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We present experimental and theoretical evidence that an interesting quantum many-body effect—quasiparticle
breakdown—occurs in the quasi-one-dimensional spin- 1

2 Ising-like ferromagnet CoNb2O6 in its paramagnetic
phase at high transverse field as a result of explicit breaking of spin inversion symmetry. We propose a quantum
spin Hamiltonian capturing the essential one-dimensional physics of CoNb2O6 and determine the exchange
parameters of this model by fitting the calculated single-particle dispersion to the one observed experimentally
in applied transverse magnetic fields [1]. We present high-resolution inelastic neutron scattering measurements
of the single-particle dispersion which observe “anomalous broadening” effects over a narrow energy range
at intermediate energies. We propose that this effect originates from the decay of the one particle mode into
two-particle states. This decay arises from (i) a finite overlap between the one-particle dispersion and the
two-particle continuum in a narrow energy-momentum range and (ii) a small misalignment of the applied field
away from the direction perpendicular to the Ising axis in the experiments, which allows for nonzero matrix
elements for decay by breaking the Z2 spin inversion symmetry of the Hamiltonian.
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I. INTRODUCTION

Linear spin wave theory and the associated picture of
long-lived, well-defined excitations gives a good description
of the static and dynamic properties of many quantum magnets
[2–11]. Interactions between spin waves can change this pic-
ture substantially and in particular may lead to “quasiparticle
breakdown” [12–34]. The origin of this effect is that at a given
energy and momentum the single-particle mode loses intensity
and broadens significantly as a result of kinematically allowed
decay processes into the multiparticle continua. In contrast to
the finite lifetime of spin excitations induced by scattering with
thermal excitations, quasiparticle breakdown can occur at zero
temperature (see, e.g., Ref. [32] for a recent review). In some
cases quasiparticle breakdown is precluded by a combination
of kinematic constraints and the existence of conservation
laws, but can be induced by adding symmetry breaking terms
to the Hamiltonian [21,22,32].

While the transverse field Ising chain (TFIC) [35–37] has
long been a key paradigm for quantum phase transitions, an ex-
perimental realization has only been discovered recently [38]:
the quasi-one-dimensional Ising ferromagnet CoNb2O6 is
formed from weakly-coupled [1] zigzag chains and exhibits a
phase transition between a spontaneously ordered state and the
quantum paramagnetic phase at an experimentally achievable
critical transverse field of BC ≈ 5.5 T [38]. In the ordered
phase, weak interchain couplings give rise to a longitudinal
mean field and the resulting rich spectrum of bound states,
predicted 25 years ago [39], has been observed with inelastic
neutron scattering (INS) [38] and THz spectroscopy [40].

The presence of additional terms in the spin Hamiltonian
of CoNb2O6 beyond the TFIC is under active investiga-
tion [1,38,41]. The most recent INS study [1] has focused
on the high-field paramagnetic phase with the aim of probing
the excitations in the full Brillouin zone and quantifying the
strength of the interchain couplings. INS in the paramagnetic
phase of the TFIC is expected to exhibit a sharp high-

intensity single-particle mode, and low intensity scattering
from the multiparticle continuum [42,43]. Indeed, the INS
experiments [1] observed that the excitation spectrum is
dominated by a high-intensity single particle mode that is
sharp over most of the Brillouin zone. The parametrization
of its dispersion relation indicates that additional terms are
present in the spin Hamiltonian beyond the leading Ising
exchange between nearest-neighbors along the chain [1].
This was also expected based on a parametrization of the
excitation spectrum in zero field [38], numerical studies of
the excitation spectrum in applied field [41], the value of the
critical field in comparison to the Ising exchange constant [38],
and the unusual “anomalous broadening” region seen in INS
experiments [1].

In this work, we propose a quantitative one-dimensional
quantum spin Hamiltonian that captures most of the essential
one-dimensional physics of CoNb2O6 in an applied transverse
field. We determine the parameters of this model by fitting the
calculated single-particle dispersion to the INS data and obtain
a consistent description of the data at all applied fields tested.
Having fixed the exchange couplings, we then extend our
model in order to understand the physics behind the “anoma-
lous broadening” region seen in INS scattering—a narrow
energy range at intermediate energies across the dispersion
bandwidth where the single-particle mode is seen to broaden
and lose intensity. Here we provide high-resolution INS data
for this region, which shows that the single-particle mode has
almost vanished. We attribute this to quasiparticle breakdown,
caused by an overlap between the single particle mode and the
two-particle continuum and by a small misalignment of the
applied transverse field, which allows decay processes. This
interpretation is supported by large scale exact diagonalization
studies of the quantum spin model with a single free parameter,
the effective misalignment of the magnetic field.

This paper is organized as follows: details of the inelastic
neutron scattering experiments performed on CoNb2O6 are
presented in Sec. II. In Sec. III, we introduce a one-dimensional
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quantum spin Hamiltonian and detail the calculation of the
single-particle dispersion. Section IV explains the fitting
procedure used to fix the exchange parameters of the quantum
spin model and studies the dynamical structure factor of this
model using exact diagonalization. In Sec. V, we present
high-resolution INS data for our study of the “anomalous
broadening” region and we present our explanation supported
by exact diagonalization data. Section VI contains our con-
clusions and there are two appendices dealing with technical
details underlying our calculations.

II. EXPERIMENTAL DETAILS

The inelastic neutron scattering measurements of the
magnetic excitations were performed on a 7-g single crystal
of CoNb2O6 used before (for more details see Ref. [1]) and
aligned such that vertical magnetic fields up to 9 T were
applied along the b axis (transverse to the Ising axes of all
spins). The sample was cooled to temperatures below 0.06 K
using a dilution refrigerator insert. The magnetic excitations
were probed using the direct time-of-flight spectrometer LET
at the ISIS Facility in the UK, using neutrons with incident
energies of Ei = 4 and 10 meV with a measured energy
resolution [full width at half-maximum (FWHM)] on the
elastic line of 0.051(1) and 0.21(1) meV, respectively. LET
was operated to record the time-of-flight data for incident
neutron pulses of both of the above energies simultaneously
with typical counting times of 2 hours for a fixed sample
orientation. The higher energy setting allowed probing the full
bandwidth of the magnetic dispersion along the chain direction
l and and the lower energy setting allowed higher resolution
measurements of the low and intermediate energy ranges to
observe clearly the “anomalous broadening” effects on the
single-particle dispersion. Since we are mostly concerned here
with one-dimensional physics, the wave vectors are projected
along the chain direction l.

