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Classical spin models with broken symmetry: Random-field-induced order and persistence
of spontaneous magnetization in the presence of a random field
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We consider classical spin models of two- and three-dimensional spins with continuous symmetry and
investigate the effect of a symmetry-breaking unidirectional quenched disorder on the magnetization of the
system. We work in the mean-field regime. We show by perturbative calculations and numerical simulations that
although the continuous symmetry of the magnetization is lost due to disorder, the system still magnetizes in
specific directions, albeit with a lower value as compared to the case without disorder. The critical temperature at
which the system starts magnetizing and the magnetization at low- and high-temperature limits in the presence
of disorder are estimated. Moreover, we treat the SO(n) n-component spin model to obtain the generalized
expressions for the near-critical scalings, which suggest that the effect of disorder in magnetization increases
with increasing dimension. We also study the behavior of magnetization of the classical XY spin model in the
presence of a constant magnetic field, in addition to the quenched disorder. We find that in the presence of the
uniform magnetic field, disorder may enhance the component of magnetization in the direction that is transverse
to the disordered field.
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I. INTRODUCTION

Disordered systems lie at the center stage of condensed
matter and atomic many-body physics, both classical and
quantum [1,2]. Challenging open questions in disordered
systems include those in the realms of spin glasses [3], neural
networks [4], percolation [5], and high-Tc superconductiv-
ity [6]. Phenomena such as Anderson localization [7] and
absence of magnetization in several classical spin models [8]
are effects of disorder.

In particular, classical ferromagnetic spin models with
discrete or continuous symmetries are very sensitive to random
magnetic fields, distributed in accordance with the symmetry,
in low dimensions [9]. For instance, an arbitrary small random
magnetic field with Z2(±) symmetry destroys spontaneous
magnetization in the Ising model in 2D at any temperature
T , including T = 0. Similar effects hold for the XY model in
2D at T = 0 in a random field with U (1) [SO(2)] symmetry,
and the Heisenberg model in 2D at T = 0 in SU(2) [SO(3)]
symmetry in random field. In these cases, the effects of disorder
amplify the effects of continuous symmetry, that destroys
spontaneous magnetization at any T > 0. The effect is even
more dramatic in 3D and 4D, where the random field destroys
spontaneous magnetization at any T � 0 (see [9–11] for a
general description of these).

The appropriate symmetry of the random field is essential
for the results mentioned above. The natural question arises as
to what happens if the distribution of the random field does not
exhibit the symmetry, in particular the continuous symmetry.
Yet another natural question is how the spin systems in random
fields behave in the quantum limit. The latter question is
particularly interesting in view of the fact that nowadays it
is possible to realize practically ideal models of quantum spin
systems (with spin s = 1/2,1,3/2, . . . , and with Ising, XY, or

Heisenberg interactions) in controlled random fields [2,12]. It
is therefore very important to understand the physics of both
classical and quantum spin models in random fields that break
their symmetry.

In this paper, we will consider the classical XY spin
model in a random field that breaks its continuous U (1)
[SO(2)] symmetry. We investigate this model in the mean-field
approximation [13]. Despite its simplicity, this spin model
magnetizes in the absence of disorder below a certain critical
temperature, which can be calculated exactly. As a result
of continuous symmetry, the spontaneous magnetization can
have an arbitrary direction. Subsequently, a unidirectional
random magnetic field is introduced, by adding a new term
to the energy of the model. This term breaks the continuous
symmetry of the model, but the critical temperature persists.
We find that the system possesses magnetization in specific
directions, viz., the direction transverse to that of the random
field and along the direction of the random field. The present
paper employs numerical as well as perturbative techniques to
study the critical behavior and properties of the magnetization
for both cases within a mean-field framework. We prove
that, as may be expected, by adding a random field, the
critical temperature in both cases (parallel as well as transverse
magnetization) decreases with the increase of the random field
strength. We also show that although the magnetization of
the disordered system is lower than that of the pure system
(i.e., the system without disorder) near the critical point for
both cases, the disorder effect is more pronounced along
the direction of the disorder field in this regime. We work
through the low-temperature aspects of the magnetization for
the two-dimensional spin system as well.

Next, we introduce a constant magnetic field, which breaks
the continuous symmetry of the model even in the absence of
disorder. In fact, the system now magnetizes at all temperatures
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in the direction parallel to the magnetic field. When we also
add a random field (in the Y direction) as described above, the
length of the magnetization vector decreases again. Moreover,
at low temperature the magnetization gets attracted towards the
direction that is transverse to that of the random field. However,
the X component of the magnetization can increase for certain
choices of the magnetic field. We view this effect as a “random-
field-induced order,” by analogy to the effect studied in
Ref. [12], where numerical evidence was given for the appear-
ance of magnetization in the XY model on a two-dimensional
lattice with the introduction of the disorder. In contrast to the
present work, in this other case, no mean-field approximation
was used and no uniform magnetic field was introduced.

The effect of random-field-induced order has, of course, a
long history [14]. Recently it has become vividly discussed in
the context of XY ordering in a graphene quantum Hall ferro-
magnet [15], and ordering in 3He-A aerogel and amorphous
ferromagnets [16]. Volovik [17] considered it in the context
of the so-called Larkin-Imry-Ma state in 3He-A aerogel. The
earlier paper [12] clarifies certain aspects of the rigorous proof
of the appearance of magnetization in the XY model at T = 0,
presentation of evidence for the same effect at T > 0, and
a proposal for realization of a quantum version of the effect
with ultracold atoms. In the subsequent paper [18], they have
shown how the random-field-induced order exhibits itself in a
system of two-component trapped Bose-Einstein condensate
with random Raman intercomponent coupling. These studies
were recently continued in Ref. [19]. Other possible quantum
realizations include disorder-induced phase control in
superfluid Fermi-Bose mixtures [20], or rounding of first-order
transitions on low-dimensional quantum systems [21].

Disorder-induced order persists also in 1D quantum spin
chains [22]; the corresponding quantum phase transition is
related to the one occurring for ferromagnetic chains in the
staggered magnetic field (for recent studies, including effects
in spin dynamics, see [23]). It is also worth mentioning
that there exists an analog of random-field-induced order in
temporally and spatially disordered/modulated fields (for the
works on generation of solitons and patterns in nonlinear wave
equations, see [24,25]). Last, but not least, the effect was also
mentioned in the general context of transport in disordered
ultracold quantum gases [26] (see also [27]), localization of
Bogoliubov modes [28], and disorder-induced trapping and
Anderson localization in expanding Bose condensates [29].

Classical instances of random-field-induced order concern,
among others, concentration phase transitions [30], and loss
and recovery of Gibbsianness for XY models in random
fields [31]. Recently, the classical XY model in a weak random
field in the Y direction has been considered in Refs. [32,33].
These works form a breakthrough in mathematical analysis
of lattice spin models, and in particular proving that the XY
model in such random field orders at nonzero T , confirming
the conjecture of Ref. [12]; for details of the very complex
proof, see [34]. This remarkable result sheds new light on the
mechanism underlying the random-field-induced order. The
contribution of the present paper lies in systematic mean-field
treatment of the disordered XY model with particular emphasis
on the response to the constant magnetic field.

We further investigate the classical Heisenberg spin model
in the presence of the random field. We find that the quenched

magnetization of the classical Heisenberg model in the mean-
field limit behaves similarly to the classical XY model. Finally,
we present general expressions of the critical scalings of
magnetization for an n-component classical spin system.
Specifically, we find that the magnitude of magnetization
due to disorder decreases as the square of the strength of
randomness in all dimensions.

The remainder of this paper is arranged as follows.
Section II reviews the ferromagnetic XY model within the
mean-field approach. A symmetry-breaking random field is
added in Sec. III and the results of numerical simulations and
perturbative calculations on the resulting model are presented.
Section IV studies the system in the presence of an additional
constant field and, in particular, shows the presence of a
random-field-induced magnetization. In Sec. V, we discuss the
classical Heisenberg model in the mean field approximation.
Section VI applies the perturbative treatment to compute the
generalized expressions of magnetization near criticality for
the SO(n)-symmetric n-component classical spin model.

II. FERROMAGNETIC XY MODEL:
MEAN-FIELD APPROACH

Consider a lattice Zd of points with integer coordinates in d

dimensions, each site i of which is occupied by a “spin” which
is a unit vector �σi = (cos θi, sin θi) on a two-dimensional plane
(called the XY plane). The nearest-neighbor ferromagnetic XY
model is defined by the Hamiltonian

HXY = −J
∑

|i−j |=1

�σi.�σj , (1)

with a coupling constant J > 0. This model does not have any
spontaneous magnetization, at any temperature, in one and
two dimensions (Mermin-Wagner-Hohenberg theorem [35]),
while a nonzero magnetization appears in higher dimensions
at sufficiently low temperatures [36,37].

