plateau states are considered in Sec. IV A. We discuss
the implications of the fluctuations and how they alter the
mean-field physics. The states now correspond to a fractional
quantum Hall type state for bosons with fractional (spin)
Hall conductivity of o} % and 2 5 respectively, and are
thus 1dent1ﬁed with the Laughhn FQH state for bosons at
V=3 and the first Jain state (for bosons) at v = Lastly, we
also present asymptotic calculations of the spin correlatlons in
the magnetization plateaus based on the effective continuum
theory in Sec. V. Section VI is devoted to our conclusions and
some open problems. Details of the calculations are relegated
to the Appendix. We discuss our results and open questions in
Sec. VL.

II. HEISENBERG MODEL AND JORDAN-WIGNER
TRANSFORMATION

In this section, we briefly review the Jordan-Wigner trans-
formation that maps Heisenberg spins to fermions coupled
to a Chern-Simons gauge field. This transformation was
first discussed in Ref. [21]. An important property of the
Chern-Simons gauge field is that it imposes a constraint that
relates the local density of the fermions to the flux through an
adjacent plaquette of the lattice. This flux attachment allows
us to identify the spins (which are hard-core bosons) with
fermions carrying half a flux quantum. As a result of this
constraint, it is crucial to be able to define the Chern-Simons
term in a consistent manner on the lattice so that the flux
attachment may be performed at each and every site on the
lattice.

The model that we will study is the nearest-neighbor XXZ
Heisenberg model on the kagome lattice in the presence of an
external magnetic field A:

—h)_ S,
1

where J > 0 for antiferromagnetic interactions, S (witha =
x,y,z) are the three spin—% operators at lattice site i, (i, )
stands for nearest-neighboring sites, and A is the magnetic
anisotropy parameter along the z direction.

After the Jordan-Wigner transformation, the resultant
action with fermions and the Chern-Simons gauge field
becomes

S = SF(W’ w*’Au) + Sint(A;L) + QSCS(A/L)ﬂ

=T [SS]+SS] +28787] 2.1)

(i,J)

2.2)
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where the fermionic and interacting parts are

S Ay = / [Z YH@0G Do + WY (x.1)

—% (@MY1) + He) |
(x,x")
(23)

S (Y, ¥*) =AJ /t(;) (% - n(x,t)) (% - n(X’,t)) ;

2.4

where Dy = dyp +iAg is the covariant time derivative,
n(x,t) = ¥*(x,t)¥(x,t) is the fermion density operator (i.e.,
the site occupancy), and (x,x’) stands for nearest-neighboring
sites x and x” on the kagome lattice. Under the transformation,
the z component of the spin operator S° is mapped to the local
fermion occupation number

S*(x,t) = 1 — n(x,0). 2.5)

We can then absorb the external magnetic field term in the
Hamiltonian 2 }_; S! in the definition of the chemical potential
w in Eq. (2.3). Hence, the effect of the external magnetic field
can easily be mimicked by adjusting the fermionic filling.

In the Jordan-Wigner transformation, the parameter 6 is
selected so that the statistics of the spins (which are hard-
core bosons) is changed into fermions. This can be done by
choosing 6 = 2n(2k D for any k € Z. Although the hard-core
boson to fermion mapping holds for all integer (positive and
negative) values of k, we will see in the following that for two
special values k = 0,—1 (or, equivalently, 8 = :I:ﬁ), there is
amean-field approximation with a fully gapped spectrum. The
resulting states for these two choices of 6 are related to each
other by time reversal and hence by a reversal of the sign of
the magnetization.

In order to complete the Jordan-Wigner transformation, the
Chern-Simons term in Eq. (2.2) needs to be specified. If one
naively extends the continuum version of the Chern-Simons
term to a lattice, the flux attachment constraints cannot be
imposed consistently as [B(x), B(y)] # 0 for any two sites x
and y on the lattice [25]. Eliezer and Semenoff [22] developed
a form of the Chern-Simons theory for a square lattice that can
be consistently defined on a square lattice. This lattice Chern-
Simons theory was subsequently used to successfully study the
(unfrustrated) spin—% quantum Heisenberg antiferromagnet on
the square lattice [23].

By generalizing the procedure outlined by Eliezer and
Semenoff, we were able to develop a Chern-Simons theory that
can be consistently defined on the nonbipartite kagome lattice.
This will now allow us to use the Jordan-Wigner mapping
to study the nearest-neighbor spin-— quantum Heisenberg
antiferromagnet on the kagome 1att1ce The next section will
briefly outline this procedure. A construction of the lattice
Chern-Simons term for more general nonbipartite lattices is
presented elsewhere [26].
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FIG. 1. Kagome lattice unit cell with three sites attached to the
fluxes in their corresponding plaquettes.

A. Chern-Simons theory on the kagome lattice

We begin by writing the following generic form for the
lattice Chern-Simons term:

1 2
Scs =S + s

S0 — / dt S AgGe DT (x — VA1),
cs ; (2.6)

1 .
S =— E/dtZAi(xvt)Kij(x —WA;(y,0),
X,y

where the A fields are defined on the sites of the lattice and
the A; fields are defined on the links of the lattice. See Fig. 1
for our definitions of these gauge fields on the unit cell of the
kagome lattice. Note that in Eq. (2.6) we have omitted the
factor of 6.

The first term in Eq. (2.6) is the Gauss law term that imposes
the constraint between local density and flux through the
plaquettes of the kagome lattice. The vector kernel J;(x — y)
enforces the condition that relates the charge (i.e., the site
occupancy by a fermion) to the gauge flux in the adjacent
plaquette. Once a Gauss law has been fixed, the first term
in Eq. (2.6) is completely determined. A key feature of the
kagome lattice (shared with the square lattice) is that there is
a one-to-one correspondence between sites of the lattice and
plaquettes of the same lattice. This condition is not satisfied
in other planar lattices, e.g., honeycomb and triangular, which
leads to flux attachment prescriptions which are ambiguous
and break the symmetries of the lattice. We elaborate more on
this issue in Ref. [26].

The structure of the matrix kernel, denoted by K;;(x — y)
in the second term in Eq. (2.6), determines the commutation
relations between the different (spatial) gauge fields as
follows:

[4;(x),A;(0)] = =i K (x = y). 2.7

It is the structure of the matrix kernel K;;(x — y) in the second
term of Eq. (2.6) that will allow us to consistently impose
the Gauss law constraints on the lattice. This K matrix also
satisfies the condition K;;(x — y) = —K;(y — x). Since there
are six spatial links in the unit cell, this is a 6 x 6 matrix. The
key point is that a lattice Chern-Simons term can be uniquely
determined by fixing a Gauss law, imposing gauge invariance,
and demanding that the commutation relations between the A ;
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fields are “local.” The last condition is primarily included to
obtain the simplest form of the lattice Chern-Simons term.
Now, we will proceed by establishing these conditions on
the kagome lattice and obtaining the Chern-Simons term. We
should note that the matrix K;; of Eq. (2.6) is unrelated to the
so-called K matrix that appears in the classification of Abelian
FQH states [27].

B. Gauss’ law

The first step in writing the Chern-Simons term is to
determine how to impose the Gauss law (flux attachment)
on the kagome lattice. The unit cell of the kagome lattice has
three inequivalent sites (denoted by a, b, and c in Fig. 1) and
three plaquettes (two triangles, denoted by b and c in Fig. 1,
and one hexagon, denoted by a in Fig. 1). Thus, there is a
natural correspondence between sites and plaquettes (just as
in the case of a square lattice). It turns out that this is the
crucial condition that needs to be satisfied in order to write a
Chern-Simons lattice term on a generic lattice [26].

On the kagome lattice, whose unit cell is shown in Fig. 1,
we define the flux through each plaquette (defined by the
associated sites a, b, and ¢) to be

B,(x) = A1(x) + A3(x) + As(x +e1)
— As(x + e2) — Ag(x) — Aa(x),
By(x) = Au(x) + Az(x + e1) — As(x),

Bo(x) = Ae(x) — Ai(x + e2) — As(x), (2.8)

where e; and e, are vectors along the two directions of the
lattice as shown in Fig. 1. These equations attach the flux
at sublattice a to that of the hexagon (B,) and the fluxes of
sublattices b and c to each of the two corresponding triangles
(By and B,, respectively).

C. Gauge invariance

The second step in writing the Chern-Simons term is to
demand that Eq. (2.6) is gauge invariant under the gauge trans-
formations Ay(x) — Ag(x) + dpA(x) for time component of
the gauge fields and A;(x) — A;(x) + A;A(x) for the space
components of the gauge fields (where A; is the difference
operator on the kagome lattice). As an example, the field A;(x)
gets transformed as A;(x) — A;(x) 4+ A’(x) — A%(x) under
a gauge transformation where the labels b and a again refer
to the sublattices and the field A(x) lives on the sites of the
lattice.