III. ONE-DIMENSIONAL QUANTUM MODEL OF CoNb2O6

There now exists extensive experimental evidence that
CoNb2O6 is a quasi-one-dimensional quantum magnet, with
only small interchain couplings [1,38]. With an applied
magnetic field along the b axis, CoNb2O6 is well described
by weakly coupled transverse field Ising chains (TFICs) [38].
A microscopic model which attempts to capture the full
one-dimensional (1D) physics of CoNb2O6 must, however,
contain additional interaction terms [1,38,41]. A natural first
step is to move away from the Ising limit and consider instead
a strongly anisotropic nearest-neighbor XXZ interaction. The
zigzag crystal structure of the one-dimensional chains suggests
that next-nearest-neighbor spin interactions should also feature
in the Hamiltonian, although we expect these to be weaker
due to the longer exchange pathway (Co–O–O–Co compared
to Co–O–Co). Collecting these terms together, we arrive at a
“minimal one-dimensional spin model” for CoNb2O6:

H = HTFIC + HXY + HNNN,

HTFIC = J
∑

�

Sz
�S

z
�+1 + hx

∑
�

Sx
� ,

HXY = J
∑

�

λ2
(
Sx

� Sx
�+1 + S

y

� S
y

�+1

)
,

HNNN = J
∑

�

λ1S
z
�S

z
�+2 + λ3

(
Sx

� Sx
�+2 + S

y

� S
y

�+2

)
. (1)

Here, the λi are expected to be small, in keeping with the
general arguments presented above and the spin S = 1/2. The
transverse field is related to the applied magnetic field B by
hx = gxμBB, where gx is the g factor in the x direction. Let us
briefly define some terminology: we will often refer to the Ising
easy axis direction z as the “longitudinal” direction, whilst the
applied field direction x is the “transverse” direction.

A standard approach to calculating the single-particle
dispersion of models such as (1) is linear spin wave theory
(see the data parametrization of Ref. [1]). This is generally
not a reliable approach for one-dimensional quantum spin
models. In the case at hand it permits the parametrization
of the dispersion observed in INS, but requires different
exchange parameters for different values of the transverse
field [1]. The origin of this inconsistency is that higher-order
terms in the 1/S expansion cannot be neglected. Here we
take a different approach to the problem, based on the self-
consistent perturbative treatment of a fermionic theory [44].
This approach also allows us to work at finite temperature.

Following a sequence of transformations (cf. Appendix A
of Ref. [44]), presented in detail in Appendix A, we obtain a
fermion theory exactly equivalent to (1) where certain parts of
the interactions in HXY and HNNN have been treated exactly.
The Hamiltonian now takes the form

H =
∑

k

Eka
†
kak + J

L

∑
ki

V2(k)a†
k1

a
†
k2

a−k3a−k4

+ J

L

∑
ki

[V0(k)a†
k1

a
†
k2

a
†
k3

a
†
k4

+ H.c.]

+ J

L

∑
ki

[V1(k)a†
k1

a
†
k2

a
†
k3

a−k4 + H.c.]

= H0 + Hint, (2)

where H0 denotes the quadratic part of H . The vertex functions
Vi(k) = Vi(k1,k2,k3,k4) are given in Appendix B, L is the
system size (number of sites in the spin chain) and the single-
particle dispersion relation is

Ek =
√√√√[Ak +

∑
q

�1(k,q)

]2

+
[
Bk +

∑
q

�2(k,q)

]2

(3)

with Ak , Bk , and �1,2 defined in Appendix A. In the hx → ∞
limit, the single-particle excitations a

†
k are formed from spin

flips in the completely polarized state | ←x . . . ←x〉; at finite
transverse field (hx > hC), these become dressed by quantum
fluctuations.

The four-fermion interaction terms in the Hamiltonian (2)
will be treated perturbatively in the following calculation,
consistent with the assumption that λi � 1. It should be
emphasized that this perturbative treatment is not equivalent
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to simply treating HXY and HNNN directly in perturbation
theory: parts of these interaction terms have been treated
exactly through the self-consistent Bogoliubov transformation
performed in Appendix A. We now continue by outlining
how we calculate the single-particle dispersion by inverting
Dyson’s equation.

A. Calculation of the single-particle dispersion

To zeroth order in perturbation theory, the single-particle
dispersion is given by Eq. (3). To take into account the interac-
tion terms present within the Hamiltonian (2), we calculate the
first-order self-energy corrections to the Green’s functions and
obtain the modified single-particle dispersion by resumming
an infinite series of diagrams by solving Dyson’s equation. This
perturbative calculation is well controlled provided the thermal
energy kBT is smaller than the single particle gap Ek=0; we
focus on the behavior within the paramagnetic phase and away
from the critical point to fulfill this criterion. We will see that
there is good agreement between the perturbative calculation
and the dispersion extracted from exact diagonalization in this
limit. We do not expect our calculation to predict with any great
accuracy the value of the critical applied field (BC ≈ 5.5 T)
as the perturbative expansion becomes uncontrolled in the
vicinity of the critical point.

We begin by discussing the formalism we use for calculat-
ing the modified single-particle dispersion and following this
we calculate the first-order contributions to the self-energy and
hence the modified single-particle dispersion.

1. Formalism

As the Hamiltonian (2) does not conserve fermion number,
the imaginary time Green’s functions take the form of a 2 × 2
matrix:

g(iωn,k) = −
∫ β

0
dτeiωnτ g(τ,k),

g(τ,k) =
〈
Tτ

[
ak(τ )a†

k(0) ak(τ )a−k(0)
a
†
−k(τ )a†

k(0) a
†
−k(τ )a−k(0)

]
U (β)

〉
.

(4)

Here, τ = it , Tτ denotes time-ordering in imaginary time, ωn

are Matsubara frequencies,

U (β) = Tτ exp

[
−
∫ β

0
dτ1Hint (τ1)

]
, (5)

and the expectation value is

〈O〉 = Tr[O e−βH ]

Tr[e−βH ]
, β = 1/kBT . (6)

The noninteracting Green’s functions are given by

g0(iωn,k) =
[
G0(iωn,k) 0

0 −G0(−iωn, − k)

]
, (7)

G0(iωn,k) = 1

iωn − Ek

. (8)

FIG. 1. The general form of the self-energy diagram at first
order. The first-order correction to the propagators g11(iωn,k) and
g22(iωn,k) has Vi = V2, whilst the anomalous propagators g12(iωn,k)
and g21(iωn,k) have Vi = V1 and Vi = V ∗

1 , respectively.