Let us assume that the total number of spins in our system
is N . In the mean-field approximation every spin is assumed
to interact with all other spins (not just with the nearest
neighbors) with the same coupling constant −J . Therefore,
the contribution of the spin at i to the total energy of the
system equals ⎛

⎝− J

N

∑
j ;j �=i

�σj

⎞
⎠ · �σi, (2)

where we have divided the energy term by N in order to
preserve its order of magnitude. This effective interaction,
replacing the nearest-neighbor interaction in HXY , is for large
N approximately equal to

1

N

⎛
⎝−J

∑
j

�σj

⎞
⎠ · �σi = −J �m · �σi, (3)

where �m = 1
N

∑N
j=1 �σj . The mean-field approximation con-

sists of treating �m as a genuine constant vector and adjusting
it so that the canonical average of the spin at (any) site i

equals this constant. If the system is in canonical equilibrium
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FIG. 1. (Color online) Length of magnetization, m, as a function
of Jβ for the XY model with the disorder. Pluses represent the
solutions for the pure system. Triangles and squares represent
respectively the numerical data for transverse (case I) and parallel
(case II) magnetization. Inset: Cosine of the angle associated with
the magnetization vector �m as a function of Jβ for the two different
cases. Similar symbols as in the main diagram are used in the inset
to represent the two different cases. The data for which cos φ1 ≈ 1
suggest that the magnetization belongs to case I. Otherwise, it belongs
to case II, where cos φ1 ≈ 0. φ1 is measured in radians. All other axes
represent dimensionless quantities.

at temperature T , the average value of the spin vector �σi is

〈�σi〉 =
∫ 2π

0 �σ exp(βJ �m · �σ )d �σ∫ 2π

0 exp(βJ �m · �σ )d �σ
, (4)

where β = 1/(kBT ), with kB being the Boltzman constant.
This average is independent of the site i. Con- sistency requires
that the left-hand side of the above equation be equal to the
magnetization �m. Hence, we obtain the mean-field equation

�m =
∫ 2π

0 �σ exp(βJ �m · �σ )d �σ∫ 2π

0 exp(βJ �m · �σ )d �σ
, (5)

where we have dropped the index i. Equation (5) reduces to
(see Appendix A)

m = I1[βJm]

I0[βJm]
, (6)

where In[x] is the modified Bessel function of order n with
argument x. Here m = | �m|.

The red pluses in Fig. 1 show the magnetization, m, of
the pure system as a function of Jβ. For sufficiently high
temperatures, the only solution for the mean-field equation is
�m = 0. The numerical simulations support the existence of a
β0,2

c , such that for β > β0,2
c ≈ 2, this system magnetizes. The

first superscript of β0,2
c indicates that the system is without

disorder and the second one denotes the component of the
spins. (The superscripts of β0,2

c are anticipating the cases with
disorder and higher dimensional spins.) By symmetry, the
magnetization of the system behaves uniformly in all possible
orientations, which implies that the solutions of the above
mean-field equation [Eq. (5)] form a circle of radius m0,2

in the XY plane for a given Jβ. Note that the superscripts
of m0,2 follow the same conventions as explained before for
superscripts of the critical temperature.

Approximate analytical expressions for the β0,2
c and the

behavior of the magnetization m0,2 near criticality can be
obtained perturbatively. Note that finding magnetization in
Eq. (6) is equivalent to finding the zeros of the function,

F2(m) = I1[βJm]

Io[βJm]
− m. (7)

If we expand F2(m) for small m, we obtain

F2(m) =
(

−1 + Jβ

2

)
m − 1

16
(J 3β3)m3 + o(m4). (8)

The nontrivial roots of Eq. (8) are given by

m0,2 = ±2
√

2

J 3/2
β−3/2(Jβ − 2)1/2. (9)

Therefore, within this approximation, m0,2 vanishes if Jβ = 2,
has nonzero values iff Jβ > 2, and the critical temperature is
given by

β0,2
c = 2

J
. (10)

III. FERROMAGNETIC XY MODEL IN A RANDOM FIELD

We now consider the effect of additional quenched random
fields in the system. Let us begin by the notions of quenched
disorder and quenched averaging.

A. Quenched averaging

The disorder considered in this paper is “quenched”; i.e.,
its configuration remains unchanged for a time that is much
larger than the duration of the dynamics considered. In the
systems that we study, it is the local magnetic fields that
are disordered. They are random variables with a certain
probability distributions. Since the disorder is quenched, a
particular realization of all the random variables remains fixed
for the whole time necessary for the system to equilibrate. An
average of a physical quantity, say A, is thus to be carried out
in the following order:

(a) Compute the value of the physical quantity A, with the
fixed configuration of the disorder.

(b) Average over the disordered parameters.
This mode of averaging is called quenched. It may be

mentioned that an averaging in which items (a) and (b) are
interchanged in order is called annealed averaging. Physically
it corresponds to a situation when the disorder fluctuates on
time scales comparable to the system’s thermal fluctuations.

B. The model and the mean-field equation for magnetization

The XY model with an inhomogeneous magnetic field has
the interaction

H = −J
∑

|i−j |=1

�σi · �σj − ε
∑

i

�hi · �σi, (11)

where the two-dimensional vectors �hi are the external mag-
netic fields, up to a coefficient ε. In the sequel, �hi , which are
random variables of order 1, model the disorder in the system
and thus ε measures the disorder strength. More precisely, let
�hi be independent and identically distributed random variables
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(vector valued). We want to study the effect of including such
a random field term in the XY Hamiltonian at small values of ε.
As argued in Ref. [12], in lattice XY models, this effect depends
critically on the properties of the probability distribution of the
random fields.

If the distribution of the �hi is invariant under rotations, there
is no spontaneous magnetization at any nonzero temperature
in any dimension d � 4 [9–11].

We now want to see the effect of a random field that does
not have the rotational symmetry of the XY model interaction,
by considering the case when

�hi = ηi · êy , (12)

where ηi are scalar random variables with a distribution sym-
metric about 0 and êy denoting the unit vector in the y direction.
The main result of [12] is that on the two-dimensional lattice
such a random field will break the continuous symmetry and
the system will magnetize, even in two dimensions, thus
destroying the Mermin- Wagner-Hohenberg effect. Above two
dimensions, the pure XY model magnetizes at low temperatures
and it has been suggested in Ref. [12] that the uniaxial random
field as described above may enhance this magnetization. In
the present paper we want to study related effects at the level of
a simpler, mean-field model, which allows for a more detailed
analysis and more accurate simulations.

The mean-field Hamiltonian in this case is given by

H = −J �m · �σ − ε �η · �σ , (13)

where �η is the quenched random field in the y direction, �η =
η · êy . The random variable here is assumed to be Gaussian
with zero mean and unit variance. ε (>0) is typically a small
parameter that quantifies the strength of randomness. In the
mean-field equation, the magnetization, which is obtained by
averaging over the disorder, is given by

�m = Avη

[∫ 2π

0 �σ exp(βJ �m · �σ + βεησy)d �σ∫ 2π

0 exp(βJ �m · �σ + βεησy)d �σ

]
, (14)

where Avη(·) denotes the average over the disorder, i.e.,
the integral over η with the appropriate distribution (here
assumed to be unit normal). Set �m = (m cos φ1,m sin φ1). As
demonstrated in Appendix A, we obtain a coupled set of the
following two equations:

m
ε,2
⊥ ≡ m cos φ1 = Avη

[
cos α

I1[r]

I0[r]

]
(15)

and

m
ε,2
‖ ≡ m sin φ1 = Avη

[
sin α

I1[r]

I0[r]

]
, (16)

where

r = β
√

J 2m2 + ε2η2 + 2Jmεη sin φ1 (17)

and

α = arctan

[
Jm sin φ1 + εη

Jm cos φ1

]
, (18)

and I0,I1 denote Bessel functions.

C. Contour analysis: Departure from isotropy

In order to find the magnetization �m, we need to solve
a coupled set of equations, viz. Eqs. (15) and (16). This is
equivalent to finding the common zeros of the following two
functions:

Fε,2
x (m) = Avη

[
cos α

I1[r]

I0[r]

]
− m cos φ1 (19)

and

Fε,2
y (m) = Avη

[
sin α

I1[r]

I0[r]

]
− m sin φ1. (20)

Before discussing the numerical results, we examine the
behavior of magnetization for small ε by using a contour
analysis. The contour analysis is performed within a per-
turbative framework, providing qualitative insight about the
system’s behavior. We perform a Taylor series expansion of
the functions given in Eqs. (19) and (20), in ε around ε = 0,
and obtain

Fε,2
x (m) = c1 + b1ε

2 + o(ε3) (21)

and

Fε,2
y (m) = c2 + b2ε

2 + o(ε3). (22)

The expansion coefficients ci’s and bi’s are defined as

c1 = mx

(
−1 + I1[Jmβ]

mI0[Jmβ]

)
, (23)

b1 = [
mxβ

(
2Jβmm2

yI1[Jmβ]3

+ (
m2

x − 3m2
y

)
I0[Jmβ]2I2[Jmβ]

− I0[Jmβ]I1[Jmβ]
{(

m2
x − m2

y

)
I1[Jmβ]

+ 2Jmβm2
yI2[Jmβ]

})]/
(2Jm4I0[Jmβ]3), (24)

c2 = my

(
−1 + I1[Jmβ]

mI0[Jmβ]