The gauge invariance condition is imposed on each of the
sublattices and is written as

Ji(x —y)+diKij(x —y) =0, (2.9)
where @ = a,b,c for each of the sublattices. The vectors JJ‘?‘
[introduced in Eq. (2.6)] and df are most easily written in
Fourier space (for the kagome lattice in Fig. 1) as

Jﬂ(k) = (1?_15 1’_67”(2’6*“(1 ) 1)5
Jb (k) = (0,e7%1,-1,1,0,0),
Jé(k) = (—e™,0,0,0,—1,1)

(2.10)
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and
d(k) = (—1,—1,0,e"1,¢'% 0,
d’(k) = (1,0,—1,—1,0,¢*),
dc(k) = (07 lagikl 705_1’_1)'

@2.11)

D. Local commutation relations

So far, we have established the Gauss law and imposed
gauge invariance. The final step is to look for a form of

J

0 —1 1
1 0 1—57"
1 -1 Si—1 0
K=3 -1 ~1 ~1
2 S; Si+87 s -1
T P -
1-5, 1 1

where S; are lattice shift operators along the two different
directions (e; and e;) on the lattice, i.e., S; f(x) = f(x + ¢;).
Also, since DetK = 1, the matrix K is invertible.

The above form of the matrix K in Eq. (2.12) ensures that
the fluxes commute with each other for any pair of sites x and
y on the kagome lattice {i.e., [B(x),B(y)] = 0 for any x and
y}. This will allow us to impose the Gauss law constraint
consistently on each and every site of the kagome lattice.
More precisely, any two Wilson loops on the lattice commute,
and Wilson lines on the lattice obey a signed intersection
rule analogous to what happens in the continuum case of a
Chern-Simons theory. This completes the mapping of Eq. (2.2)
for the nearest-neighbor XXZ Heisenberg antiferromagnet
on the kagome lattice into a system of fermions coupled to
Chern-Simons gauge fields. A more detailed discussion of the
construction of the Chern-Simons theory on other nonbipartite
lattices will be presented in another publication [26]. Here, we
continue by looking at the consequences of this theory on the
kagome lattice.

E. Jordan-Wigner transformation

In the preceding subsections we showed that a system of
hard-core bosons on a kagome lattice, representing the flipped
spins of the spin—% anisotropic Heisenberg antiferromagnet

Ag (D)™, 2 As(Z)
A4(f — 61) ‘\ Al (f> :' A4(f
--------- P LA
A5 (f — 62)“‘ "A(:, (f — 62)

FIG. 2. The field A, has nontrivial commutation relations with
only these six links. This is the “locality” condition that is imposed.
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the matrix K that is “local,” i.e., only links (spatial gauge
fields A ;) that touch one another have nontrivial commutation
relations as given by Eq. (2.7). This is most easily seen in Fig. 2
where the link A is shown as an example. The link A(x) has
nontrivial commutation relations with just the six links that
it touches and it commutes with all the other links on the
lattice.

Using the above conditions, one can obtain the following
unique form of the matrix K:

) Si+St —1+8;"
-8, —S;! S —1
1-5, Sl,l —711 7 .12
0 SiS; S;
~ 8,87 0 1-s;!
-S> Si—1 0

(

on the kagome lattice (relative to the uniformly magnetized
reference state), is equivalent to a system of fermions on the
same kagome lattice minimally coupled to a Chern-Simons
gauge field (defined on the links of the kagome lattice). The
same result was obtained earlier on for the case of the square
lattice [21-23,28].

A consequence of this mapping (actually, an identity) is the
operator identification

S.(x)=1—-0B(x), (2.13)

which follows from the local (Gauss law) constraint of the
Chern-Simons theory, discussed in Sec. II B, which relates the
local fermion occupation number of lattice site x to the flux
B(x) on the adjoining plaquette.

A second consequence is the following formal identification
of the spin-raising and -lowering operators S*(x) in terms of
fermion operators coupled to Wilson lines of the gauge field

§7(x) = e v A y(x),
2.14)

STx) = ¢ix) e 2o,

where the sum in the exponent has to be interpreted as the
oriented sum of gauge fields defined on the links of the lattice
on an (arbitrary) open path y (x) ending at the site x. The opera-
tors defined on the right-hand sides of Eq. (2.14) are manifestly
gauge invariant and square to zero, and using the commutation
relations of the Chern-Simons gauge fields, they are found to
obey bosonic commutation relations (provided 6 = ﬁ). For
a system with the geometry of a disk, the exponential factors
can equivalently be rewritten in the form

ST =yl Y, ST = ykx), (215
where the operator exp[i ®(x)] is a disorder operator that
creates a fluxoid of strength 1/6 at the plaquette adjoining site
x of the kagome lattice. This is the generalized Jordan-Wigner
transformation of Ref. [21].
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III. MEAN-FIELD THEORY OF THE MAGNETIZATION
PLATEAUS

In this section, we discuss the physics of the magnetization
plateaus of the spin-% XXZ quantum Heisenberg antiferro-
magnet on the kagome lattice at the mean-field level. As
already mentioned above, the Chern-Simons term imposes the
flux attachment condition n(x,7) = 6 B(x,t). This allows us
to rewrite the interaction term of the action for the fermions
[cf. Eq. (2.4)] (originally the S,S, term of the Heisenberg
Hamiltonian) purely in terms of the Chern-Simons gauge field
as follows:

Sint(Ap) = /dl A Z (% - QB(x,t)) <% - QB(y,t)) .

(x,y)
3.1
As a result of this substitution, the action is now quadratic
in fermionic fields and the fermionic degrees of freedom can

be integrated out to yield the effective action just in terms of
gauge fields. The effective action has the form

Sefr(Ay) = —itrIn[i Do+ p— h(A)] + Sin(A) + 0 Scs(Ap),
(3.2)

where the hopping Hamiltonian #(A) is (in matrix notation)

J A
h(A) = 5 <;>[6’Af(*’t)|x,t)(x/,t| +H.c. (3.3)
and the label (x,x’) refers to the nearest-neighbors sites x and
x’ on the kagome lattice.

A. Saddle-point equations
The saddle-point equations are obtained by extremizing the
action in Eq. (3.2) w.r.t the gauge fields
8 Serr(A)

=0. 3.4
i (3.4)

Before writing the expressions for the saddle-point equations,
we first focus on the fermionic part of the action Sg. Its
derivative w.r.t the temporal Ay component of the gauge field
gives

58Sk
D) =\ ————) = —iS(x,1;x,1). 3.5
(n(x,1)) < (SAO(x,t)> 1S(x.1:x,1) (3.5
Similarly, for the spatial Ay component one gets
) 8SF
7t =\ <
(Jr(x,1)) < 8Ak(x,t)>
J i Ar(xn)
=5[S(X+ek,t;x,t)e K
— S(x,t;x + ej,1)e A0, (3.6)

Here, ji(x,t) is the (gauge-invariant) fermionic current.
S(x,t;x’,t") is the propagator for the fermions in an average
background field A w(x,1), and it is the solution of the lattice
differential equation

[i Do + i — h(A)S(x,t;x",1") = 8, 8t — 1),
where 4(A) is given in Eq. (3.3).

3.7
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Hence, the saddle-point equation w.r.t Ag(x) field yields the
expectation value of the local fermion density

(n(x)) = 0(B(x)),

which amounts to imposing the flux attachment constraint on
average.

Similarly for the field Aj(x), one gets the mean-field
equation for the expectation value of the local fermion current

6Scs 8 Sint
A (x,1) 8A(x,1)

The expectation values in Eq. (3.9) are explicitly given by
5L\
G ) = 3R A (),
<3Ak(x,r) ()

585 1
S ) = S(Kii —
SAx,n | 2

where « is the sublattice index and

(3.8)

(Jr(x,0)) = 9< > (3.9)

(3.10)
Ki)doAi(x) = Ky;09A;(x),

1 o -5
-1 8! 0
e 1 -1 0
de= ol (3.11)
92
s7to0 -1
-1 0 1

where S; and S, are again the shift operators as defined earlier
in Sec. IT A.

The full form of the saddle-point equation for the Aj
fields is quite cumbersome and will not be written explicitly
here. Instead, as we are looking for time-independent/static
and uniform solutions, we take the fluxes on any particular
sublattice to be the same [i.e., B%(x) = B%(y) for any x and
v], and the resulting simplified mean-field expression for the
mean-field currents is

(j(x)) = 0d** Agy(x)
—2J00H(—D¥[B® — fi B — (1 — fi)B"] (3.12)

with f; = 1 when k = 1,5,6 and f; = 0 when k = 2,3,4.