The full Green’s function obeys the Dyson equation

g−1(iωn,k) = g−1
0 (iωn,k) − �(iωn,k), (9)

where � are the single-particle self-energies. Inverting (9)
under the assumptions (�)21 = (�)∗12 = −(�)12 and (�)11 =
−(�)22, which will be verified at first order in the subsequent
calculation, we obtain

g(iωn,k) =
[
iωn + Ek + (�)11 (�)21

(�)12 iωn − Ek + (�)22

]

× 1

(iωn)2 − [Ek + (�)11]2 − |(�)12|2 . (10)

To first order in perturbation theory, the self-energy matrix is
frequency independent, and the renormalized single-particle
dispersion can be read off from the position of the pole in the
Green’s functions,

εk =
√

[Ek + (�(k))11]2 + |(�(k))12|2 . (11)

At higher orders in perturbation theory, the self-energy matrix
becomes frequency dependent and has additional singularities
associated with multiparticle excitations. We now calculate the
self-energy matrix to first order in perturbation theory.

2. First-order self-energy corrections

At first order, the diagrams that contribute to the self-energy
are all of the form presented in Fig. 1. We begin by considering
the diagonal matrix elements: the vertex in the self energy
diagram is then given by Vi = V2. The diagram corresponds
to

(�(k))11 = −
∑
ipn,p

4J

βL
V2(k,p, − k, − p)G0(ipn,p)eipn0+

,

=
∑

p

4JV2(k,p, − p, − k)
nF (Ep)

L
, (12)

where nF (Ep) = 1/[exp(βEp) + 1] is the Fermi-Dirac dis-
tribution. The remaining momentum sum in Eq. (12) can
only be performed numerically, as both the dispersion relation
Ep and the vertex function V2 depend upon the Bogoliubov
parameter θk , which must be determined numerically from the
self-consistency condition (A3).

We note that from the definition of the self-energy matrix
and Eq. (12) it follows (�(k))11 = −(�(k))22 as the same
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diagram contributes to both elements. The off-diagonal ele-
ments of the self-energy matrix are given by the diagram in
Fig. 1 with Vi = V1 or Vi = V ∗

1 = −V1. From this, it follows
that (�(k))12 = −(�(k))21 and the off-diagonal self-energy is
given by

(�(k))12 = −6
∑

p

JV1(k, − k,p, − p)
nF (Ep)

L
. (13)

From Eqs. (12)–(13), we see that the self-energy is frequency
independent at first order in perturbation theory, hence Eq. (11)
applies for calculating the modified single-particle dispersion.
The elements of the self-energy matrix are proportional to
JλinF (Ep); the strongest corrections to the dispersion occur
close to the minima of the dispersion (e.g., in the vicinity
of the single-particle gap) or when the system is at high
temperatures. The single-particle dispersion with first-order
self-energy corrections is given by

εk = ±
√√√√[Ek + 4J

∑
p

V2(k,p, − p, − k)
nF (Ep)

L

]2

+
∣∣∣∣∣6J

∑
p

V1(k, − k,p, − p)
nF (Ep)

L

∣∣∣∣∣
2

. (14)

At higher orders in perturbation theory, the self-energy matrix
becomes frequency dependent. This introduces additional
poles in the Green’s function, corresponding to multiparticle
excitations, which can be determined numerically.

IV. DYNAMICAL STRUCTURE FACTOR

The dynamical structure factor (DSF) S(ω,Q) is a fre-
quency (ω) and momentum (Q) resolved probe of the proper-
ties of a magnetic system:

Sαβ (ω,Q) = 1

L

∫ ∞

−∞
dt
∑
�,�′

eiQ·(r�−r�′ )eiωt
〈
Sα

� (t)Sβ

�′
〉
, (15)

where Sα
� (t) = exp(iH t)Sα

� exp(−iH t) is the time-evolved
α-component of the spin operator on site r� of the lattice
and 〈O〉 denotes the thermal trace (6). The intensity measured
in inelastic neutron scattering experiments is directly propor-
tional to the DSF [45,46].

The calculation of the DSF for the Hamiltonian (1) is a
very difficult problem. Fortunately, we do not require the
full solution for our purposes. The key simplification arises
from the fact that both Szz and Syy are dominated by features
due to coherent single-particle modes and, in fact, give the
largest contribution to the measured DSF. These features can
be described by a single-mode approximation, which gives a
DSF of the form

Sαα(ω,Q)|SMA = Aα(Q) δ[ω − ε(Q)] , α = y,z. (16)

In the case of the transverse-field Ising chain, the exact one-
particle contributions are known [43]

Ay(Q) =
[

1 −
(

J

hx

)2
]1/4

ε(Q) ,

Az(Q) =
[

1 −
(

J

hx

)2
]1/4

1

ε(Q)
, (17)

ε(Q) =
√

h2
x − hxJ cos(Q) + J 2

4
.

We will use that the inelastic neutron scattering data for
CoNb2O6 in the paramagnetic phase exhibits a sharp response

along the single-particle dispersion in the (ω,Q) plane. This
allows us (within experimental resolution) to extract the
true single-particle dispersion for excitations in CoNb2O6.
We then fit the results of our perturbative calculation (14)
to the extracted dispersion at a number of transverse field
strengths to consistently fix the exchange parameters of our
model (1).

A. Fitting the single-particle dispersion to experiment

In Fig. 2, we present inelastic neutron scattering data for
the excitations along the chains for an applied transverse field
of B = 7,8, and 9 T. The momentum along the chain direction
is given in reciprocal lattice units of the crystallographic unit
cell along the c direction, i.e., Q = l2π/c, where 2π/c =
1.247 Å−1. As anticipated in the previous section, the data
shows a single sharp quasiparticle excitation throughout the
Brillouin zone (except in the vicinity of l ∼ −0.55, which
will be discussed later), with additional weak features due
to multiparticle continua. The INS data at those three fields
was parameterized using a 3D dispersion model (which takes
into account also the weak interchain dispersion normal to
the chains as explained in Ref. [1]), we then extract from this
full parameterization the one-dimensional dispersion along the
chain direction.