)
, (25)

and

b2 = −[
myβ

(−2J 2βm2m2
yI1[Jmβ]3

− Jm
(
3m2

x − m2
y

)
I0[Jmβ]2I2[Jmβ]

+ I0[Jmβ]I1[Jmβ]
{
Jβm

(
3m2

x + m2
y

)
I1[Jmβ]

+ 2βJ 2m2m2
yI2[Jmβ]

})]/
(2J 2m5I0[Jmβ]3), (26)

where mx = m cos φ1,my = m sin φ1.
Each of the functions Fε,2

x (m) and Fε,2
y (m) has zero and

nonzero contour lines. The zero contour lines are of interest to
us. The roots are those that are common to the zero contours
of Fε,2

x (m) and Fε,2
y (m). Figure 2 shows the contour plots

(only the zero contour lines) of Fε,2
x (m) and Fε,2

x (m), given
in Eqs. (21) and (22), respectively, for ε/J = 0.1 and for
Jβ = 1.5 [Fig. 2(a)] and Jβ = 2.5 [Fig. 2(b)], as functions of
mx and my . For Jβ = 1.5, the only solution is mx = my = 0,
which signifies the absence of the magnetization in the system
below a certain critical temperature. As seen in Fig. 2(b), we
have nontrivial solutions for Jβ = 2.5. The disorder, however,
breaks the isotropic symmetry and the solutions of the Fε,2

x (m)
and Fε,2

y (m) exist only at φ1 = 0 or π/2. This implies that the
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FIG. 2. (Color online) Zero contour lines of the F ε,2
x (m) and

F ε,2
y (m) given in Eqs. (21) (solid red) and (22) (dotted green) for

ε/J = 0.1 and Jβ =1.5 (a) and 2.5 (b), respectively, as functions of
mx and my . All quantities are dimensionless.

system magnetizes either along the transverse direction of the
disorder field (case I) or along the direction of the disorder field
(case II). Note that for ε = 0, the zero contour lines, i.e., the
solid and dashed lines in Fig. 2(b), would coincide, implying
uniformity in magnetization in all possible directions. An
arbitrarily small disorder, however, sets the contour lines apart.
The contour analysis indicates that there is also a critical
temperature in the system below which the system magnetizes,
albeit in a different way than in the case without disorder.

D. Numerical simulations

As discussed in the previous section, both transverse
magnetization and parallel magnetization survive below some
critical temperature. Before analyzing their behavior, let us
first explain their quenching mechanism that has been carried
out. To find the roots of Eqs. (15) and (16) for a given ε and
β, we use the classical Monte Carlo technique for performing
averaging over η. We test convergence of the solutions of
the averaged equations as the number of Gaussian-distributed
random numbers Ng increases. We find that it typically
requires a few thousand random numbers to reach the desired
convergence. Figure 3 shows an example of convergence of
the phase of �m for the system with ε/J = 0.15 and Jβ = 3.5.
The pluses correspond to the cosine of the phase of the
magnetization. We find that cos φ1 converges to unity for this
case (the transverse magnetization). The inset of Fig. 3 shows
the length of the magnetization m, which has converged up
to the third decimal point for Ng > 5000. As discussed in
Sec. III C, there is a second kind of solution for which cos φ1

would converge to zero, implying that the system magnetizes
along the y axis, i.e., along the direction of the disorder field.
Below we briefly present the results obtained by numerical
simulations for these two different cases.

1. Case I: Transverse magnetization

As argued by using the contour diagram (Fig. 2), either
the Y component or the X component of the magnetization

5000 10000 15000
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0.94

0.96

0.98

1

co
s φ

1

5000 10000 15000
Ng

0.7776

0.7778

0.778

m

FIG. 3. (Color online) Illustration of convergence during
quenched averaging. Pluses represent the cosine of the phase φ1 as
a function of Ng , which is the number of the Gaussian-distributed
random η values with disorder strength ε/J = 0.15 at Jβ = 3.5.
Inset: Crosses show the length of magnetization m as a function
of Ng for the same parameters. φ1 is measured in radians, and Ng

in the number of random points generated. All other quantities are
dimensionless.

vanishes. Let us discuss the case when m
ε,2
⊥ �= 0, m

ε,2
‖ = 0.

In the case when ε �= 0, the system again does not magnetize
at high temperature (as in the case of ε = 0). However, there
exists a critical temperature below which a transverse (with
respect to the direction of the random field) magnetization
appears. More precisely, there exists a β

ε,2
c,⊥ such that for

β > β
ε,2
c,⊥ the magnetization equations have two solutions with

vanishing Y components and nonzero X components, having
magnitude ±m (along with the trivial solution mx = 0,my = 0).
Here m = | �m|. We investigate the dependence of m on the
temperature and on the disorder strength ε [see Fig. 4(a)].
All the curves show two real solutions (mx and −mx in
this case) of the corresponding mean-field equations (15)
and (16). We find that the critical point β

ε,2
c,⊥ shifts towards

a higher value with increasing ε, which implies a lowering
of the critical temperature with increasing disorder strength.
The scaling of magnetization near the critical point and
the low-temperature behavior of the magnetization will be
discussed in the following section.

2. Case II: Parallel magnetization

In this case, the spontaneous magnetization has an approx-
imately zero X component and a nonzero Y component, equal
to ±m. There is no magnetization at very high temperature
and only below a critical temperature, βε,2

c,‖ , the magnetization,
which is oriented parallel to the direction of the disorder field,
appears in the system. Figure 4(b) shows the dependence of
m on the temperature and on the disorder strength ε. The
circles, triangles, squares, and crosses represent the cases with
ε/J = 0.05, 0.1, 0.15, and 0.2, respectively. We find that
the critical temperature, β

ε,2
c,‖ , shifts towards an even higher

value compared to the case with mx �= 0, with increasing ε.
It appears that the effect of the disorder is more pronounced
in the direction of the disorder field than in the transverse
direction. This effect remains true for the nontrivial solutions
in the high-temperature regime, as for a given β, the magnitude
of magnetization in the transverse direction is lower than
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FIG. 4. (Color online) Magnetization as a function of Jβ for
(a) transverse direction (case I) and (b) parallel direction (case II) of
the disorder field. Circles, triangles, squares, and crosses correspond
to the solutions of Eqs. (15) and (16) with ε/J = 0.05, 0.1, 0.15, and
0.2, respectively. The lines in (a) and (b) correspond to the analytical
solutions derived for small m given in Eqs. (29) and (33), respectively,
except the case where ε/J = 0.2 in (b), for which we had to consider
the next higher order contribution in ε in order to achieve good
agreement with the numerics. The expressions are long and we do
not include them. All quantities are dimensionless.

that in the parallel direction (see Fig. 4). We also find that
the magnetization for this case has markedly different low-
temperature behavior (shown in Fig. 5) than in the previous
case. The details will be spelled out in Sec. III E2.

E. Scaling of critical temperature and magnetization
with disorder: Perturbative approach

We now adopt a perturbative approach for the mean-field
Hamiltonian in Eq. (14) to derive analytical expressions
for characterizing the small-m behavior in the system and
also to obtain expressions for the magnetization at very low
temperature. The analytical results are compared with the
numerical data obtained in the last subsection.

1. Critical point and scaling of magnetization near criticality

We start with Eqs. (21) and (22) and perform Taylor
expansions around m = 0. We obtain

Fε,2
x (m) = − 1

16 {[16 + Jβ(−8 + β2ε2)] cos φ1}m
− 1

48 [J 3β3(3 − 2β2ε2

+β2ε2 cos 2φ1) cos φ1]m3 + o(m5) (27)

and

Fε,2
y (m) = − 1

16 {[16 + Jβ(−8 + β2ε2)] sin φ1}m
− 1

48 [J 3β3(3 − 4β2ε2

+β2ε2 cos 2φ1) sin φ1]m3 + o(m5). (28)

0.001 0.01 0.1
(Jβ)−1

0.94

0.96

0.98

1

m

0.001 0.01 0.1
(Jβ)−1

0.94

0.96

0.98

1

m
 

(a)

(b)

FIG. 5. (Color online) Magnetization as a function of tempera-
ture for (a) the transverse direction (case I) and (b) the parallel
direction (case II). (a) Circles, triangles, squares, and stars correspond
to the numerical data for ε/J = 0.05, 0.1, 0.15, and 0.2, respectively.
The solid, dashed, dashed-dotted, and dotted lines correspond to the
analytical solution derived for large β given in Eq. (42) for the same
values of ε/J , respectively. (b) Circles and crosses correspond to the
numerical data for ε/J = 0.05 and 0.2, respectively. The solid and
the dotted lines correspond to the analytical solution derived for large
Jβ given in Eq. (43), for the same values of ε/J , respectively. In case
(b), we have also performed calculations for other small values of
ε/J . We are not displaying them here, as they are very close to the
displayed ones. All quantities are dimensionless.