The expressions for the mean-field state were derived
by assuming translation invariance and allowing for each
sublattice to be inequivalent from the others. If one is looking
for other types of states (that break translational symmetry, for
example), then the mean-field expressions would have to be
modified accordingly.

B. XY model

Let us now analyze the XY Heisenberg antiferromagnet
(A = 0) and its magnetization plateaus at the mean-field level.
Setting A = 0 gets rid of the S§°S® components and makes
the fermions noninteracting. However, the fermions are still
coupled to the Chern-Simons gauge field. Further, the mean-
field equation (3.12) is satisfied by Ag, = 0 in the absence of
any currents. This implies that we are just left with the flux
attachment condition in Eq. (3.8).
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At the mean-field level, we look for uniform flux states,
ie, B,=B, =B, =¢ = 27r§ with p,q € Z. This makes
the total flux through the unit cell (which has three pla-
quettes) By =3¢ = 271 . By imposing the Chern-Simons
constraint on average, we deduce that, for uniform states and
taking into account that 6 = %, the average site occupancy
(density) of each sublattice of the unit cell is (n) = £.

Such a state can be realized with the following choice of
gauge fields

Ai(¥) =0,
Ay(x) =0,

A(X)=¢, A3(X)=0

. R (3.13)
As(X) = —¢ +3¢x1, Aes(X) = 3¢px
with X = (x1,x;) where x; and x, are the coordinates along
the e; and e; directions, respectively, in Fig. 1.

Hofstadter spectrum

The XY model has now been reduced to a problem of
noninteracting fermions hopping in a lattice in the presence of
a (statistical) magnetic field. This is very similar to the problem
of the integer quantum Hall (IQH) effect where the one-
particle states possess nontrivial Chern numbers. For a square
lattice one can obtain these Chern numbers by solving the
resulting Harper equation either numerically or by performing
a perturbation theory in the hopping parameters [29]. The final
structure is most easily seen in the Hofstadter spectrum as
was pointed out by Misguich et al. [24] in their studies on
the triangular and Shastry-Sutherland lattices using a similar
analysis. By extrapolating the Chern numbers from the case
of the square lattice, one can obtain the Chern numbers for the
case of the kagome XY Heisenberg model.

The results are shown in Fig. 3 where the x axis is the
average filling/density (n) on each sublattice and the y axis
is the single-particle energies of the associated free-fermion
model of the XY model. The bottom solid line indicates the
Fermi level for the occupied bands. The top solid line is the
next excited energy single-particle state available.

0.5

-0.5f:

Energy (XY)

-2.5¢

-1

-3 I I I i, I SISOt | | i L :
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(m)

FIG. 3. (Color online) Hofstadter spectrum for the XY model as
a function of sublattice density (n). The numbers shown are the Chern
numbers of the respective filled bands. The magnetization plateaus
at %, g,% correspond to the three vertical jumps shown in this figure,
respectively, at densities (n) = 1,21
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The numbers shown in Fig. 3 are the Chern numbers of
a state with all the bottom bands completely filled up to that
number. In Sec. IV B, we will see that we have a quantum
Hall type incompressible state if the total Chern number of the
occupied bands satisfies C # —1. The discontinuous jumps
in the Fermi level in the figure indicate the fillings at which
the Chern number C # —1. These situations are expected to
correspond to magnetization plateaus [24]. These jumps occur
at site fillings of (n) = 3 6, 9, which correspond, respectively,
to 27 flux through each unit cell, 7 flux through each unit cell
(and hence 27 flux for two unit cells), and 47” flux per unit cell
(or 47 flux in three unit cells). Since ‘
(n)y=3—-1(S)=1-M, (3.14)
we could find possible magnetization plateaus corresponding
to m = |M | = é,%, and 5, with Mg, = 5. Hence, at the
mean-field Tevel all these magnetlzanon states have integer
Chern numbers and behave like integer quantum Hall (IQH)
states, much in the same way as with the behavior of
composite fermions in the theory of the fractional quantum
Hall effect [30-32]. In what follows, we will focus primarily on
the simplest case of the % magnetization plateau and comment
briefly on the other cases.

C. XXZ model

Following our discussion in the previous section, we now
extend the results to the case of the XXZ model by introducing
the A term (S°S%) in the Hamiltonian. We begin first by
performing the mean-field analysis at the fillings associated
with the magnetization plateaus.

1. Mean-field analysis

At the mean-field level, each unit cell satisfies the condi-
tion (n)yc. = (ny) + (np) + (n.) = 1. This density condition
translates to the flux condition (B,) + (B) + (B.) = 2w as a
result of the flux attachment constraint in Eq. (3.8). (Fluxes
on the lattice are defined modulo 27.) The B fields are
gauge-invariant quantities and the above ansatz can be satisfied
by the following choice of gauge fields:

A1 = —C2, Az =Cy, A3 = —Cy,

_ _ (3.15)
Ay =c1, As=

—c2, Ag =02,

where ¢; and ¢, are some constant parameters that will be
determined below and the definitions of the links on the
kagome lattice in Fig. 1 are used. This makes
B, =27 —3c; — 3¢, B,=3c;, B.=23c;. (3.16)
Further, assuming that these ground states states have no
currents, i.e., (ji(x,t)) =0, the second saddle-point equa-
tion (3.12) can be satisfied by the following choice of temporal

gauge fields on each of the sublattices:
Ag = —2JA0Q2m — 3c1 — 3¢0),
Al = 2J103¢y,
AB = 2J)\93C2.

(3.17)
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2. Self-consistent solutions

The parameters c¢; and ¢, can be computed (numerically)
by demanding that the saddle-point equation (3.8) is satisfied
on each sublattice for a given value of the magnetic anisotropy

parameter A, i.e.,
(na(x,0) = —iSqq(x,1;x,1), (3.18)

J

w — AOa
Sa_ﬂl(wvl_é) — _%(eiA;;-‘rikl + e—iAl)

_%(eiA5+ik2 + e—iAg)

The values of c¢; and ¢, that satisfy Eq. (3.18) are listed in
Table I for a few different values of A. For the XY model, A = 0,
the densities on all the sites are the same (and equal to %). As
X is increased (and the interactions are turned on), the density
n, steadily increases while the density n, = n. decreases. For
very large anisotropy A, n, & 1 while n, =n; ~ 0 in this
model. Intuitively, in the Ising limit (A — 00), this corresponds
to the spins either pointing strictly up or down as expected.
At % filling, this translates to two up spins and one down spin
on average. The fluxes on each of the plaquettes would then
either be 0 or 27 which are equivalent on the lattice. Hence,
in the Ising limit, this maps to a problem of fermions hopping
on the kagome lattice with no flux at the mean-field level.

3. Chern numbers of the Hofstadter states

The energy spectrum of the mean-field phases has three
bands as shown in Fig. 4 (for two values of anisotropy
parameter 1). At % filling, only the bottom band is filled. This
state is gapped for all values of A except at L & 0.6 when the
bottom two bands cross and the low-energy fermionic states
become gapless Dirac fermions.

The Chern number of the bands is given by

C = i/ d*k Fyy(k), (3.21)
2 BZ

where F;j = d;a; — 0ja; and a; = —i{y|0|¥) is the Berry

flux. Here, |y) is the normalized eigenvector of the corre-

sponding single-particle energy band and the integral is over

the first Brillouin zone of the kagome lattice. The Chern

numbers of the three bands are shown in Table II. At A =0,

TABLE 1. Sublattice occupation numbers n,, n,, and n., and
values of the parameters ¢; = ¢, for different values of the magnetic
anisotropy A, where A = 0 is the XY model and > — oo is the Ising
model.

A cL =0 ng np =ne
0 0.698062 0.3333 0.3333
0.25 0.600673 0.4264 0.2868
0.5 0.450504 0.5698 0.2151
0.6 0.361283 0.655 0.1725
0.75 0.235619 0.775 0.1125
1 0.143257 0.8632 0.0684

J(,—iAy—ik i A
_7(8 LA4—IKy +el 1)
a)—A_Ob

_%(eiAs-sz + e—iAg—ikl)
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where o is the sublattice index. The expression for the
propagator in momentum space is given by

Saﬂ(x,t;x/,t/)zf eiw(l_’/)_ik(x_x,)salg(CO,]?), (3.19)

w,keBZ

where

_%(efi.A_5fikz + eiAz)
_%(eifh-b-ikl + e—iAé—ikz) (3.20)

w — AOC

(

the Chern number in Table II matches the result for the Chern
number obtained from the Hofstadter spectrum shown in Fig. 3
at % filling. Hence, once again at the mean-field level and for
A < 0.6, the phase is gapped and looks like an integer quantum
Hall state with Chern number Cpoom = +1. The point A ~ 0.6
marks a transition point between two different phases, an IQH
state and an insulating state, again at the mean-field level.