We then use a simulated annealing algorithm [47] to fit the
results of our finite-temperature (T ≈ 50 mK) perturbative
calculation (14) to the observed one-dimensional single-
particle dispersion for three different values of the applied
magnetic field. We run the simulated annealing algorithm in
the {λ1,λ2,λ3} parameter space, varying the values of J and
gxμB between runs and choose a set of parameters which
consistently describes the single-particle dispersion across the
range of transverse field strengths. The best fit is obtained for
the following set of parameters:

J = −2.88 meV, gx = 3.21,

λ1 = −0.135, λ2 = 0.205, λ3 = −0.003 .
(18)

Comparisons between the calculated single-particle dis-
persion (solid line), exact diagonalization results for the
Hamiltonian (1) with the above parameters and the extracted
parametrization of the dispersion from inelastic neutron
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FIG. 2. (Color online) Inelastic neutron scattering data probing the dispersion along the chain direction l at (a) B = 7, (b) 8, and (c) 9 T.
From these data, the single-particle dispersion (“Data” in Fig. 3) was extracted. Note the “anomalous broadening region” near l ≈ −0.55 where
the single-particle mode loses weight and significantly broadens. The incident neutron energy was Ei = 10 meV.

scattering data (Fig. 2) (dotted line) are shown in Figs. 3(a)–
3(c). We see that the perturbative calculation overestimates the
single-particle dispersion at l ≈ 1 for B = 7 T, but the exact
diagonalization results are in excellent agreement with the
experimental data for all fields. The perturbative calculation
allows us to estimate the critical transverse field: the parameter
set (18) leads to a one-dimensional critical field strength of
hC = 0.915 meV (B1D

C ∼ 4.92 T), i.e., the field where the
one-dimensional chains would have been critical in the absence
of inter-chain couplings. We stress that our perturbative
calculation is not controlled in the vicinity of the critical
point, but this value broadly agrees with the experimental
estimate of the 1D critical field [38]. The perturbative result
for the critical field is also in excellent agreement with the
field hC = 0.908 meV at which the extrapolated (L = ∞)
single-particle gap vanishes in exact diagonalization studies
of the Hamiltonian (1) with parameters (18).

In the following, we will use the parameter set (18) to
carry out exact diagonalization studies of the DSF. Comparing
these results to the INS data will lend further support to our
claim that the model (1), (18) gives a good description of the
one-dimensional physics of CoNb2O6.

B. Exact diagonalization: eigenvalue spectrum

We start by considering the spectrum of the spin model (1),
obtained by fully diagonalizing the Hamiltonian. This will be
useful for our discussions of the DSF, particularly in describing
the unusual broadening region (see Sec. V). Figures 4(a)–4(c)
present the spectrum of the Hamiltonian for B = 7, 8, and
9 T, where we have specified the symmetry of each state
under spin inversion Sz

i → −Sz
i . The single-particle mode is

shown as a solid line, while the extent of the multiparticle
continua is indicated by the grey shaded region. In all
three cases, we see that the single-particle mode grazes the
two-particle continuum in the region l = 0.5 − 0.7, with the
three-particle continuum also close by at lower fields (within
∼0.25 meV at B = 7 T). This overlapping of the single-
particle mode with the multiparticle continuum is a result
of physics beyond the transverse field Ising chain, for which
this cannot occur in the paramagnetic phase due to kinematic
constraints enforcing Ek + Eq−k > Ek for all k,q.

C. Lanczos diagonalization: the DSF

Having examined the spectrum of the Hamiltonian, we next
turn our attention to the DSF. To study the DSF, we move away
from full diagonalization of the Hamiltonian and use Lanczos
based techniques to iteratively diagonalize the Hamiltonian,
allowing us to work on much larger system sizes (up to
L = 28, where each momentum block of the Hamiltonian has
dimension ≈228/28 = 9.6 × 106). This significantly increases
our momentum and frequency resolution, which will be
useful in particular for examining the anomalous broadening
region. We use that the diagonal components of the structure
factor (15) can be written as

Sαα(ω,Q) = 1

π
lim
η→0

Im
〈
Sα

Q

∣∣ 1

ω + iη + E0 − H

∣∣Sα
Q

〉
,

where Sα
Q is the Fourier transform of the spin operator Sα

l ,
|Sα

Q〉 is the ground state with the Fourier transformed spin
operator applied to it, and E0 is the ground-state energy. In
our numerics, we take η = 0.01J , which broadens the delta-
functions peaks of the DSF by a Lorentzian.

Our procedure for calculating the diagonal components
(α = x,y,z) of the DSF is as follows: (i) we begin by using a
Lanczos procedure to find the ground state; (ii) we construct
the state obtained by acting on the ground state with the Fourier
transformed spin operator; (iii) we perform an additional
Lanczos procedure with the constructed state as the initial
state and then calculate the DSF using the continued fraction
representation [48,49].

Following this procedure we find the DSF of the Hamil-
tonian (1) with exchange parameters (18) for B = 7, 8, and
9 T. We present the data for B = 7 T in Fig. 5, where we
have focused on the α = y,z components of the DSF as these
carry most of the spectral weight. The DSF is dominated
by a single sharp mode across the Brillouin zone, with the
multiparticle continua having non-negligible weight at l ≈ 1
and E ≈ 4 meV. This should be compared to the INS data
presented in Fig. 2, where a similar feature is observed. As
seen in experiment, with increasing applied transverse field B

the multiparticle feature moves to higher energies and becomes
less intense. The single-particle mode also moves up in energy
with applied transverse field, as depicted in Fig. 3.
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(a) B = 7T
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(c) B = 9T
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First-order Perturbative Calculation
Exact Diagonalization L = 24

Inelastic Neutron Scattering Data

FIG. 3. (Color online) Comparison between the single-particle
dispersion calculated by the perturbative calculation at T ≈ 50 mK
(solid line), exact diagonalization of the L = 24 site system at T = 0
(blue crosses) and the single-particle dispersion extracted from the
inelastic neutron scattering data of Fig. 2 (dotted line). We see that the
perturbative calculation overestimates the single-particle dispersion
at l ≈ 1 (especially for B = 7 T), nevertheless, exact diagonalization
results match the experimental data very well.
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FIG. 4. (Color online) We present the spectrum of the Hamilto-
nian (1) with parameters (18) obtained by exact diagonalization of
the L = 16 chain at (a) B = 7, (b) 8, and (c) 9 T. The parity under
spin inversion Sz → −Sz of each state is labeled by crosses (odd) and
squares (even). In particular, we highlight the single-particle mode
(SPM) (solid line) and the multiparticle continuum (shaded region),
showing that the SPM is close to or overlapping with the continuum
for l ≈ 0.5–0.6 in all three cases. There is a two-particle bound mode
(blue squares below the continuum boundary) near the ferromagnetic
zone boundary (l = 1) with a similar energy to the SPM.
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FIG. 5. Constant wave vector cuts (l = 0 → 1 in steps of δl =
1/14, vertically displaced for clarity) of the dynamic structure factor
Sαα(ω,Q = l2π/c) for (a) α = y and (b) α = z at B = 7 T on the
L = 28 chain with Hamiltonian (1) and exchange parameter (18).
We have used 120 Lanczos iterations in the continued fraction and
broadening parameter η = 0.01J .