As we have discussed above, the allowed values of φ1 are π/2
(system magnetizes in direction parallel to disordered field)
and 0 (system magnetizes in direction transverse to disordered
field). For transverse magnetization, m

ε,2
⊥ , Fε,2

y (m) vanishes
and Eq. (27) has two nontrivial solutions:

m
ε,2
⊥ = ±

√
3

√
16 − 8Jβ + Jβ3ε2

−3J 3β3 + J 3β5ε2
(29)

≈ ±m0,2

(
1 ∓ β2

8(Jβ − 2)
ε2

)
, (30)

where m0,2 is given by Eq. (9). Note that we use the ⊥ subscript
in m

ε,2
⊥ to distinguish it from the parallel magnetization, which

is denoted by m
ε,2
‖ . A similar convention will be followed for

the critical temperature. The critical point can be obtained by
setting m

ε,2
⊥ = 0 in Eq. (29) and we get

16 − 8Jβ
ε,2
c,⊥ + J

(
β

ε,2
c,⊥

)3
ε2 = 0, (31)

which gives

β
ε,2
c,⊥ ≈ β0,2

c + ε2

J 3
. (32)

Therefore, we obtain corrections of order ε2 to the critical
temperature, as observed also in the numerical simulations (see
Fig. 4). A comparison of the analytical expressions [Eq. (29)]
with the numerical results for the case I with small m

ε,2
⊥ has
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been made in Fig. 4(a). It is clear that the results are in good
agreement for small m

ε,2
⊥ but not for large m

ε,2
⊥ .

Next we find out the expressions for case II by inserting
φ1 = π/2 in Eqs. (27) and (28). In this case, Eq. (27) vanishes
and Eq. (28) has two nontrivial solutions:

m
ε,2
‖ = ±

√
3

√
16 − 8Jβ + 3Jβ3ε2

−3J 3β3 + 5J 3β5ε2
, (33)

which can again be written as

m
ε,2
‖ ≈ ±m0,2

(
1 ∓ 3β2

8(Jβ − 2)
ε2

)
. (34)

By setting m
ε,2
‖ = 0 in Eq. (33), we obtain the equation for the

critical temperature as

16 − 8Jβ
ε,2
c,‖ + 3J

(
β

ε,2
c,‖

)3
ε2 = 0, (35)

which gives

β
ε,2
c,‖ ≈ β0

c + 3ε2

J 3
. (36)

Therefore, we again obtain ε2 corrections to the critical
temperature. By comparing Eqs. (30) and (34), we note that
the m

ε,2
‖ is smaller than the m

ε,2
⊥ . In Fig. 4(b), we compare the

analytical and numerical results for various disorder strengths.

2. Scaling of magnetization at low temperatures

We now study the behavior of m at low temperatures, i.e., for
large β. We start from the case ε = 0. Note that the numerator
and denominator of Eq. (5) are of the form of In(z). Therefore,
for large β, we use the asymptotics of the Bessel function (see
Appendix B) and obtain the following equation for m:

m3 − m2 + m

2βJ
+ o(1/β2) = 0. (37)

Since m → ±1 as β → ∞, let us write 2 as

m = ±1 ∓ a1

β
+ o(1/β2). (38)

Putting this in Eq. (37), we finally obtain the behavior of the
magnetization for the case when ε = 0, for large β:

m0,2 = ±1 ∓ 1

2Jβ
+ o(1/β2). (39)

Using a similar technique for the disordered case, we can
perform series expansions for large β of Eqs. (21) and (22).
Considering only the leading-order contributions from ε and
β, we obtain

Fε,2
x (m) = cos φ1 − m cos φ1 − cos φ1

2Jmβ

+ ε2 cos φ1[1 − 3 cos(2φ1)]

4J 2m2
+ · · · (40)

and

Fε,2
y (m) = sin φ1 − m sin φ1 − sin φ1

2Jβm
− 3ε2 cos2 φ1 sin φ1

2J 2m2

+ε2 sin φ1[1 + 2 cos(2φ1)]

2J 3m3β
+ · · · . (41)

For the transverse case, where φ1 = 0, Eq. (41) vanishes,
and from Eq. (40) we obtain

m
ε,2
⊥ ≈ ±1 ∓ 1

2Jβ
∓ ε2

2J 2
+ · · · . (42)

As β → ∞, m
ε,2
⊥ = 1 − [ε2/(2J 2)]; i.e., the disorder leads to

corrections of order ε2 to the magnetization at low temperature.
Figure 5 shows the magnetization at low temperature. The
circles, triangles, squares, and crosses in Fig. 5(a) correspond
to the data from numerical simulations and the lines correspond
to the analytical expression given in Eq. (42).

Now we consider the parallel case, where φ1 = π/2, so that
Eq. (40) is automatically satisfied. The solution to Eq. (41) is
given by

m
ε,2
‖ ≈ ±1 ∓ 1

2Jβ
∓ ε2

2J 3β
+ · · · . (43)

For zero temperature, i.e., infinitely large β, the magnetization
of the system reaches unity, which is notably different from
that of the previous case, where ε leaves an imprint even at zero
temperature. This also implies that even though the disorder
had an effect at small m along the direction of the field, the
effect is eventually nullified at sufficiently low temperature.
The circles and the crosses in Fig. 5(b) correspond to the data
from numerical simulations and the lines correspond to the
analytical expression [Eq. (43)].

IV. FERROMAGNETIC XY MODEL IN A RANDOM FIELD
PLUS A CONSTANT FIELD: RANDOM-FIELD-INDUCED

ORDER

We have seen in the preceding section that a random field
that breaks the symmetry of the XY model restricts possible
magnetization values to a discrete set. Although the system still
magnetizes, we no longer have continuous symmetry of the set
of solutions to the mean-field equation, as a result of adding
a symmetry-breaking random field. In this section we explore
the effects of such a random field on a system which already
has a unique direction of the magnetization, determined by a
uniform magnetic field.

First consider the case in which the planar symmetry in the
XY model is broken by applying a constant magnetic field �h
alone. That is, according to the general mean-field strategy, we
are looking for the solutions of the following equation:

�m =
∫ 2π

0 �σ exp(βJ �m · �σ + β �h · �σ )d �σ∫ 2π

0 exp(βJ �m · �σ + β �h · �σ )d �σ
. (44)

Let �h = (h cos x,h sin x). We assume that 0 < h � 1 and
−π/2 � x � π/2. As expected, due to the applied constant
field, the mean-field equation has a unique solution of the
magnetization �m at all temperatures, and the solution is a
(positive) multiple of �h, but of reduced magnitude. We sum up
the situation in Fig. 6. Red crosses correspond to the magnitude
m [Fig. 6(a)] and the cosine of the phase of the magnetization,
cos φ1 [Fig. 6(b)].
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Jβ
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FIG. 6. (Color online) (a) Magnetization, m, as a function of Jβ.
Red crosses represent the case when the XY model has the applied
constant field �h with h/J = 0.1 and x = π/3. The blue solid and the
green dashed lines show m of the system with the additional random
field of strength ε = 0.1J and ε = 0.2J , respectively. (b) Cosine of
phase of magnetization, cos φ1, as a function of 1/(Jβ) for the same
system. φ1 and x are measured in radians. All other quantities are
dimensionless.

Let us now, in addition, apply a random field, ε �η, in the Y
direction. The new mean-field equation is

�m = Avη

[∫ 2π

0 �σ exp(βJ �m · �σ + β �h · �σ + βεησy)d �σ∫ 2π

0 exp(βJ �m · �σ + β �h · �σ + βεησy)d �σ

]
.

(45)

Here we have to solve the two simultaneous equations given
by Eq. (45) to obtain the magnitude and the phase of the
magnetization vector �m. Just as in the case of a constant field
�h and ε = 0, the solution is unique.

As in the previous sections, we will now compare the
magnetization of the system without disorder (i.e., ε = 0), and
for which the mean-field equation is given by Eq. (44), with
the system for which ε �= 0, and for which the mean-field
equation is given by Eq. (45), keeping h strictly positive
in both cases. Let us denote the two Hamiltonians by Hh

and Hh,ε respectively. We do the comparison by numerical
simulations as well as perturbatively at low temperatures
(Sec. IV A below). A perturbation approach, similar to the
one in Sec. III E 2, can be done at high temperatures also. We
refrain from doing it, as the high-temperature behavior in this
case is less interesting, in view of absence of a phase transition.

The length m of the magnetization vector is shrunk in the
system with the disordered field, compared to the ordered
case. This is seen from numerical simulations [see Figs. 6(a)],
as well as by perturbation techniques at low temperatures.
In addition, numerical simulations [shown in Fig. 6(b)] show
that the cosine of the phase of the magnetization, i.e., cos(φ1),
increases at low temperature in the presence of the random
field. Therefore, the magnetization vector moves towards the
X direction (i.e., the direction transverse to the applied random

FIG. 7. (Color online) Schematic diagram of the magnetization
of XY ferromagnets without and with disorder, in the presence of a
constant magnetic field �h. The figure on the left indicates the behavior
of �m in the presence of �h, but when ε = 0, while the one on the right
is when there is a positive ε.

field). However, the shift turns out to be zero when x equals
0, ±π/2. This is also corroborated by perturbative analysis
at low temperatures. The schematic diagram in Fig. 7 shows
the low-temperature behavior of the length and phase of the
magnetization with and without disorder, in the presence of a
constant field.