As we had noted in our introductory section on the Jordaln—

Wigner transformation, the above analysis is valid for 6 = 5.

But, we could just as easily have chosen 6 = —ﬁ. For this
choice of 6 the fluxes on each of the plaquettes pick up a
negative sign and the sublattice magnetizations have now the
opposite sign. This would yield a mean-field state that is related
to the above mean-field state by time-reversal symmetry. Also,
all the signs of the Chern numbers in Table II would be flipped.

B e St ot Lt
==

FIG. 4. (Color online) The mean-field spectrum at % filling for
A =0 and 0.6. At % filling, only the bottom band is filled. The
spectrum is gapped for all values of A except for A =~ 0.6 where
the bottom band touches the middle band and the Chern numbers of

the corresponding bands switch.
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TABLE II. Chern numbers for the bottom, middle, and top bands
for A < 0.6 and A > 0.6 at 1 filling.

A Cbotlnm Cmiddle Clop
<0.6 +1 0 ~1
>0.6 0 +1 ~1

We would still get an integer quantum Hall state but with
opposite Chern number C = —1.

IV. CONTINUUM EFFECTIVE ACTION FOR THE
MAGNETIZATION PLATEAUS

We now turn to study the effects of quantum fluctuations for
the magnetization plateaus. From now on, we will now focus
on the case of (n) = % filling. In this case, the magnetic unit
cell is the same as the regular unit cell of the kagome lattice
making it the simplest case to study analytically. Although
the other plateaus require larger magnetic unit cells and
make the computation analytically unfeasible, the leading part
of the long-distance effective action, i.e., the topological piece,
can be computed for all three plateaus.

After performing the Jordan-Wigner transformation, one
obtains the action given by Egs. (2.2) and (2.4) which is
reproduced here:

S = [dt Z{w*m [i Do+ ul ¥ (x)

J ,
- EI//*(X)elAj(x)I//(x +e;)+ C.c.} + Sine + 0Scs
(x,x")

A.1)

with Dy = 9y +iAp and again (x,x’) refers to pairs of
nearest-neighbor sites of the kagome lattice. Once again at the
mean-field level, the state is described as given by Eqs. (3.15)
and (3.17) and in Table I. The corresponding mean-field phases
were discussed in the previous Sec. I C2. Now, we analyze
the effect of fluctuations about this mean-field state.

A. Fluctuations and the % plateau

In this section, we perform an expansion around the mean-
field state of the XY model and of the XXZ model. As was
outlined earlier in Sec. IIT A, the action is quadratic in fermions
and can be integrated out to give Eq. (3.2). This allows us to
perform an expansion around the mean-field state in powers
of the fluctuations of the gauge fields by expressing A, =
A, +8A,. Here, A, correspond to the mean-field values of
the gauge fields in Eqgs. (3.15) and (3.17). The final action in
the terms of the fluctuating components will have the form

1
Sert = 5 / dPx d®y §A, (O (x,y)8A,(y) + 0Scs + S,

4.2)
where IT#*" is the polarization tensor and §A,, are the fluctua-
tions of the gauge fields. However, unlike the conventional
polarization tensor in 2 4+ 1 dimensions where u = 0,1,2,
now the indices w can take a total of nine possible values
corresponding to the three temporal fluctuation components

PHYSICAL REVIEW B 90, 174409 (2014)

and the six spatial fluctuation components on the unit cell of
the kagome lattice.

One way to reduce these additional degrees of freedom is
to express the fluctuating components in terms of slow and fast
components as follows:

8Aoa = 8Aos + AL +5AL%,

8Ag = 8Ag, — AL +8A]%, (4.3)

Ao = 8Aos +8A]" —8A]7,

where the labels a,b,c refer to the sublattice indices. The
subscript label Os refers to the slow component of the temporal
fluctuations and the superscript labels f1 and f2 refer to the
fast components of the temporal fluctuations. (In the absence
of the fast components, this just amounts to replacing the
various fluctuations on the sublattices with a slowly varying
fluctuating component.) This construction allows us to treat the
slow fluctuations as the more relevant fields. We will also show
below that it is possible to integrate out all the fast fluctuating
components and eventually obtain an effective action that only
depends on the slow fields.
Similarly for the spatial gauge fields

SA1 = 8A1 +8A], 8As=58A\ —SA],
8Ay = 8Ay —8A), 8As=08Ay +5AL,
8A3 = 8A3, —SAL, SAg=08As + AL,

4.4)

where the subscript labels js refer to the slow components and
the superscript labels f refer to the fast components again. To
simplify the notation, the § label for fluctuations and the label
s for the slow components will be dropped from now on.

The polarization tensor IT*" in Eq. (4.2) is calculated by
computing the one-loop correction about the mean-field state
using the mean-field fermion Green’s function in Eq. (3.20).
This computation will be performed numerically due to the
complexity of the energy bands in the mean-field phase. The
final action in Eq. (4.2) must also be invariant under local gauge
transformations A, — A, + 9, A. This imposes the transver-
sality condition on the polarization tensor 9, IT,,(x,y) =0
or, equivalently, P*II,,(P)=0 in Fourier space [under
A, (P)— A,(P)—iP,\(P)] on the polarization tensor. The
transversality condition can be used to simplify the computa-
tion to some extent. More explicit details of this calculation
are shown in Appendix A.

B. Full continuum action

Expanding the above action about the mean-field state up
to second order in fluctuations gives the terms

Stinat = Soo + Soj + Sij +0Scs + Sints 4.5)

where Soo,S0;, and S;; account for the temporal and spatial
components of the polarization tensor. The Scs and Siy terms
are obtained by taking the continuum limits of the Chern-
Simons and interaction terms, respectively. In obtaining these
terms, we make the further simplification that only terms to
second order in derivatives are kept for the slowly fluctuating
gauge fields. For the fast fluctuating gauge fields, only the
leading-order nonderivative terms are retained. The explicit

174409-9



KRISHNA KUMAR, KAI SUN, AND EDUARDO FRADKIN

TABLE III. Effective Chern-Simons parame-
ter for the XXZ model in the XY and Ising regimes.

0+ 0r
<0.6 =+
> 0.6 5= +0

expressions for the above terms are quite cumbersome and are
saved for Appendix A.

As mentioned above, Sg,, has many more gauge fields
than a usual gauge theory in 2 4 1 dimensions. However, the
important thing to note is that Sgn, is quadratic and massive
in many of the fluctuating gauge fields. This will allow us to
integrate out some of these extra fields and reduce the excessive
number of gauge fields in this model. More precisely, the
action in Eq. (4.5) is quadratic and massive in fields A(J; 1, A{;z,
A{ + Af - Ag , and Aj. In order to safely integrate out these
fields, the mass terms have to have the correct sign, i.e., the
masses of the temporal fields must be positive and the masses
of the spatial gauge fields must be negative. These conditions
have been verified numerically for different values of 1. Once,
these extra fields have been integrated out, we are just left with
the traditional three fields Ag, Ay, and A, (after reexpressing
the remaining fields along the x and y directions). (Recall that
the above fields correspond to the fluctuating components and
that we dropped the § label to simplify the notation.)

The long-distance behavior of the final effective action can
be more succinctly expressed as

Seff=Séfo+S}°l,l;f+-.-,

eff 3 1
SCS = d )CE (9 + QF) ekaﬂavAk,

1 1
Seff:/d3 _ E2__ Bz ,
M T T

where Sﬁf donates the Maxwell action with coefficients € > 0
and x > 0. E and B are, respectively, the effective “electric”
and “magnetic” fields of the statistical gauge field A,,. (Please
note that in two space dimensions, the electric field is a vector
while the magnetic field is a pseudoscalar.)

The effective Chern-Simons parameter for the XY and
Ising regimes are given in Table III. In Eq. (4.6), the labels
u,v now only take values 0,x,y. To lowest order, the most
important term is just the effective Chern-Simons term S(efsf as
it has the least number of derivatives. For A < 0.6, the Chern-
Simons term obtained by integrating out the fermions and the
original Chern-Simons term obtained from the Jordan-Wigner
transformation add whereas, for A > 0.6, we are just left with
the original Chern-Simons term.

The results of the above computation can be divided into
two regimes.