We see that whilst both the general features and the
quantitative behaviour with transverse field of the DSF are
captured by the minimal one-dimensional spin model (1),
we do not see the anomalous broadening region observed in
experiments [1], see Fig. 2. In the next section, we present
high-resolution INS data for this phenomenon and propose a
likely explanation of its origin.

V. ANOMALOUS BROADENING AND
QUASIPARTICLE BREAKDOWN

A. High-resolution inelastic neutron scattering:
broadening region

A surprising feature of the INS data shown in Fig. 2,
is that close to l ≈ 0.5 the single-particle mode appears to
broaden and lose a significant amount of weight. Figure 6
presents high-resolution INS data [with resolution on the
elastic line of �E = 0.051(1) meV (FWHM)] focussed on this
particular feature. The broadening and reduction in weight is
so extreme, that at B = 7 T a gap appears to have opened

in the single-particle mode; a careful analysis of the data
shows that this feature does not occur at l = −0.5 but at
wave vectors distinctly away from it (most clearly seen in
Fig. 6, the “anomalous broadening” occurs away from the
crystallographic zone boundary points l = ±0.5 indicated by
vertical dotted lines). Hence it cannot be attributed to a zone
boundary gap due to a doubling of the unit cell, such as seen
in dimerization transitions (e.g., a Peierls transition [50]).

The change in the magnetic scattering intensity as a
function of energy and momentum is shown in a series
of constant-momentum cuts in Fig. 7, where we focus on
the region of broadening −0.825 < l < −0.475. The largest
broadening and reduction of weight occurs when B = 7 T
in the energy range E(7 T) ≈ 2.0–2.75 meV. At higher
magnetic fields, these features become less pronounced but
are still clearly visible, with broadening observed for energies
E(8 T) ≈ 2.25–3.0 meV, and E(9 T) ≈ 2.5–3.25 meV.

B. Broadening of the single-particle mode
at intermediate energies

In the remainder of this paper, we focus on explaining
the “anomalous broadening” region in the INS data. The spin
model introduced in Sec. III and the fit parameters of Sec. IV A
serve as a starting point for exact diagonalization studies.
As we have seen in the previous section, the DSF for the
Hamiltonian (1) is dominated by a single dispersive mode that
is sharp across the whole Brillouin zone and so does not capture
the physics of the broadening of the single particle mode see
in experiments. To go beyond this, we take inspiration from
the data presented in Figs. 4(a)–4(c), which show that the
single-particle mode and the multiparticle continuum overlap
in the same region as the anomalous broadening is observed in
the INS data. Importantly, Figs. 4(a)–4(c) also show that the
multiparticle excitations in the vicinity of the single-particle
dispersion are even under spin inversion Sz → −Sz, whilst
the single-particle mode is odd and so mixing of the two
types of excitation is disallowed by the Z2 symmetry of the
Hamiltonian. With this in mind, we add an additional term
to the Hamiltonian (1) which breaks the Z2 spin inversion
symmetry Sz

i → −Sz
i of the model: a natural candidate for such

a term is a small longitudinal fieldhz = gzμBBz, which would
arise in the experimental setting due to not having perfect
alignment of the crystal with respect to the transverse field.1

Thus we consider the Hamiltonian modified by

H → H + hz

∑
l

Sz
l . (19)

For the inelastic neutron scattering, data presented in Figs. 2, 6,
and 7, it is estimated that the crystal was aligned such that the
magnetic field was perpendicular to the Ising axis to within an
accuracy of ∼1◦.

1One may think that off-diagonal elements of the g tensor might
have the same effect. However, as a result of the local symmetry
point group at the Co2+ site (twofold rotation axis around b), the b

axis is a principle axis of the g tensor so an external magnetic field
applied strictly along the b axis does not induce a longitudinal field
component.
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FIG. 6. (Color online) High-resolution inelastic neutron scattering data for the single-particle dispersion with momentum oriented along
the chain. Note that the “anomalous broadening” region where the sharp mode loses weight and disappears is located distinctly away from the
crystallographic zone boundary positions l = ±0.5 emphasized by vertical dotted lines. The data was obtained for neutrons with an incident
energy of Ei = 4 meV and a corresponding resolution on the elastic line of �E = 0.051(1) meV. Data is shown for three applied transverse
field strengths: (a) B = 7, (b) 8, and (c) 9 T.

It is worth noting that transitions between the 1 and 3
particle states can occur without the breaking of Sz spin
inversion symmetry. However, as can be seen in Figs 4(a)–4(c),
the three particle states are kinematically well separated from
the single-particle mode (no overlap), and decay 1 → 3 can
therefore not account for the anomalous broadening.

We also wish to highlight the fact that the overlap of the one-
particle mode with the multiparticle continua does not occur
within the paramagnetic phase of the transverse field Ising
chain (λ1 = λ2 = λ3 = 0): the overlap occurs in the present
case due to the additional exchange interactions present in the
Hamiltonian (1) which modify the dispersion shape such that
an overlap of one and two-particle states exists for a finite field
range above the critical field.

Let us now briefly summarize the requirements for the
broadening of the single-particle mode: (1) the single-
particle mode and the multiparticle continuum must overlap
[see Figs. 4(a)–4(c)]. (2) Matrix elements must exist between
the single-particle mode and the overlapping states within the
multiparticle continua. If these states are two-particle states,
the Sz spin inversion symmetry must be broken to allow

FIG. 7. Scans through the neutron scattering data in Fig. 2
highlighting the anomalous broadening of the single-particle mode
in the region near l ≈ −0.55. Traces (offset vertically and excluding
error bars for clarity) correspond to the intensity as a function of
energy in scans at fixed momentum l in the range l = −0.475 (lowest
trace) to l = −0.825 (highest trace) in steps of 0.05 (each with an
integration range of δl = ±0.025 around the nominal l value) at (left)
B = 7 T, (center) B = 8 T, and (right) B = 9 T. Note the broadening
of the peaks for energies E(7T) ≈ 2.0–2.75 meV, E(8T) ≈ 2.25–
3.0 meV, and E(9T) ≈ 2.5–3.25 meV.

transitions. (3) The decay rate of the single-particle mode must
be sufficiently large for the broadening to become apparent.