The Y component, my = m sin φ1, of the magnetization has
the same relative behavior as the length m, in systems described
by Hh and Hh,ε ; i.e., for small ε > 0 it is lower than for ε = 0.

However, the X component, mx = m cos φ1, of the magne-
tization, �m, behaves in a very interesting way. Its value in the
system described by Hh,ε can be both higher and lower than its
value in the system described by Hh depending on the direction
of the constant magnetic field. The numerical data for the X

component of the magnetic field, mx , are shown for h/J = 0.1,
and x = π/3 [Fig. 8(a)] and x = 0.1 [Fig. 8(b)]. The numerical
results for x = π/3, where mx is significantly enhanced in

0 2 4 6 8
Jβ

0

0.2

0.4

0.6

m
X

0 2 4 6 8
Jβ

0
0.2
0.4
0.6
0.8

1

m
X

6 7 8
0.88

0.9

0.92

0.94

(a)

(b)

FIG. 8. (Color online) (a) The X component of magnetization,
mx , as a function of Jβ. Red crosses represent the case when the XY
model has the applied constant field �h with h/J = 0.1, and (a) x =
π/3 and (b) x = 0.1. The blue solid and the green dashed lines are
for the same system but with the additional random field of strength
ε = 0.1J and ε = 0.2J , respectively. x is measured in radians. All
other quantities are dimensionless.
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FIG. 9. (Color online) Plot of the functions P (x,j ) (top) and
Q(x,j ) (bottom) with respect to x and j = J/h. Note that there
are ranges of the (x,j ), for which the function P is positive. This
fact gives rise to the phenomenon of random-field-induced order in
the system described by the Hamiltonian Hh,ε . However, Q(x,j ) is
negative for the entire range of x and j . x is measured in radians. All
other quantities are dimensionless.

presence of the disorder field, signal a random-field-induced
order: “order from disorder.” However, such effect is absent in
the system when x is small [see Figs. 8(b) and 9 (top)]. We
also find that for a given x, the shift in mx due to disorder
decreases as the ratio J/h increases.

Magnetization at low temperature: Perturbative approach

To obtain the behavior of magnetization at low temperature,
we will use the implicit function theorem, which we now state.

Let an equation f (x1,x2) = 0 of two variables x1 and x2 be
such that f (x1,x2) = 0 at (x1,x2) = (x0

1 ,x0
2 ). x2 is in general

an unknown function of x1. But we may still understand the
character of dx2

dx1
|x1=x0

1
, by using the fact that [under certain

regularity conditions on f near (x0
1 ,x0

2 )]

∂f

∂x1

∣∣∣∣
(x0

1 ,x0
2 )

+ ∂f

∂x2

∣∣∣∣
(x0

1 ,x0
2 )

dx2

dx1

∣∣∣∣
(x0

1 ,x0
2 )

= 0. (46)

The usual statement of the implicit function theorem is that
when ∂f

∂x2
is nonzero at (x0

1 ,x
0
2 ), we can solve the equation

f (x1,x2) = 0 for x2 uniquely near this point and the derivative
of the resulting function (x2 as a function of x1) at x0 can then
be calculated from the above equation. However, in the case
when the first derivatives vanish at a certain point, we can use a
simple extension of it to calculate the second derivatives. Such
a situation appears in the calculations below of the second
derivatives of the magnetization with respect to ε.

The mean-field equations that we work with here can be
written in the form

�m = 1

βJ
∇ �m�, (47)

where

� ≡ log
∫

exp(−βHh) or log
∫

exp(−βHh,ε), (48)

where log denotes the natural logarithm. It follows from
symmetry of the distribution of η that �m is an even function of
ε and, consequently dmx

dε
and dmy

dε
vanish at ε = 0.

It follows that

d2mx

dε2

[
1 − 1

βJ

∂2�

∂m2
x

]
= 1

βJ

[
∂3�

∂2ε∂mx

+ ∂2�

∂my∂mx

d2my

dε2

]

and

d2my

dε2

[
1 − 1

βJ

∂2�

∂m2
y

]
= 1

βJ

[
∂3�

∂2ε∂my

+ ∂2�

∂my∂mx

d2mx

dε2

]
,

(49)

where all the total and partial derivatives are taken at ε = 0.
The above system of equations can be solved for the second

(total) derivatives d2mx

dε2 and d2my

dε2 , at ε = 0, once we can find the
partial derivatives at ε = 0. The partial derivatives in Eq. (49)
are calculated by using the following strategy. We have

1

βJ

∂�

∂mx

= Avη〈cos θ〉, (50)

where for any observable A, 〈A〉 is the Gibbs average,

〈A〉 =
∫

A exp(−βH )∫
exp(−βH )

, (51)

with H being the relevant Hamiltonian (Hh or Hh,ε). Of course,
in the case when the system’s Hamiltonian is Hh, the quenched
averaging with respect to η is not required. Using this notation
we have, differentiating the formula for � twice,

1

βJ

∂

∂ε

∂�

∂mx

= Avη[βη(〈cos θ sin θ〉 − 〈cos θ〉〈sin θ〉)] (52)
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and

1

βJ

∂2

∂ε2

∂�

∂mx

= Avη[β2η2(〈cos θ sin2 θ〉
− 2〈cos θ sin θ〉〈sin θ〉
+ 2〈cos θ〉〈sin θ〉2 − 〈cos θ〉〈sin2 θ〉)]. (53)

We expand these partial derivatives with respect to 1
β

, at ε = 0,
using the expansion of the modified Bessel function. After
some calculations, we obtain

d2mx

dε2

∣∣∣∣
ε=0

= 1

h2
P

(
x,

J

h

)
+ o

(
1

β

)
(54)

and

d2my

dε2

∣∣∣∣
ε=0

= 1

h2
Q

(
x,

J

h

)
+ o

(
1

β

)
, (55)

where the functions P and Q are given by (for j = J/h)

P (x,j ) = AE + BC

DE − C2
(56)

and

Q(x,j ) = AC + BD

DE − C2
, (57)

where

A(x,j ) = 1

(j + 1)3

[
− 1

32
[(3j+1) cos x+(45j + 63) cos 3x]

− 5

8
(j + 3) sin 2x sin x + 1

4
(j + 2) cos x cos 2x

− 1

8
(3j − 7) cos x sin2 x

]
, (58)

B(x,j ) = 1

(j + 1)3

[
− 1

32
[3(3j + 1) sin x+(45j + 63) sin 3x]

− 3

2
(j + 2) cos 2x sin x + 3

8
(j + 3) sin3 x

]
, (59)

C(x,j ) = −j cos x sin x

j + 1
, (60)

D(x,j ) = j cos2 x + 1

j + 1
, (61)

E(x,j ) = j sin2 x + 1

j + 1
. (62)

From Fig. 9 (bottom), it is clear that the Y component
of the magnetization always decreases in the presence of
disorder. However, Fig. 9 (top) shows that there are ranges in
the parameter space (x,j ), for which the quenched averaged X

component, mx , of the magnetization increases in the presence
of disorder, compared to the case when there is no disorder.
As noted before, this is in agreement with our numerical
simulations.

We have also considered the effect of disorder on the
length m and phase φ1 of the magnetization. For the phase,
we consider the expansion of tan(φ1) = my

mx
, which is given

by

tan(φ1) = my

mx

∣∣∣∣
ε=0

+ ε2 d2

dε2

(
my

mx

)∣∣∣∣
ε=0

+ o(ε4), (63)

with

d2

dε2

(
my

mx

)∣∣∣∣
ε=0

= mx
d2my

dε2 − my
d2mx

dε2

m2
x

∣∣∣∣
ε=0

= 1

m2
x

∣∣
ε=0

1

h2
S(x,j ) + o

(
1

β

)
, (64)

where

S(x,j ) = Q(x,j ) cos x − P (x,j ) sin x, (65)

with P and Q given by Eqs. (56) and (57).
As shown in Fig. 10 (top), S(x,j ) is negative for all x and

j . Consequently, the phase φ1 always bends towards the X

direction in the presence of disorder [since tan(φ1) decreases,
cos(φ1) increases], as we have already seen in simulations
[Fig. 6(b)]. Note that 0 � φ1 � π/2. The square of the length
of the magnetization is given by (up to order ε2)

m2
x + m2

y = (
m2

x + m2
y

)∣∣
ε=0 + 2ε2

[
R + o

(
1

β

)]
, (66)

where

R = (P cos x + Q sin x)|ε=0. (67)

As seen in Fig. 10 (bottom), R is always negative, showing
that the length of the magnetization decreases in the presence
of disorder. Note that the behavior of the length and phase
obtained perturbatively matches with what is shown schemat-
ically in Fig. 7.

V. CLASSICAL HEISENBERG MODEL
IN A RANDOM FIELD

Till now we have explicitly considered only the situation
when the spins were two-dimensional. It is natural to ask anal-
ogous questions for three-dimensional spins with continuous
symmetry. In this section we argue that for the canonical
system of this kind—the classical Heisenberg model—the
behavior is similar to that of the XY model.