(4.6)

1. XY regime

In the XY regime, i.e., for A < 0.6, the Chern-Simons
terms add. The final low-energy action (just keeping the
Chern-Simons part) has the form [9,33]

SE(A) = 1 (OF +60) Scs(A ). (€%))
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Here, 6r is the coefficient of the induced Chern-Simons term
obtained by integrating out the fermionic degrees of freedom
and it is given by

C
27
and is the effective Hall conductivity of the mean-field state.
Here, C is the total Chern number of the occupied bands of
the mean-field theory.

In Eq. (4.7), we have neglected terms in the effective action
with more than one derivative since they are irrelevant at long
distances. As it is apparent from Eq. (4.7) [9,33], the physics
of the full system (beyond mean-field theory) depends on
whether 6 + 6 vanishes or not. In particular, we will have
a gapped state (with broken time-reversal invariance) only
if 6 + 6 # 0. Otherwise, if 8 + 6 = 0, the Maxwell-type
subleading terms control the low-energy physics. In this case,
the system has a gapless excitation, a “photon,” which is
equivalent to a Goldstone boson of the antiferromagnet. (For a
detailed discussion, see Ref. [25].) Since we are working with
0 = %, a gapless state will occur whenever C = —1.

The response of this system to an external field can be
measured by introducing a small external gauge field A, [32].
In a FQH system, this field is an external electromagnetic
perturbation which induces a charge current. However, in the
case of the antiferromagnet it is a field that induces a spin
current of the form

Js(r,r') = i[Sx ()8, (r") — S, (1) S (r")]

Or (4.8)

(4.9)

at the link (x,x") of the kagome lattice. This field A « couples
to the fermionic degrees of freedom in the same way as the
statistical gauge fields A,,. In the presence of this perturbation,
the effective action becomes

S (A AL) = L(OrScs(A, + A,) +0Scs(AL),  (4.10)

where again we have assumed that 6 4 6y # 0 and thus the
Maxwell-type subleading terms can be safely ignored at low
energies.

The actual response of the system to this perturbation is
obtained by integrating out the statistical gauge fields. This
gives

SS(A,) = L0urScs(A,), “.11)
where 6. is given by
1 = 1 + i (4.12)
Ot 6  Of
This result yields a spin Hall conductance oy, of
Opy = % (4.13)

(a) The % magnetization plateau. Since 6 = % and at the

_% plateau we found 65 = % (from Table III), this implies that
Ooft = %% Hence, at the % magnetization plateau, the kagome
antiferromagnet has a fractional spin Hall conductivity
g L1 (4.14)
o, = —-——. .
w22
Hence, the fluctuation effects tell us that the ground state of
the kagome antiferromagnet in the XY regime at % filling
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TABLE IV. Summary of results for the magnetization plateaus of
the XY model at 1, 3, and 3.

13,
(n) m 21 0p Oy §
1 2 1 T
6 3 +1 2 2
2 5 2 T
5 5 +2 3 3
1 1 1 T
3 3 +1 3 3

resembles a v = % Laughlin fractional quantum Hall state for
(hard-core) bosons. In fact, an alternative description of the
state that used the hydrodynamic theory [27] shows that the
effective field theory of this state is alevel k = 2 Chern-Simons
gauge theory. The upshot of this analysis is then that the ground
state of the kagome spin-% Heisenberg antiferromagnet at its
magnetization plateau at % is a topological fluid with a (spin)
Hall conductivity of % %, atwofold-degenerate ground state on
atorus, a single chiral edge state (with compactification radius
V/2) on adisk, and excitations are semions with statistical angle
/2. The same results apply to the equivalent magnetization
plateau at %

(b) The magnetization plateau at g. By extending this

analysis to the magnetization plateau at 2, we obtain the
results summarized in Table IV. The g plateau has mean-field
Chern number C = 2, and hence it is equivalent to the first
FQH daughter Jain state for bosons in the % FQH bosonic
Laughlin state. From standard results of the theory of the FQH
states [27], we can then predict that the g plateau has rwo
chiral edge states on a disk and a threefold-degenerate ground
state on the torus. In this case, the Hall spin conductivity is

o’ = 2L and the excitations are anyons with statistical angle
)73 32
/3.

At all other fillings, the expected value of Op is OF =
—%. In these regions, the prefactor of the effective Chern-
Simons term in Eq. (4.7) exactly cancels out, i.e., 6 + 0y =
ﬁ [1 4+ (—1)] = 0, leaving just the Maxwell term in Eq. (4.6)
as the leading term. In this case, the elementary excitation is
not a vortex but a “photon.” However, in 2 4+ 1 dimensions
there is only one possible polarization state for a photon and
this problem then turns out to be equivalent to a system
with a Goldstone boson. In other words, away from the
plateaus the transverse excitations are Goldstone modes of
the spontaneously broken residual U(1) symmetry. This is
also the behavior that one expects in the low-density (low-
filling (n) — 0) regime when the lattice is sparsely filled and
frustration effects are minimal.

Finally, we consider the implications if we had chosen 6 =
—%, instead, in our original Jordan-Wigner transformation.
As noted in the Introduction as well as in our discussion
on the mean-field physics, flipping the sign of 6 breaks the
time-reversal symmetry in the opposite manner and yields a
new set of degenerate states. Again, at the mean-field level this
gave rise to an integer quantum Hall state with the opposite
Chern number C = —1. When the effect of fluctuations is
taken into account, this now corresponds to an effective
Chern-Simons term with 6 4 6 = —nl. This again describes
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a fractional quantum Hall state for bosons but with opposite

spin Hall conductivity oy, = —%.

2. Ising regime

In the Ising regime (A 2 0.6), 6 = 0. Hence, the effective
Chern-Simons theory just has the parameter 6 from the Jordan-
Winger transformation and the statistical angle is simply § =
7. This effectively transmutes the fermions back to the bosons
that we began with. A similar analysis has been performed in
the case of the square lattice by Lopez et al. [23] and they
obtained a similar result in the Ising regime. The square lattice
is unfrustrated and the spins behaving like bosons leads to the
familiar Néel state on the square lattice in the Ising regime.
However, the kagome lattice is still frustrated in the Ising limit
and our analysis does not choose a specific configuration. An
analysis of quantum order by disorder is needed. There is a lot
of numerical evidence that indicates that in the Ising regime,
the kagome lattice favors a VBC type state with a much larger
unit cell (based on a V3 x+/3 structure) [12—14], and possibly
a Z, time-reversal-invariant topological phase in-between as
in the simpler Ising systems [34].

V. SPIN CORRELATIONS IN THE MAGNETIZATION
PLATEAUS

A. S%8? correlations

The fluctuating component of the (S°S?) correlation can be
computed by expressing them in terms of the magnetic fields
as follows:

(S*(X)S*(y)) = § + 6> (B(X)B(y)). (5.1
This calculation can be performed by introducing the usual
source term j, coupled to a Chern-Simons term. The details
are presented in Appendix B 1. The Fourier transform of the
connected S*S¢ spin correlation, i.e., the longitudinal magnetic

susceptibility at momentum p and frequency w and which we
denote by x**(p) [here p = (p,w)], can be expressed as

x“(p) =i0*(piG2n(p) — p1p2G12(p)

= npGup) +piGup)).  (52)
where G, (p) is the Fourier transform of the propagator of
the gauge field of the continuum action given in Eq. (4.6).
This propagator can easily be computed by introducing a
usual gauge-fixing term. In the Lorentz gauge 0* A,, = 0. This
yields the following value for the longitudinal (time-ordered)
magnetic susceptibility in the low-energy and long-wavelength
limit:
2

€p
2z 292 ;
X (p) 2w? —exp? — (0 +6p)? +in

(5.3)

where p? = p? + p3, and as usual we must take the limit
n — 07. Hence, in the magnetization plateaus the longitudinal
magnetic susceptibility has a Lorentzian shape centered at
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zero momentum with a width determined by the energy gap
~ (04 0F)/e.

For the case of the m = % plateau, 6 + 0p = % and the
collective modes are gapped. At all other fillings on the kagome
lattice that do not correspond to these plateau type states or for
the case of the square lattice where 6 4 0 = 0, the collective
modes would be gapless and correspond to Goldstone modes
of the transverse fluctuations.