C. Lanczos diagonalization (up to L = 28)

We now turn to exact diagonalization results for the
DSF in the presence of a small longitudinal field. As the
broadening effect that we are looking for is seen in a certain
area of the Brillouin zone, we use Lanczos diagonalization
(and associated continued fraction techniques [48,49]) to
extend the momentum resolution of our calculations (for full
diagonalization, we are limited to L ∼ 18 sites). We focus on
the diagonal components of the DSF Sαα(ω,Q) with α = y,z

as these carry most of the intensity. To allow us to compare, the
regions of anomalous broadening for different strength of the
transverse field, we work with a fixed “crystal misalignment”
of θ ∼ 1.5◦, and we use gz = 5.9 (we estimate from Ref. [51]
that gz ≈ 5.6–6.2).

Figure 8 shows the Lanczos results for the α = y,z

components of the DSF in the L = 28 chain at B = 7 T
with a misalignment of θ ∼ 1.5◦ (hz = 0.062 meV). We see
that when the single-particle mode brushes the continuum
(at ω ≈ 2–2.5 meV, cf. Fig. 4) the mode loses intensity and
significantly broadens. This is consistent with the range of
momenta l ≈ 0.5–0.7 and frequency observed experimentally,
see Figs. 2(a), 6(a), and 7(a). We see that the multiparticle
continuum feature at E ≈ 4 meV, l ≈ 1 persists, which is also
consistent with experiment.

Analogous results for a field of B = 8 T are shown Fig. 9.
Compared to the B = 7 T data the region of anomalous
broadening has shifted slightly in energy and momentum
(l ≈ 0.55–0.75) and the intensity loss is less pronounced,
reflecting the decreased overlap between the single-particle
mode and the two-particle continuum, cf Fig. 4. Note that the
shift in energy and momentum and decreased loss of intensity
is also observed in the data, see Figs. 6(b) and 7(b).

The numerical calculations predict that upon increasing the
field further to B = 9 T the anomalous broadening region
shifts to wave vectors near l ∼ 0.7 and the broadening effect
diminishes when compared to lower fields, compare Figs. 9
and 10. The experimental data in Figs. 6(a)–6(c) indeed shows
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FIG. 8. (Color online) Constant wave-vector cuts (l = 0 → 1 in steps of δl = 1/14, vertically displaced for clarity) of the dynamic structure
factor Sαα(ω,Q = l2π/c) for (a) α = y and (b) α = z for the L = 28 site Hamiltonian (19) with transverse field B = 7 T and misalignment of
θ ∼ 1.5◦ (hz = 0.062 meV). We have used 120 Lanczos iterations in the continued fraction and broadening parameter η = 0.01J . The arrow
highlights the region of “anomalous broadening” of the single-particle mode at ω ≈ 2–2.5 meV. The corresponding results for hz = 0 are
shown in Fig. 5.

a shift with increasing field of the anomalous broadening
region to higher energies along the dispersion bandwidth and
to wave vectors further away from the l = 0.5 zone boundary.
However, the experimental data also show that the anomalous
region at B = 9 T extends over a wider energy range and the
broadening effect is more pronounced in the experimental data
[Fig. 6(c)] compared to the predictions of the theoretical model
(Fig.10). There could be a number of possible reasons for these
differences in detail.

Firstly, the misalignment angle could be dependent on the
applied field. This may be a result of the crystal not being
completely rigid at high applied transverse fields. Whilst we
have not extensively studied how the region of anomalous
broadening moves with field-dependent misalignment, we
have observed that increasing the longitudinal field at fixed
transverse field results in the anomalous broadening becoming
more severe and apparent over an increased range of momenta.
Secondly, there could be terms in the Hamiltonian beyond

those taken into account in our minimal model (1). This can
lead to the movement of the multiparticle continua in phase
space, and as a result a change in the region and severity of the
anomalous broadening. Thirdly, the small system size L = 28
in our exact diagonalization study may simply preclude an
accurate description of the effect due to insufficient resolution
in phase space or finite-size effects.

D. Quasiparticle breakdown

Above we have shown that the addition of a small longitudi-
nal magnetic field component, consistent with small misalign-
ment of the crystal in experiment, leads to the broadening of
the single-particle mode in the region l ≈ 0.5–0.7 and that this
broadening decreases with increased applied transverse field
(for fixed misalignment). High-resolution inelastic neutron
scattering data in Figs. 6 and 7 show that this indeed occurs in
experiment, with the single-particle mode becoming extremely
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FIG. 9. (Color online) Constant wave-vector cuts (l = 0 → 1 in steps of δl = 1/14, vertically displaced for clarity) of the dynamic structure
factor Sαα(ω,Q = l2π/c) for (a) α = y and (b) α = z for the L = 28 site Hamiltonian (19) with transverse field B = 8 T and misalignment of
θ ∼ 1.5◦ (hz = 0.072 meV). We have used 120 Lanczos iterations in the continued fraction and broadening parameter η = 0.01J . The arrow
highlights the region of “anomalous broadening” of the single-particle mode at ω ≈ 2.5–3.5 meV.
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FIG. 10. (Color online) Constant wave-vector cuts (l = 0 → 1 in steps of δl = 1/14, vertically displaced for clarity) of the dynamic
structure factor Sαα(ω,Q = l2π/c) for (a) α = y and (b) α = z for the L = 28 site Hamiltonian (19) with transverse field B = 9 T and
misalignment of θ ∼ 1.5◦ (hz = 0.081 meV). We have used 120 Lanczos iterations in the continued fraction and broadening parameter
η = 0.01J . The arrow highlights the broadening region at ω ≈ 3.5 meV.

broad and carrying little spectral weight around l = 0.5–0.65.
The level of broadening observed in experiment is sufficient
to say that the quasiparticles are no longer well defined over
this region of the Brillouin zone, a phenomenon known as
“quasiparticle breakdown”[32].

A number of mechanisms for quasiparticle breakdown
(and specifically “spontaneous magnon decay” in quantum
magnets) are discussed in Refs. [17,19,20,25,28,29,32], in-
cluding the case of field-induced decay. Most experimental
observations of quasiparticle breakdown have so far been
limited to the case where the single-particle mode enters the
two-particle continuum and terminates, such as in quasi-2D
quantum magnets [16] and quasi-1D spin-1 chains [18].