We study the behavior of magnetization in the pres-
ence of disorder in the lattice Heisenberg model where
the spins are three-dimensional with continuous symmetry.
We assume that at all sites, random fields are directed
in the Z direction. The mean-field Hamiltonian of the
system is given by Eq. (13). Here, we parametrize �σ
as (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) and we choose �m as
�m = (m sin φ2 cos φ1,m sin φ2 sin φ1,m cos φ1). Therefore, the
mean-field equation reads

�m = Avη

[∫ �σ exp(βJ �m · �σ + βεησz) sin θ2dθ2dθ1∫
exp(βJ �m · �σ + βεησz) sin θ2dθ2dθ1

]
. (68)

A. The pure system: ε = 0

Consider first the case when ε = 0. After some algebra,
it can be shown that the three components of the mean-field
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FIG. 10. (Color online) Plot of the functions S(x,j ) (top) and
R(x,j ) (bottom) with respect to x and j . Both of them are again
negative for the entire range of x and j . These are in agreement with
the numerical results in Figs. 6(a) and 6(b). x is measured in radians.
All other quantities are dimensionless.

equation (68) reduce to the single equation

−m − 1

Jβm
+ coth(Jβm) = 0. (69)

Numerical simulations provide the following picture. The
pluses in Fig. 11(a) show two real solutions of the Eq. (69).
A nontrivial solution appears only when β is greater than
a certain critical temperature β0,3

c ≈ 3 and approaches unity
at very low temperature. The system behaves uniformly in
all possible directions of the 3D space; i.e., the solutions of
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J β 
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FIG. 11. (Color online) Magnetization as a function of Jβ for the
Heisenberg model. (a) Pluses are the roots for the pure system. The
filled-in triangles and the empty triangles are the roots for the system
with disorder with ε/J = 0.1 for case I and case II, respectively. Inset:
Cosine of the angle associated with the magnetization vector �m as a
function of Jβ for the two different cases. Similar symbols to those
in the main diagram are used in the inset to represent the two different
cases. The data for which cos φ2 ≈ 1 suggest that the magnetization
belongs to case I. Otherwise, it belongs to case II, where cos φ2 ≈ 0.
(b) The circles, triangles, and squares are the numerical data for ε/J =
0.05, 0.1, and 0.15, respectively, for case I, i.e., for the transverse
magnetization. The solid, dashed, and dashed-dotted lines correspond
to the analytical expression given in Eq. (76) for the same ε/J ,
respectively. (c) The circles, triangles, and squares are the numerical
data for ε/J = 0.05, 0.1, and 0.15, respectively, for case II, i.e., for
the parallel magnetization. The solid, dashed, and dashed-dotted lines
correspond to the analytical expression given in Eq. (81) for the same
ε/J , respectively. All quantities are dimensionless, except φ2, which
is measured in radians.

Eq. (68) form a sphere of radius m0 for a given magnetization
�m0.

To find β0,3
c analytically, we perform the Taylor series

expansion of Eq. (69) in m around m = 0. We obtain(
−1 + Jβ

3

)
m − 1

45
(J 3β3)m3 + o(m4) = 0. (70)

The nontrivial solutions of Eq. (70) are given by

m0,3 = ±
√

15

J 3/2
β−3/2(Jβ − 3)1/2. (71)

m0,3 vanishes if Jβ = 3 and is nonzero iff Jβ � 3, which
implies that the critical temperature is given by

β0,3
c = 3

J
. (72)
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Note that in the case of the XY model, we also found a similar
behavior of the magnetization near its critical temperature.

B. The system with disorder: ε �= 0

Breaking down �m in Eq. (68) into its components along the
X, Y , and Z axes, we have three different equations. It turns out
that the equations along the X and Y axes, both of which are in
a direction transverse to the applied field, reduces to identical
equations and we are effectively left with the following two
equations to solve:

m sin φ2

= Avη

[∫
sin2 θ2 exp[β(Jm cos φ2 + εη)]I1[ζ ]dθ2∫
sin θ2 exp[β(Jm cos φ2 + εη)]I0[ζ ]dθ2

]
(73)

and

m cos φ2

= Avη

[∫
sin θ2 cos θ2 exp[β(Jm cos φ2 + εη)]I0[ζ ]dθ2∫

sin θ2 exp[β(Jm cos φ2 + εη)]I0[ζ ]dθ2

]
,

(74)

where ζ = Jβm sin φ2 sin θ2.
Note that both the Eqs. (73) and (74) are independent

of φ1, implying that the magnetization along the transverse
direction of the applied random field forms a circle. A contour
analysis using Eqs. (73) and (74) is analogous to that for
the XY model, and is done by performing a Taylor series
expansion of the equations in ε. The analysis using the zero
contour lines tells us that there are no instances where nonzero
values of magnetization are obtained for the direction of the
applied random field and a direction perpendicular to it. This
shows that the behavior of the disordered Heisenberg system
is qualitatively similar to that of the XY model with disorder.
The system still possesses finite magnetization below a
certain critical temperature. The disorder, however, breaks the
spherical symmetry and the system possesses magnetization
if φ2 = π/2, i.e., along the transverse direction (case I), or if
φ2 = 0, i.e., along the parallel direction (case II) of the applied
random field. The numerically obtained solutions of Eqs. (73)
and (74) for the transverse magnetization and the parallel
magnetization are shown in Figs. 11(b) and 11(c), respectively.
For transverse (parallel) magnetization, the system exhibits
finite magnetization below a critical temperature, given by
β

ε,3
⊥,c (βε,3

‖,c ). The critical temperature decreases with increas-
ing strength of the randomness. The parallel magnetization
remains smaller than that of transverse magnetization in the
small-m regime [see Fig. 11(a)].

1. Scaling of the transverse magnetization near criticality

We take advantage of our knowledge about the specific
directions of the magnetization that the system can possess.
For the transverse magnetization, we put φ2 = π/2 in Eqs. (73)
and (74) and perform a Taylor expansion of both denominator
and numerator in powers of ε and m (ε and m both are small in
our regime of interest). Finally, performing the integrations and
simplifying the expressions further, Eq. (74) becomes trivial

and Eq. (73) leads to[(
−1 + Jβ

3

)
m − 1

45
J 3β3m3 + o(m4)

]

+
[
− 1

45
Jβ3m + 4

945
J 3β5m3 + o(m4)

]
ε2 + o(ε3) = 0.

(75)

Solving Eq. (75), we have

m
ε,3
⊥ = ±

√
21

√
45 − 15Jβ + Jβ3ε2√

−21J 3β3 + 4J 3β5ε2
, (76)

which can again be written as

m
ε,3
⊥ ≈ ±m0,3

(
1 ∓ β2

10(Jβ − 3)
ε2

)
. (77)

β
ε,3
⊥,c can then be obtained by solving

45 − 15Jβ
ε,3
c,⊥ + J

(
β

ε,3
c,⊥

)3
ε2 = 0. (78)

The solution of Eq. (78) is given by

β
ε,3
c,⊥ = β0,3

c + 9

5J 2
ε2. (79)

2. Scaling of the parallel magnetization near criticality

Putting φ2 = 0 and proceeding in a similar fashion as in the
previous paragraph, Eq. (73) is trivially satisfied and Eq. (74)
is given by[(

−1 + Jβ

3

)
m − 1

45
J 3β3m3 + o(m4)

]

+
[
− 1

15
Jβ3m + 4

149
J 3β5m3 + o(m4)

]
ε2 + o(ε3) = 0.

(80)

Solving Eq. (75) we have

m
ε,3
‖ = ±

√
21

√
15 − 5Jβ + Jβ3ε2√

−21J 3β3 + 20J 3β5ε2
(81)

≈ ±m0,3

(
1 ∓ 3β2

10(Jβ − 3)
ε2

)
. (82)

βε
c,3 can be obtained by solving the following equation:

15 − 5Jβ
ε,3
c,‖ + J

(
β

ε,3
c,‖

)3
ε2 = 0. (83)

The solution of Eq. (83) is given by

β
ε,3
c,‖ = β0,3

c + 27

5J 2
ε2. (84)

VI. GENERALIZATION OF THE SCALINGS NEAR
CRITICALITY FOR n-COMPONENT SO(n)

CLASSICAL SPINS

We consider SO(n) n-component classical spins, each of
which consists of a radial coordinate of unit length and angular
coordinates θ1,θ2, . . . ,θn−1, where θn−1 ranges over [0,2π ) and
all other angles range over [0,π ]. Likewise, the n-component
magnetization vector �m consists of a radial coordinate of length
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m and angular coordinates φ1,φ2, . . . ,φn−1. Let m1, . . . ,mn be
the Cartesian coordinates of �m. mi can be presented in terms
of the radial and angular coordinates as

m1 = m cos φ1,

m2 = m sin φ1 cos φ2,

m3 = m sin φ1 sin φ2 cos φ3,

· · · (85)

· · ·
mn−1 = m sin φ1 · · · sin φn−2 cos φn−1,

mn = m sin φ1 · · · sin φn−2 sin φn−1.