B. XY correlations
The transverse XY components can be expressed as
TS () + ST ()8 (y)
= 3[ST @)™ + STMST (). (5.4

Hence, the computation of the above expectation value boils
down to a computation of (S*(x)S~(y)). From the Jordan-
Wigner transformation discussed in Sec. IIE, we know that
this can be expressed in the continuum as (plus its Hermitian
conjugate which is not written explicitly)

S1>§Y(x,y) — (ST(X)S~(»)
= <wT(x)ei Jrey) Audx" w(y))
= <GF(x’y; A/L)ei f“(m’) Al‘dx}k)AM,

(5.5)
(5.6)

where Gr(x,y; A,) is the fermion propagator in the presence
of the statistical gauge field A,,. In the second step, we have
justaveraged over the fermionic degrees of freedom. This gives
rise to the expectation of the operator in the last step where the
average is just over the statistical gauge fields A,.

This expectation is quite difficult to compute in general
due to the nonlocal string along the path I'(x,y) that connects
points x and y. To simplify the above expression, the fermionic
propagator can be expressed in terms of a Feynman path inte-
gral as a sum over histories of the particles. At a semiclassical
level, the above integral can then be expressed in terms of
smooth trajectories which are the dominant contributions for
a problem with an energy gap and in the long-distance limit.
The following simplifications also rely on the fact that the
photon propagator is massive as in the case of the m = %
plateau. If this were not the case, the following results would
be drastically altered. The details of this calculation are shown
in Appendix B 2.

Finally, the transverse correlation (at equal times) can be
approximated as

XY (x,y) ~ Z(Amp)yel‘ﬂz, (5.7)
¥

where the (Amp), is the weight associated with a smooth
trajectory y. The set of paths {y} are closed curves which are
the oriented sum of the paths I" and its histories.

The first integral I; in the exponent is proportional to the
length of the path associated with the curve y and is given by

€

—mlz(]/)v (5.8)

I =

where L(y) is the perimeter of the path y.
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The second integral I, can be expressed as

i ®, i
L~ —=—=-9¢,,

20 ¢g 2
where ®, is the average flux over the path y. Hence, the
term e’ corresponds to an Aharonov-Bohm phase associated
with the path y. In the last step, we have used the fact that
0=60+0p= % and the flux quantum ¢y = 2.

If one chooses the path y to correspond to the shortest path
between the points x and y (i.e., the path that minimizes the
classical equations of motion), then the expectation can be
further simplified as

(5.9)

€ i
S?Y(X,y) = Z(Amp)s.p. exp {_ﬁLs.p. + Eq>s.p.} 5

s.p.
(5.10)

where s.p. correspond to the classically shortest paths and
0=06+06p again, and € is defined in the effective action of
Eq. (4.6). Explicit numerical values of € are given in Table V
of Appendix A.

(a) Case I. Inthis first case, the trajectory of the classically
shortest path does not enclose any loops. As an example, one
could consider measuring this XY correlation between a point
x and another point along the e; direction of the lattice (in
Fig. 1) at say x + d,. In this case, there is just one classical
path corresponding to the straight line between points x and y
and the area of the loop associated with the Aharonov-Bohm
phase would reduce to zero. In this case, the above equal-time
transverse correlation function would simply reduce to

SXY(x,x +dy) x e (5.11)

i.e., just exponentially decaying in the distance between the
two points. Glossing over subtleties, the path between arbitrary
points x and y can always be chosen so that the correlation
function decays exponentially. Then, from the above result we
can infer that the correlation length is £ ~ 1/(r%¢), where the
values of € are given in Table V of Appendix A. In Fourier
space, this transverse correlation function is a Lorentzian.

(b) Case 2. In the second case, the classical trajectory can
enclose some number of hexagons leading to an Aharonov-
Bohm phase factor. For instance, let us consider the correlation
between the point x and another point, say, along the e¢; + e;
direction of the lattice in Fig. 1. This would correspond to
points along the diagonal of the hexagons. Classically, there
are four paths/ways to reach the point across the diagonal of the
hexagon, two of which lead to a phase of ®pex = 27” (in the XY
limit). Hence, the XY correlation picks up an additional phase
of 2+ 2ei2T") for each hexagon that the classical trajectory
encounters. More generally, for a path that encloses a certain
number n of hexagons and the generic result would be

Sl)“(Y(xa)’) ~ 2"(1 + ei%{)ne*f”zdu.y)’
(5.12)
SIZ(Y(X’Y) = Znem%efmzdm»’

where d, ) is the distance along a classical trajectory from x
to y and then back. Here, there are several different Aharonov-
Bohm phases that can arise depending on the number of
hexagons encircled by a classical trajectory (the distinct values
would correspondton =0, ...,5).
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VI. CONCLUSION AND FUTURE WORK

We have analyzed the nearest-neighbor spin—% Heisenberg
antiferromagnet on the kagome lattice using a two-dimensional
Jordan-Wigner transformation that maps spins to fermions
coupled to a Chern-Simons gauge field. This transformation
relies on writing a lattice Chern-Simons term on the kagome
lattice which was recently developed and outlined here.

We used this model to look at magnetization plateaus that
can arise at the mean-field level. At the mean-field level, these
states had integer Chern numbers. Hence, at the mean-field
level, these plateaus corresponded to integer quantum Hall
type states. In the case of % filling (m = % plateau), we found
that in the XY regime, the inclusion of fluctuations gives rise
to an effective Chern-Simons theory that predicts a fractional
quantum Hall state of bosons with a spin Hall conductivity of
oy = %%, thus altering the mean-field physics drastically.
The excitations of this plateau are anyons with fractional
spin and statistical angle 7 (i.e., are semions). This plateau
state is twofold degenerate on a torus. On a disk geometry,
it supports a chiral edge state (with compactification radius
V/2). In the Ising regime, the effective Chern-Simons theory
just transmutes the fermions back to the original bosons and
reduces to earlier results. We also extended this analysis
to the case of the % and g magnetization plateaus. The %

plateau is essentially equivalent to the % plateau. However,
the g plateau turns out to be equivalent to the first Jain state

for bosons with (spin) Hall conductance of o)‘gy = %% Its
excitations are anyons with statistical angle 5. This state has
a threefold ground-state degeneracy on a torus, and supports
two chiral gapless edge states on a disk geometry. Due to
the gapless edge states of both the % and in the g plateaus,
there should be a linear temperature-dependent contribution
to the heat capacity. Likewise, there should be a universal
finite thermal conductivity in the plateau states due to the edge
states.

In the Introduction we noted that the magnetization plateaus
of the spin-% quantum Heisenberg model had been investigated
by Cabra and co-workers [12]. These authors used exact
diagonalizations of small systems (with up to 36 spins) to
investigate the behavior of the % plateau for a wide range of
anisotropies, from the Ising to the XY regimes, and compared
their results with semiclassical (1/S) expansions and with
effective quantum-dimer-like Hamiltonians derived in the
Ising regime. In their work they did not see any hint of a
phase transition as the anisotropy changed from Ising type to
XY like and, hence, their small-system diagonalizations do
not seem to show evidence for a chiral spin-liquid state in the
XY regime. However, even if the chiral spin-liquid phase were
present, in such small systems (containing a total of 12 kagome
unit cells) the degeneracy of the two topologically inequivalent
states should be lifted. Unfortunately, the methods that we use
in this work provide a reliable analysis of the long-distance
(and low-energy) behavior of the system but do not provide
a reliable estimate of the value of the energy gap, needed to
make a meaningful comparison with the numerical results of
Ref. [12]. It is likely that more sophisticated methods, such as
density matrix renormalization group (DMRG) and its tensor
network generalizations, should be able to provide evidence
for such states.

PHYSICAL REVIEW B 90, 174409 (2014)

Finally, we would like to end with a few remarks on the half-
filled case (no external field) which was not considered here.
The magnetization plateau type states that were considered
here were gapped (even at the mean-field level). However,
at half-filling, our theory predicts a gapless state with Dirac
points and a doubled unit cell at the mean-field level. This state
looks very similar to the U(1) Dirac spin-liquid discussed in
other works [3,4]. A discussion on this state and the effect of
fluctuations will be saved for a future work.

In a recent paper, Bauer and co-workers [35] studied a
spin-% Heisenberg antiferromagnet on the kagome lattice at
zero external magnetic field (i.e., the half-filled case). These
authors also include a coupling to the spin chirality operator
on each triangle, a term that breaks time-reversal invariance
explicitly. The main result of their work is that, apparently
for all nonvanishing values of the chiral coupling constant,
the ground state of the system is a chiral spin-liquid state
which is equivalent to a Laughlin fractional quantum Hall state
for bosons at filling fraction v = % This is in fact the same

state that we find here in the % plateau state at least with XY
anisotropy. It is tempting to speculate that these two regimes
may be somehow connected to each other. In particular,
their numerical results for the entanglement properties apply
to the chiral spin-liquid state we found for the % (and %)
plateaus since they have the same universal effective field

theory.
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APPENDIX A: CONTINUUM ACTION

This section of the appendix presents the details on
obtaining the full continuum action in Sec. IV B. We begin
by computing the components of the polarization tensor
(corresponding to all the different fluctuating components
shown in Sec. IV B) in the long-wavelength limit. Then, we
integrate out the fast components and obtain an effective
low-energy action containing only the slowly fluctuating
components.