In this case, we observe something more unusual: two
region of the Brillouin zone (0� |l| � 0.5 and 0.7 � |l| � 1)
have coherent well-defined single-particle excitations, whilst
in the intermediate region, 0.5 � |l| � 0.7, quasiparticle
breakdown occurs. For the smallest fields that we examine
(B = 7 T) this effect is particularly severe in experiments [see
Figs. 6(a) and 7(a)], where one could easily believe that a gap
has opened in the single-particle dispersion. Compare this to a
similar field-tuned effect seen in the quasi-2D quantum magnet
Ba2MnGe2O7, where the excitation is broadened, but without
the severe loss of intensity [24]. The quasiparticle breakdown
in CoNb2O6 is a direct result of explicit symmetry breaking
within the experimental setting, and highlights the crucial role
that symmetry-breaking perturbations can play.

VI. CONCLUSIONS

Motivated by recent inelastic neutron scattering experi-
ments [1], we have investigated the origin of the anomalous
broadening of the single-particle dispersion in the quasi-one-
dimensional ferromagnet CoNb2O6. We have presented high-
resolution inelastic neutron scattering data (see Fig. 6) showing
that the observed anomalous broadening has a nontrivial field
dependence and is particularly severe at the small transverse
field strengths (7 T), where the broadening may easily be

mistaken for a gap in the single-particle dispersion. To
understand this behavior, we have proposed a one-dimensional
spin Hamiltonian whose parameters we fix by fitting the
single-particle dispersion to inelastic neutron scattering data
presented in Fig. 2.

Having fixed the exchange parameters of our effective
model, we add a single free parameter to our model—a
longitudinal magnetic field. Such an addition is entirely
reasonable, as we expect a small longitudinal field to arise from
slight misalignment of the crystal in experiment. Crucially, this
longitudinal field breaks spin inversion symmetry (Sz → −Sz)
which forbids transitions between the one-particle mode and
the two-particle continuum. The breaking of this symmetry
has a profound effect on the dynamical structure factor of
the quantum spin model—in regions of the Brillouin zone
where the two-particle continuum overlaps with the single-
particle mode (see Fig. 4) we see that the single-particle
mode loses weight and broadens (see Figs. 8 and 9 for
exact diagonalization data). This broadening occurs due to
the longitudinal field inducing the spontaneous decay of
the single particle excitation into multiparticle excitations,
an example of “quasiparticle breakdown”[32]. CoNb2O6 is
particularly unusual in this regard as the region of quasiparticle
breakdown separates two regions of coherent quasiparticles in
the Brillouin zone.
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APPENDIX A: TRANSFORMING THE SPIN
HAMILTONIAN (1) INTO THE FERMION

HAMILTONIAN (2)

Starting from the Hamiltonian (1), we start by rotating
the spin quantization axes by π/2 about Sy to be in keeping
with standard conventions. We then perform a Jordan-Wigner

174406-10



QUASIPARTICLE BREAKDOWN IN THE QUASI-ONE- . . . PHYSICAL REVIEW B 90, 174406 (2014)

transformation and subsequently Fourier transform the re-
sulting fermionic theory to obtain the momentum space
Hamiltonian H = H0 + Hint + E0, where E0 is an additive

constant that rescales the absolute energy and is neglected
herein, H0 contains only fermion bilinears and Hint is quartic
in the fermion operators

H0 = 1

2

∑
k

(c†k c−k)

(
Ak iBk

−iBk −Ak

)(
ck

c
†
−k

)
,

Hint = J

2L
(λ1 − λ3)

∑
ki

(f(k1,k2,k3)(k4)c
†
k1

c
†
k2

c
†
k3

c−k4 + H.c.)

− J

2L

∑
ki

[
2λ2h(k1,k2)(k3,k4) + 2λ3h(2k1,2k2)(2k3,2k4) + (λ1 + λ3)g(k1,k2)(k3,k4)

]
c
†
k1

c
†
k2

c−k3c−k4 .

The matrix elements of H0 are given by

Ak = J

2
(1 + λ2) cos(k) + J

2
(λ1 + λ3) cos(2k) + hx − J (λ2 + λ3),

Bk = −J

2
(1 − λ2) sin(k) − J

2
(λ1 − λ3) sin(2k),

whilst the vertex factors appearing in Hint take the form

f(k1,k2,k3)(k4) = i

3
[sin(k3 − k1) + sin(k1 − k2) + sin(k2 − k3)] δ∑

j kj ,0,

g(k1,k2)(k3,k4) = 1

2
[cos(k4 − k1) − cos(k4 − k2) + cos(k3 − k2) − cos(k3 − k1)] δ∑

j kj ,0,

h(k1,k2)(k3,k4) = 1

4
[cos(k1 + k3) − cos(k2 + k3) + cos(k2 + k4) − cos(k1 + k4)] δ∑

j kj ,0,

which are antisymmetric under pairwise exchange of indices appearing within the same brackets (. . .) and impose momentum
conservation.

We now diagonalize the quadratic part of the Hamiltonian by performing a self-consistent Bogoliubov transformation. We
define the Bogoliubov fermions ak by

c
†
k = −i cos θka

†
k − sin θka−k, ck = i cos θkak − sin θka

†
−k, (A1)

where the Bogoliubov parameter θk = −θ−k satisfies the self-consistency condition Ak sin(2θk) − Bk cos(2θk) = 0. The quadratic
part of the Hamiltonian then becomes diagonal:

H0 = 1

2

∑
k

(a†
k a−k)

⎛
⎝
√

A2
k + B2

k 0

0 −
√

A2
k + B2

k

⎞
⎠( ak

a
†
−k

)
. (A2)

Let us now consider the action of the Bogoliubov transformation (A1) on the interaction term of the Hamiltonian Hint. It is clear
that many of the transformed terms in Hint will not be normal ordered. The normal ordering of these terms will generate fermion
bilinear terms that contribute to both the diagonal and off-diagonal elements of H0 in Eq. (A2). In order that the quadratic part of
the Hamiltonian is diagonal, we impose a self-consistency condition on the Bogoliubov parameter: it must be chosen such that
the off-diagonal terms that result from normal-ordering interaction terms vanish. The resulting self-consistency condition for the
Bogoliubov parameter is [

Ak +
∑

q

�1(k,q)

]
sin 2θk −

[
Bk +

∑
q

�2(k,q)

]
cos 2θk = 0, (A3)

where we have defined the functions

�1(k,q) = −4J

L

[
1

2
(λ1 + λ3)g(k,q)(−q,−k) + λ2h(k,q)(−q,−k) + λ3h(2k,2q)(−2q,−2k)

]
sin2 θq + 3J

2L
(λ1 − λ3)if(k,q,−q)(−k) sin 2θq,

�2(k,q) = J

L

[
1

2
(λ1 + λ3)g(k,−k)(q,−q) + λ2h(k,−k)(q,−q) + λ3h(2k,−2k)(2q,−2q)

]
sin 2θq + 3J

L
(λ1 − λ3)if(k,q,−k)(−q) sin2 θq,

which also depend upon the Bogoliubov parameter.
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The self-consistency condition (A3) perturbatively modifies the Bogoliubov parameter. Due to the complicated structure
Eq. (A3), we solve the set of nonlinear simultaneous equations numerically using standard techniques. Following the imposition
of the self-consistency condition, we obtain the Hamiltonian (2) with dispersion relation (3).