σi , i = 1, . . . ,n, the n components of the classical spin �σ ,
can be represented analogously by simply replacing φj by θj ,
j = 1, . . . ,n − 1, and substituting m by unity. The volume
element d �σ of the n-dimensional space is given by

d �σ = sinn−2 θ1 sinn−3 θ2 · · · sin θn−2

dθ1dθ2 · · · dθn−1. (86)

We assume the disorder of strength ε to be directed along
the σ1. We start with the general mean-field equation, which
can be broken down into a set of n equations, each one of
which corresponds to a pair of components {mi,σi}, where
i = 1, . . . ,n. The equation corresponding to the ith component
is given by

mi = Fi(m), (87)

where

Fi(m) = Avη

[∫
σi exp(βJmα + βεη cos θ1)d �σ∫

exp(βJmα + βεη cos θ1)d �σ
]

. (88)

In Eq. (88), α is the angle between �m and �σ :

α = cos θ1 cos φ1 + sin θ1 sin φ1(cos θ2 cos φ2

+ sin θ2 sin φ2{· · · + sin θn−3 sin φn−3[cos θn−2 cos φn−2

+ sin θn−2 sin φn−2 cos(θn−1 − φn−1)]}). (89)

In order to derive a generalized expression, we envisage that
our findings for SO(2) and SO(3) systems would extend
to higher dimensions [SO(n)], and that the system strictly
possesses either transverse (φ1 = π/2) or parallel (φ1 = 0)
magnetization. We shall see that this is indeed the case.

A. Generalized transverse magnetization near criticality

Let us first consider the case of transverse magnetization.
We have F1(m) = 0 and Fi(m) �= 0, where i = 2, . . . ,n.
Because of symmetry, it will be actually sufficient to work with
any single Fi(m), where i = 2, . . . ,n, to derive the generalized
small m scaling for the transverse magnetization. We choose
to work with the nth component of Eq. (87),(


n−1
i=1 sin φi

)
m = Fn(m), (90)

where

Fn(m) = A(m)

B(m)
. (91)

Here,

A(m) = Avη

[∫ (

n−1

i=1 sin θi

)
exp(βJmα + βηε cos θ1)d �σ

]
(92)

and

B(m) = Avη

[∫
exp(βJmα + βηε cos θ1)d �σ

]
. (93)

As we are interested in the small-m regime, we perform a
Taylor series expansion of Eq. (90) to have(


n−1
i=1 sin φi

)
m = F ′

n(0)m + 1

3!
F ′′′

n (0)m3. (94)

In order to evaluate F ′
n(0), we need to calculate A(0),B(0),

A′(0), and B ′(0):

F ′
n(0) = −A(0)B ′(0) + A′(0)B(0)

B(0)2
. (95)

Taylor expansion of Eqs. (92) and (93) in powers of ε up to
the second order gives

A(m)

=
[∫ (


n−1
i=1 sin θi

)
exp(βJmα)

(
1 + β2ε2

2
cos2 θ1

)
d �σ

]
(96)

and

B(m) =
[∫

exp(βJmα)

(
1 + β2ε2

2
cos2 θ1

)
d �σ

]
. (97)

Using Eqs. (96) and (97), we finally obtain the following
expressions:

A(0) = 0, (98)

B(0) =
(

1 + β2ε2

2n

) ∫
d �σ , (99)

A′(0) =
(

Jβ

n
+ Jβ3ε2

2n(n + 2)

) (

n−1

i=1 sin φi

) ∫
d �σ , (100)

and

B ′(0) = 0. (101)

Plugging Eqs. (98)–(101) into Eq. (95) and simplifying further
we have

F ′
n(0) =

(
Jβ

n
− Jβ3ε2

n2(n + 2)

) (

n−1

i=1 sin φi

)
. (102)

The generalized form of F ′′′
n (0) is given by

F ′′′
n (0) = 3!

(
− J 3β3

n2(n+ 2)
+ 4J 3β5ε2

n3(n+ 2)(n+ 4)

) (

n−1

i=1 sin φi

)
.

(103)

Using Eqs. (102) and (103) in Eq. (90) and solving for m we
obtain two nontrivial solutions:

m
ε,n
⊥ = ±

√
n(n + 4)

√
n2(n + 2) − n(n + 2)Jβ + Jβ3ε2√

−n(n + 4)J 3β3 + 4J 3β5ε2
,

(104)
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which can be written as

m
ε,n
⊥ ≈ m0,n

(
1 ∓ β2

2(n + 2)(Jβ − n)
ε2

)
, (105)

where

m0,n = ±
√

n(n + 2)

J
3
2

β−3/2(Jβ − n)1/2. (106)

Therefore, we find that the decrease of the magnitude of the
magnetization due to the random field is of the order of ε2 in
all dimensions.

The equation for the critical temperature is

n2(n + 2) − n(n + 2)Jβ
ε,n
c,⊥ + J

(
β

ε,n
c,⊥

)3
ε2 = 0, (107)

implying

β
ε,n
c,⊥ ≈ n

J
+ n2

J 3(n + 2)
ε2. (108)

Note that the generalized expressions of the scalings and the
critical temperature for the pure system can be obtain by
simply putting ε = 0 in Eqs. (104) and (108), respectively. It is
also worth mentioning that starting with any other component
in Eq. (87) will not alter the results for the scaling near
criticality and the critical temperature as long as n � 2. Hence,
the transverse solutions will form an (n − 1)-dimensional
hypersphere. We see that the critical temperature decreases
when the dimension increases.

In order to study the effect of disorder as a function of n,
we define the dimensionless quantities δm and δβ , where

δm =
∣∣∣∣mε,n − m0,n

m0,n

∣∣∣∣ (109)

and

δβ = βε,n
c − β0,n

c

β
0,n
c

. (110)

δm and δβ are shown in Fig. 12 for ε/J = 0.05. As the
dimension increases, the critical temperature decreases and
the disorder becomes effectively stronger.

B. Generalized parallel magnetization near criticality

The parallel magnetization can be obtained by setting
Fi(m) = 0, for i = 2, . . . ,n:

(cos φ1)m = F1(m), (111)

where

F1(m) = C(m)

B(m)
. (112)

Here,

C(m) =Avη

[∫
(cos θ1) exp(βJmα + ηε cos θ1)d �σ

]
. (113)

Proceeding as before, we obtain the following expression for
the parallel magnetization:

m
ε,n
‖ = ±

√
n(n + 4)

√
n2(n + 2) − n(n + 2)Jβ + 3Jβ3ε2√

−n(n + 4)J 3β3 + 20J 3β5ε2
,

(114)

2 3 4 5 6
n

0

0.05

0.1

0.15

0.2

δ m

2 3 4 5 6
n

0.002

0.004

0.006

δ β

(a)

(b)

FIG. 12. (Color online) (a) δm and (b) δβ as functions of the
dimension n for the transverse magnetization (green circles) and
parallel magnetization (red squares) for the n-component classical
spin system with ε/J = 0.05 at Jβ = Jβc + 0.1. The lines serve as
guides to the eye. All quantities are dimensionless. Here βc represents
β

ε,n
c,⊥ for the case of the transverse magnetization and β

ε,n
c,‖ for the

parallel magnetization.

which can be written as

m
ε,n
‖ ≈ m0,n

(
1 ∓ 3β2

2(n + 2)(Jβ − n)
ε2

)
. (115)

The red squares in Fig. 12 show (a) δm and (b) δβ as a function
of n for the parallel magnetization. Both δm and δβ for the
parallel magnetization always remain higher than their analogs
for the transverse magnetization in the near-critical regime.

The equation for the critical temperature is given by

n2(n + 2) − n(n + 2)Jβ
ε,n
c,‖ + 3J

(
β

ε,n
c,‖

)3
ε2 = 0, (116)

which can be solved to obtain

β
ε,n
c,‖ ≈ n

J
+ 3n2

J 3(n + 2)
ε2. (117)

VII. CONCLUSIONS

To summarize, this paper considers classical spin systems
within the mean-field framework, and studies the effect on
magnetization caused by the interplay between a continuous
symmetry and a symmetry-breaking quenched disordered
field.

We investigated the classical XY and Heisenberg spin
systems and showed that even though the symmetry-breaking
quenched disordered field destroys the system’s continuous
symmetry, the system still magnetizes, but only in specific
directions, either along the direction of the disordered field
or along its transverse. We find that the critical temperatures
decreases with increasing strength of the disorder and the
magnitude of the magnetization decreases when ε increases.
Moreover, we treated the n-component spin model to obtain
the near critical scalings of the magnetizations. We found that
although the decrease of the magnitude of the magnetization
due to the random field, of order ε, is of the order of ε2 in all
dimensions, the effect of disorder increases with the dimension
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and consequently the magnetization decreases faster with
increasing dimension when disorder is present. In addition,
we studied the classical XY system under the influence of an
additional steady field. The magnitude of magnetization, m,
is reduced in the disordered system compared to that of the
system without disorder. In the low-temperature regime, the
magnetization vector moves towards the transverse direction
of the applied random field in the presence of the external
field. The disordered system exhibits random-field-induced
ordering in the transverse component of the magnetic field in
the presence of a uniform magnetic field.