The polarization tensor is most easily computed in momen-
tum space using the expression

meﬂ5=/ﬂﬁdﬁ%+&ﬁ+@

w,q
X ju(P + §)S(@,3)ju(@)],

where S(w,q) is the mean-field fermion propagator as shown
in Eq. (3.20) and j, are the currents of the corresponding
fluctuating components. The currents j, can be computed
by taking derivatives of the action with respect to the

(AD)
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Corresponding ﬂuctuating components, i.e_, jli = —2 Ttisin be more relevant, we make the fOllOWing Simpliﬁcations. First,
for the slowly fluctuating components, we only keep terms to
quadratic order in momenta. Second, for the fast fluctuating
components, we only keep the leading-order terms, i.e., the
nonderivative terms. The continuum limit of the polarization
tensor will then have a bunch of nonderivative (or mass) terms
to the leading order. The remaining derivative terms (only for
the slow components) take the following form:

general challenging to evaluate the integral shown in ]%q. (A1)
due to the complicated form of the propagator in Eq. (3.20).
To simplify the calculation, we focus on the long-wavelength
limit by expanding Eq. (Al) in powers of momenta P (up
to quadratic order). This will allow us to compute the above
integrals numerically for each of the fluctuating components in
Egs. (4.3) and (4.4). As the slow components are considered to

J
Ao(PYTP Ap(—P) = uoxx0Ao(P) P Ao(—P) + ttoyy0Ao(P) P] Ao(— P),

Ag(P)YTTY Aj(— P) = u,j Ao(P)i Py A j(— P) + gy Ag(P)i Py A j(— P) + 1o Ao(P)Q P A j(— P) + ttggyj Ao(P)QPy A j(— P),
Ai(PYTT7Aj(—P) = ujoj Ai(P)iQUA;(— P) + ttj0; Ai(P)X* A j(— P)
+ Mixxin(P)szAj(_P) + uiyyin(P)PyzAj(_P) + Uiy Ai(P)P PyA;(—P), (A2)

where € is the time component of the three-momentum P, (with u = 0,x,y), and P, and P, refer to the spatial components of
the three-momentum P,. Also note that all the fields above correspond to the fluctuating components (we have dropped the §
label to make the notation less cumbersome). The u coefficients are obtained by performing the integral in Eq. (A1). For example,
the coefficients 1,0 and ugyy0 in Eq. (A2) correspond to the 1oy component when expanded out in powers of momenta P (up
to second order). This calculation can be further simplified by realizing that the transversality condition puts some constraints
on these u coefficients. The action can then be written as

Sinal = Soo + Soj + Sij + Sgs + Ses + Sinco + Sin2s (A3)
where the corresponding Lagrangian densities are given by
U e 12 - 1 1 1
Lo = Eu({of [(A") + (A0)] - 3 uly? Al AL - Eu(m.voafAO - Euowvoaf,Ao, (A4)

1 . S . S
fif f1 f2 f1 f27 41 f1 f274f
Loj = 540 {-[A) + A) ]A —[Ay +A)T]AL + [A) + AT]AL}
— Aoy [uox1 At + uox2Az + uox3As] — Agdy[uoy1 Ay + 1oy Az + 1py3A3]
+ A0000x {Uoox1 A1 + Ugox2 A2 + Uoox3 A3} + Aoy {Uooy1 A1 + Uooy2 A2 + Uooy3 A3}, (A5)

1 2 1
Ly =sufl (4] + AL = A) + Sup (A1 + A2 = 437 + 1o Ao Az + 103 A1d0As + 23 200 A3)

1
—-3 {MloolA AL+ U002 A203 A + U3003A305 A3 + 21002 A 103 Ad + 211003 A1 07 Az + 214200314230143}
1
-3 (U101 A197 AL 4 U2x2 4207 Ad + U3xx3A307 Az + 211,00 A1 97 Ad + 2u1,:3A107 A3 + 20,3 A20; As )
1
—-3 {M1yv1A13 A+ Mzszza Ay + mwaAaa Az + 2”1)')'2A133A2 + 2u1yy3A13y2A3 + 2u2yy3A28}2~A3}
1
E{MlxylAla 3 Ay -I-sz)gAga 8 A2+M3xy3Aga 8),A3 +2M1XV2A13 3 Ao +2M1x)3A18 8 Az +2u2xy3A28 d A3}
4 f 2 ! f 2 (A0
1 f f 1 f
gcls = ﬁaoe{(Ao + Ap )[Al + A — As] + (_AO + Ay )[Al + Az — A3]}
1 1
——0Apd, (A 5A 3A —0Apd,(—3A Ay — Aj), A7
+2\/§ 00x (A1 + 54, + 3)+2 00y( 1+ Az 3) (AT)
5 2
Los = %9{A2(280A1 + 0pA3) — A100 A3},
4
Lo = = JOA3(A] + AL — AD)’ + (A1 + Ar — A3,
0
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2
Linn = —J)»Qzﬁao{(—alAl —200A1 +201Ay + 0,A; + 01 A3 — 0, A3)[—20,A1 + 201 A5]

— (A1 + Ay — A3) 37 (A1 + Ax — A3)), (A8)

where qy is the lattice spacing and the continuum limit amounts to taking the limit ag — 0. £y, %, and .Z;; are obtained
from the polarization tensor in Eq. (A1) using the procedure outlined above. The %5 and %, terms are obtained by expressing
the Chern-Simons term in Eq. (2.6) and interaction term (3.1) in terms of the fluctuation components and taking the continuum
limits, respectively. The leading-order mass terms are all proportional to -~

As noted in Secs. IV A and IV B, the above action has excessive gauge fields. However, many of these fields are quadratic
and massive and can be integrated out. More precisely, the above action has massive fields corresponding to Al A(]; 2 A; =

Al + Ay — Aj, and Av{ = A{ + Ag — Ag . Rewriting the quadratic part of the action that will be integrated out gives

ZLguaa = %ATMA + AN (A9)
with
RTINS
A= v=1o 0 o (n) (A10)
Az Az Az Az Az
and
G T ke
12 ifi i
"= luﬂfz_&)l 0 luftfug_()f i g ugi Jg;"’zi _é“‘)@ : (A1)
M0 T Aal M T ALl Wik t A
el ~ 7t 0 uj+ =07 4247

The A’s correspond to derivative terms and are shown as

2 1
A2 = )\Qz_aoag — 5 {u3003802 + u3xx3af + u3yy38)2, + u3xy38x8y} s

V3

1
ASO = - 98,\ + 508\2 + u0x38x + u0y38y + u00x3808x + uOoySaanv

3
23
A31 = —u10380 + i&&g - )\.inaoalazA] + )ﬁziaoazz

V3 V3 V3

2 2 2 2 2 2
- {u30038() + uloo380 + u3xx38x + ulxx38x + u3yy38y + ulnyay + u3xy38xay + ulxy38xay} P

A By — —=00 + Mg — 20° gty
32 = —U20300 — —=U0p —=do0] — —=000102
V3 N V3
- {M3003ag + u20038§ + M3xx38,3 + uZxx38f + u3yy3a}2v + M2yy38§ + u3xy38x ay + u2xy38x ay} . (A12)
[
The sign of the masses has been verified numerically for 1 2 )
different values of A and we have ensured that they have + 57ty [—AL95A, +24,0:0,4, — Ax, Ad]
the correct sign in order to safely integrate them out. After 33
integrating out these Gaussian fields, the remaining terms are — M7 (dy Ay — 9y A,)? (A14)
given by 16
L =—INTMIN. (A13) Vith 5
To quadratic order, we find that OF = — Y (U102 + U103 — U203) »
Z ! @ +6r) A, 0,A ! + ! ! ! + )
== v y Tixx =~ Uloo SU1003 — T U2002 — U200 ~—U3003,
Cseff =5 F) €uva Aoy Ay oot ¥ 5003 = TLl2002 — 2003 + TLU3003
1 3
Liom = 5 Tex [—A092A0 + 240800, Ax — A A, ] Tyy =g (3003 + 22003 + U2002) |
1 3
+ 37 [—A09; Ao + 240000y A, — A5 A, ] To =T¢ (Uaxxa + 2Unr3 + Uzr3) . (A15)
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TABLE V. Parameters of the effective action of Eq. (4.6) for
several values of the anisotropy parameter A.