APPENDIX B: VERTEX FUNCTIONS

The vertex functions V0,V1,V2 in Eq. (2) are obtained by normal-ordering of the four-fermion terms after Bogoliubov
transformation. By symmetry, they can be expressed in terms of summations over permutations of indices. For example,

V0(k1,k2,k3,k4) = δ∑
j kj ,0

{
1

96
(λ3 − λ1)

∑
P∈S4

sgn(P ) cos
[
kP1 − kP2 + θkP1

+ θkP2
+ θkP3

− θkP4

]

+ 1

96

3∑
j=2

λj

∑
P∈S4

sgn(P ) cos
[
(j − 1)

(
kP1 + kP2

)+ θkP1
− θkP2

+ θkP3
− θkP4

]⎫⎬⎭ ,

where the permutation P acts on the set P : {1,2,3,4} → {P1,P2,P3,P4}.
The vertex that changes the quasiparticle number by two is given by

V1(k1,k2,k3,k4) = δ∑
j kj ,0

[
V

(12)
1 (k1,k2,k3,k4) + V

(23)
1 (k1,k2,k3,k4) + V

(13)
1 (k1,k2,k3,k4)

]
,

where

V
(12)

1 (k1,k2,k3,k4) = i

24
(λ1 − λ2)

∑
Q∈S3

sgn(Q)
[

sin
(
kQ1 − k4 + θkQ1

− θkQ2
+ θkQ3

− θk4

)

+ sin
(
kQ1 − k4 − θkQ1

+ θkQ2
− θkQ3

+ θk4

)− sin
(
kQ1 − kQ2 + θkQ1

− θkQ2
− θkQ3

+ θk4

)
− sin

(
kQ1 − kQ2 − θkQ1

+ θkQ2
− θkQ3

+ θk4

)]
,

V
(23)

1 (k1,k2,k3,k4) = − i

24

3∑
j=2

λj

∑
Q∈S3

sgn(Q)
{

sin
[
(j − 1)

(
kQ1 + kQ2

)− θkQ1
+ θkQ2

− θkQ3
+ θk4

]

+ sin
[
(j − 1)

(
kQ1 + kQ2

)− θkQ1
+ θkQ2

+ θkQ3
− θk4

]+ sin
[
(j − 1)

(
kQ1 + k4

)+θkQ1
− θkQ2

+θkQ3
−θk4

]
+ sin

[
(j − 1)

(
kQ1 + k4

)− θkQ1
− θkQ2

+ θkQ3
+ θk4

]}
,

V
(13)

1 (k1,k2,k3,k4) = i

24
(λ1 + λ3)

∑
Q∈S3

sgn(Q)
[

sin
(
kQ1 − kQ2 − θkQ1

+ θkQ2
+ θkQ3

− θk4

)

− sin
(
kQ1 − kQ2 + θkQ1

− θkQ2
− θkQ3

+ θk4

)+ sin
(
kQ1 − k4 + θkQ1

− θkQ2
+ θkQ3

− θk4

)
− sin

(
kQ1 − k4 − θkQ1

+ θkQ2
− θkQ3

+ θk4

)]
.

Here in V
(12)

1 , V
(23)

1 and V
(13)

1 the permutation Q acts on the set Q : {1,2,3} → {Q1,Q2,Q3}.
The remaining vertex function that preserves quasiparticle number is given by

V2(k1,k2,k3,k4) = δ∑
j kj ,0

[
V

(1)
2 (k1,k2,k3,k4) + V

(23)
2 (k1,k2,k3,k4) + V

(3)
2 (k1,k2,k3,k4)

]
,

with

V
(1)

2 (k1,k2,k3,k4) = λ1

4

∑
P,Q∈S2

sgn(P )sgn(Q)
[

cos
(
kP1 − kP2 + θk1 − θk2 + θkQ3

− θkQ4

)
+ cos

(
kQ3 − kQ4 + θk3 − θk4 + θkP1

− θkP2

)+ cos
(
kP1 − kQ3 + θkP1

+ θkP2
− θkQ3

− θkQ4

)
+ cos

(
kP1 − kQ3 + θkP1

− θkP2
− θkQ3

+ θkQ4

)]
,

V (23)(k1,k2,k3,k4) = 1

8

3∑
j=2

λj

∑
P,Q∈S2

sgn(P )sgn(Q)
{

cos
[
(j − 1)

(
kP1 + kP2

)+ θk1 − θk2 − θkQ3
+ θkQ4

]
+ cos

[
(j−1)

(
kQ3+kQ4

)+θk3−θk4−θkP1
+θkP2

]− cos
[
(j − 1)

(
kP1 + kQ3

)+ θkP1
+ θkP2

− θkQ3
− θkQ4

]
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− cos
[
(j − 1)

(
kP1 + kQ3

)+ θkP1
− θkP2

− θkQ3
+θkQ4

]− cos
[
(j − 1)

(
kP1+kQ3

)−θkP1
− θkP2

+ θkQ3
+ θkQ4

]
− cos

[
(j − 1)

(
kP1 + kQ3

)− θkP1
+ θkP2

+ θkQ3
− θkQ4

]}
,

V
(3)

2 (k1,k2,k3,k4) = λ3

4

∑
P,Q∈S2

sgn(P )sgn(Q)
[

cos
(
kP1 − kQ3 − θkP1

+ θkP2
+ θkQ3

− θkQ4

)
+ cos

(
kP1 − kQ3 − θkP1

− θkP2
+ θkQ3

+ θkQ4

)]
,

where P is the permutation acting on the set P : {1,2} → {P1,P2} and the permutation Q acts on the set Q : {3,4} → {Q3,Q4}.
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