In the future, it will be interesting to adopt the mean-field
approach to investigate the spin systems in random fields in
the quantum limit.
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APPENDIX A: DERIVATION OF EQUATION (6)

Equation (5) can be broken down into the following two
equations:

m cos φ1 =
∫ 2π

0 cos θ1 exp[βJm cos(θ1 − φ1)]dθ1∫ 2π

0 exp[βJm cos(θ1 − φ1)]dθ1

(A1)

and

m sin φ1 =
∫ 2π

0 sin θ1 exp[βJm cos(θ1 − φ1)]dθ1∫ 2π

0 exp[βJm cos(θ1 − φ1)]dθ1

, (A2)

where θ1 and φ1 are the angles associated with �σ and �m, respec-
tively; i.e., �σ = (cos θ1, sin θ1) and �m = (m cos φ1,m sin φ1).
Equations (A1) and (A2) both reduce to

m = I1[βJm]

Io[βJm]
, (A3)

where we have used the following identities:∫ 2π

0
cos φ exp[r cos(φ − t)]dθ

= cos t

∫ 2π

0
cos φ exp(r cos φ)dφ, (A4)

∫ 2π

0
sin φ exp[r cos(φ − t)]dθ

= sin t

∫ 2π

0
cos φ exp(r cos φ)dφ, (A5)

∫ 2π

0
sin φ exp(r cos φ)dφ = 0, (A6)

and ∫ 2π

0
cos(nφ) exp(r cos φ)dφ = 2πIn[r], (A7)

and where In[x] is the modified Bessel function of order n

with argument x.

APPENDIX B: MODIFIED BESSEL FUNCTION
AND ITS EXPANSION FOR LARGE ARGUMENTS

Throughout our work, we had numerous occasions to use
the expansion of the modified Bessel function In(z) for large
|z| [38]. We write down the expression for convenience:

In(z) = exp(z)√
2πz

[
1 − μ − 1

8z
+ (μ − 1)(μ − 9)

2!(8z)2

− (μ − 1)(μ − 9)(μ − 25)

3!(8z)3
+ o(1/z4)

]
, (B1)

where n is fixed and μ = 4n2. Actually, the function is well
defined and its expansion true [38] for certain complex ranges
of the parameter z. However, we will only use them for real z.

[1] P. W. Anderson, Basic Notions of Condensed Matter Physics
(Westview Press, Boulder, CO, 1984); P. A. Lee and T. V.
Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985); R. Zallen, The
Physics of Amorphous Solids (Wiley, New York, 1998).

[2] For a discussion of the recent development in the area of
disordered quantum gases, see, e.g., V. Ahufinger, L. Sanchez-
Palencia, A. Kantian, A. Sanpera, and M. Lewenstein, Phys. Rev.
A 72, 063616 (2005); M. Lewenstein, A. Sanpera, V. Ahufinger,
B. Damski, A. Sen(De), and U. Sen, Adv. Phys. 56, 243 (2007);
L. Fallani, C. Fort, and M. Inguscio, Adv. At. Mol. Opt. Phys.
56, 119 (2008); A. Aspect and M. Inguscio, Phys. Today 62(8),
30 (2009); L. Sanchez-Palencia and M. Lewenstein, Nat. Phys.
6, 87 (2010); G. Modugno, Rep. Prog. Phys. 73, 102401 (2010);
B. Shapiro, J. Phys. A 45, 143001 (2012); M. Lewenstein, A.
Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices:
Simulating Quantum Many-Body Physics (Oxford University
Press, Oxford, 2012).

[3] M. Mezard, G. Parisi, and M. A. Virasoro, Spin-Glass Theory
and Beyond (World Scientific, Singapore, 1987); S. Sachdev,
Quantum Phase Transitions (Cambridge University Press,
Cambridge, 1999); D. Chowdhury, Spin Glasses and Other
Frustrated Systems (Wiley, New York, 1986).

[4] D. J. Amit, Modeling Brain Function (Cambridge University
Press, Cambridge, 1989).

[5] A. Aharony and D. Stauffer, Introduction to Percolation Theory
(Taylor & Francis, London, 1994); G. Grimmett, Percolation
(Springer, Berlin, 1999).

[6] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, New York, 1994).

[7] P. W. Anderson, Phys. Rev. 109, 1492 (1958); E. Abrahams,
P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
Phys. Rev. Lett. 42, 673 (1979).

[8] Y. Nagaoka and H. Fukuyama, eds., Anderson Localization,
Springer Series in Solid State Sciences, Vol. 39 (Springer,

174408-15

http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/PhysRevA.72.063616
http://dx.doi.org/10.1103/PhysRevA.72.063616
http://dx.doi.org/10.1103/PhysRevA.72.063616
http://dx.doi.org/10.1103/PhysRevA.72.063616
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1016/S1049-250X(08)00012-8
http://dx.doi.org/10.1016/S1049-250X(08)00012-8
http://dx.doi.org/10.1016/S1049-250X(08)00012-8
http://dx.doi.org/10.1016/S1049-250X(08)00012-8
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1088/0034-4885/73/10/102401
http://dx.doi.org/10.1088/0034-4885/73/10/102401
http://dx.doi.org/10.1088/0034-4885/73/10/102401
http://dx.doi.org/10.1088/0034-4885/73/10/102401
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673


BERA, RAKSHIT, LEWENSTEIN, SEN(DE), SEN, AND WEHR PHYSICAL REVIEW B 90, 174408 (2014)

Heidelberg, 1982); T. Ando and H. Fukuyama, eds., Ander-
son Localization, Springer Proceedings of Physics, Vol. 28
(Springer, Heidelberg, 1988).

[9] Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975).
[10] J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984); J. Bricmont and

A. Kupiainen, ibid. 59, 1829 (1987).
[11] M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503 (1989);

,Commun. Math. Phys. 130, 489 (1990).
[12] J. Wehr, A. Niederberger, L. Sanchez-Palencia, and M.

Lewenstein, Phys. Rev. B 74, 224448 (2006).
[13] C. J. Thompson, Classical Equilibrium Statistical Mechanics

(Clarendon Press, Oxford, 1988).
[14] A. Aharony, Phys. Rev. B 18, 3328 (1978); D. E. Feldman,

J. Phys. A 31, L177 (1998); B. J. Minchau and R. A. Pelcovits,
Phys. Rev. B 32, 3081 (1985).

[15] D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 98,
156801 (2007).

[16] I. A. Fomin, J. Low Temp. Phys. 138, 97 (2005); ,JETP Lett. 85,
434 (2007); see also G. E. Volovik, ibid. 81, 647 (2005).

[17] G. E. Volovik, J. Low Temp. Phys. 150, 453 (2008).
[18] A. Niederberger, T. Schulte, J. Wehr, M. Lewenstein, L.

Sanchez-Palencia, and K. Sacha, Phys. Rev. Lett. 100, 030403
(2008).

[19] S. Lellouch, T.-L. Dao, T. Koffel, and L. Sanchez-Palencia,
Phys. Rev. A 88, 063646 (2013).

[20] A. Niederberger, J. Wehr, M. Lewenstein, and K. Sacha,
Europhys. Lett. 86, 26004 (2009).

[21] R. L. Greenblatt, M. Aizenman, and J. L. Lebowitz, Phys.
Rev. Lett. 103, 197201 (2009); see also M. Aizenman, R. L.
Greenblatt, and J. L. Lebowitz, J. Math. Phys. 53, 023301 (2012).

[22] A. Niederberger, M. M. Rams, J. Dziarmaga, F. M. Cucchietti,
J. Wehr, and M. Lewenstein, Phys. Rev. A 82, 013630 (2010).

[23] H. Zhang, Q. Guo, Z. Ma, and X. Chen, Phys. Rev. A 86, 053622
(2012); ,87, 043625 (2013); H. Zhang, Y. Zhai, and X. Chen,
J. Phys. B: At. Mol. Opt. Phys. 47, 025301 (2014).

[24] A. Niederberger, B. Malomed, and M. Lewenstein, Phys. Rev.
A 82, 043622 (2010).

[25] G. de Valcarcel and K. Staliunas, Phys. Rev. Lett. 105, 054101
(2010); K. Staliunas, G. de Valcarcel, and E. Roldan, Phys. Rev.
A 80, 025801 (2009).

[26] L. Pezze, M. Robert-de-Saint-Vincent, T. Bourdel, J.-P. Brantut,
B. Allard, T. Plisson, A. Aspect, P. Bouyer, and L. Sanchez-
Palencia, New J. Phys. 13, 095015 (2011).

[27] Y. Kuno, T. Mori, and I. Ichinose, New J. Phys. 16, 083030
(2014).

[28] P. Lugan and L. Sanchez-Palencia, Phys. Rev. A 84, 013612
(2011).

[29] L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V.
Shlyapnikov, and A. Aspect, Phys. Rev. Lett. 98, 210401 (2007);
L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, and A.
Aspect, New J. Phys. 10, 045019 (2008).

[30] A. I. Morosov and A. S. Sigov, JETP Lett. 90, 723
(2010).

[31] A. C. D. van Enter and W. M. Ruszel, J. Math. Phys. 49, 125208
(2008).

[32] N. Crawford, J. Stat. Phys. 142, 11 (2011); A. C. D. van Enter,
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