A Or +60 e=my=my, X=g— Ty Txy

0 §(2) 721.33312 520.242483 —520.242466
0.25 i(Z) 521.11182 520.220687 —520.216574
0.5 §(2) 521.82261 520.285403 —520.277177
0.6 i(Z) 7243.0296 724.28244 —524.27257
0.75 i(l) 720.821131 720.0550438  —520.0427044
1 ﬁ(l) 520.192793 520.0254114  —3520.00895888

We have also reexpressed the A and A, fields along the x and y
directions to give A, and A . Once again, all the u coefficients
are computed using the equation for the polarization tensor
in Eq. (Al). The final form is written in terms of £ and B
fields as

Lesetr = 30 + 0p)enn AL dyAs,
5 5 (A16)
gEM = %EE — %XB s

(§(x)S*(»)) =(B(x)B(y))
SR
Z 8jo(x) 80j(y)

~
~ —

/ DA ¢'1 ) @xdy Au)GTH (e AW [ dx ju (00, A5 (x)
" )
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where € =, =7y, X =g — 7yy, and g = w2%§ao cor-
responding to the interaction strength. Equation (A16) is the
same result that was expressed in Sec. IV B.

The numerically computed values are listed in Table V for
a few different values of A.

APPENDIX B: SPIN-SPIN CORRELATION FUNCTIONS

In this appendix, we describe the procedure to obtain the
spin-spin correlations shown in Sec. V. The first subsection
focuses specifically on the §*S* correlations. The next subsec-
tion then deals with the XY correlations.

1. $%§% correlation functions

The fluctuating components of the (S°S®) correlation
can be expressed in terms of the magnetic field from the
Jordan-Wigner transformation as shown in the following.
This expectation can then be computed by introducing the
usual source term j, coupled to a Chern-Simons term as
follows:

B

where G* is the continuum Green’s function of the Lagrangian in Eq. (A16) and Z is the partition function.
The A, fields can now be integrated out using the standard procedure of shifting the fields A, — a,, + n,, and then requiring

that the terms linear in 7,, cancel. This gives the condition

as(x) = —/ Gy (x,x )™ ) i (x).

Substituting the above expression back into Eq. (B1) gives
8 8

2 2 %_92
WS 8jo(x) 807 ()

(B2)

i [ dPx d3x (=4 ju (O™ €9€9, 8], G (x,x )] js ()}

(B3)

— iQZEOV)\.GOpG avager(x’y).

The Green’s function can be computed in the momentum space. Hence, the Fourier transform of the §%S* spin correlation f%(p)

can now be expressed as

[%(p) =0 [P1Gn(p) — p1p2G12(p) — p192G21(p) + P3G 1i(p)].

The propagator can be computed by introducing a gauge-fixing term 5 (9" A W

aw® + pie + pie
G,,,(p) = | prw(e —a)—ifp,
Prw(€ —a) +1i0p;

where 6 =6 + 0. The limit o — oo corresponds to the
Lorentz gauge (3" A,, = 0). In this gauge, the above correlation
yields

22
€p
[E(p) =67

= , B6
e2w? — ey p* — (0 + 0F)? (B6)

where p> = p? + p3.
Note that in the XY regime 6 4 0y = % for the case of
% filling on the kagome lattice making the collective modes

+p1ip2( + @) Fifw

(B4)
proe —a)+ifpy  pro(e —a)—ifp
api —pyx +’e  +pipax + @) —ifw |, (B5)
ap; — pix +w’e
{
massive:
2 ep’
fEp)y~0o (B7)

e - ()

If the same calculation were performed on the square lat-
tice (which is unfrustrated), the two terms would cancel
(since 6 4+ 0r = 0) as observed in the main text and the
collective modes are massless corresponding to Goldstone
modes in the XY regime.

2w
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2. XY correlation functions

Using the Jordan-Wigner transformation, the spin-spin
correlation function (ST (x)S™(y)) can be written as

(ST S~
~ (Ple! o 2y ()
= (GF(X,y; Aﬂ)ei fl"()w‘) A,de">

SEY (x,y) =
(B8)

AL

where Gr(x,y;A,) is the fermion Green’s function in the
presence of the statistical gauge field A, and is obtained
by integrating out the fermionic degrees of freedom. The
average in the last step is over the statistical gauge fields A,,.
Computing this expectation is involved due to the presence of
the nonlocal string along the path I'(x,y) that starts from x
and ends at y. To simplify the above expression, the fermionic
propagator can be expressed in terms of a Feynman path
integral as a sum over histories of the particles as follows:

o0
GF(x,y;AM)z —i/ dT/DE(t)eiS[Z(t)], (B9)
0

where the action S is the action for nonrelativistic particles
coupled to the statistical gauge field

T -\ 2
dz dz" .
S = dt +—A
/0 { ( dt ) dt " @ }
subject to the boundary conditions for a particle traveling from
ytox:

(B10)

limz(t) =9y, limz(t)=xX. (B11)
t—0 t—T

Note that the second term in the action of Eq. (B10)
corresponds to another Wilson line but now traveling from
point y to point x. This combined with the Wilson line in
Eq. (B8) now creates a closed loop which we will call y. For a
problem with an energy gap and in the long-distance limit, the
dominant trajectories are close to the classical trajectories. In
this approximation, the average over the different trajectories
Z(t) can be pulled outside of the integral for averaging over the
statistical gauge fields. Hence, Eq. (B8) can now be written as

o= [ 206l K CEY [, 2
T xvy)— dT Dz(t)e(o 2\ar ey

Z(Amp)

where (Amp), is the amplitude associated with a path y and
the set of closed curves {y} are the oriented sum of paths I
and the histories of the particle.

Now, the computation of the Wilson loop expectation value
can be performed by introducing a source term J, as follows:

A

i

if, Altdz, ) (B12)

(eify A“dZM>AM _ (eifd%JH(Z)AM(Z))AM’ (B13)
where
S,(2) if zey,
Ju(2) = { otherwise, ®B14)
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where §,,(z) is a unit vector tangent to the path y at z. In this
form, the above expectation can be written as

(e b AN oy BOG A

n

(B15)

where GV is the Green’s function in the continuum for
the statistical gauge fields shown above in Eq. (B5). The
exponent in the above integral has two contributions, one from
the Maxwell-type terms (/;) and the other from the Chern-
Simons-type terms I,. First, the /; term can be simplified to
give

I = _S/ T ()Go(x,y; 02T (y), (B16)
X,y

2
where the propagator G(x,y;6?) can be approximated in the
long-distance limit as follows:

1
€202 + e(x — €)9? — 62

Go(x,y;0%) = (x| )

r — %S(x —-y). B17)
Note here that we are assuming that the above propagator is
massive (i.e., @ # 0) as in the case of % filling in the XY limit
of the kagome lattice. This argument would clearly fail at other
fillings or for instance in the case of the square lattice when
0 = 0 changing the physics all together.

Hence, the integral I; can be approximated as

L~

L(y),  (BIY)

€

J () JH(x —_—

f (077 = 2(0 + 6p)

where L(y) is the length of the path y. The second integral

due to the Chern-Simons term approximates to give (again in
the long-distance limit)

i0 1
I =— Ju () (x —
T2 ), Wbl [€202 + e(x — €)d? — 2]

X €79 |y) ()

262

~ i HUVA 1 )
o5 . Ju(x)e (xlﬁly) v ()
i

/ Ju ()" Go(x,y3 08, 5 (). (B19)

2 ).,
The current J,(x) can be regarded as an electric current. With
this interpretation, the current can be related to a magnetic
field B, (x) as follows:

B,(x) = / Go(x,y;0)€,2.9" (). (B20)
y
Now, the second integral I, can be written in terms of a
magnetic field as
i o, i ®

YT 2
where again at the semiclassical level we have approximated
the field by the average flux ®,, over the path y. This makes
the above integral take the form of an Aharonov-Bohm phase
over the path y. In the last step, we have used the fact that

(B21)
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6=0+060r =2 and ¢ =27 (in units of h =e=c=1).
Hence, the correlation can be approximated as

SEY(x,y) &~ ) (Amp), e,
14

(B22)

where I; decays exponentially as the length of the path L(y)
increases and I, is an Aharonov-Bohm phase associated with

PHYSICAL REVIEW B 90, 174409 (2014)

the path y. The Aharonov-Bohm term in the above expression
would depend on the two points x and y and the area enclosed
by the path y . In the main text, we have considered two possible
situations, one where the area of the path y is zero and does
not lead to any Aharonov-Bohm phase and the other where
there are several different Aharonov-Bohm phases that can
arise.
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