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Spin-torque oscillators with thermal noise: A constant energy orbit approach
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We study the magnetization dynamics of spin-torque oscillators in the presence of thermal noise and as a
function of the spin-polarization angle in a macrospin model. The macrospin has biaxial magnetic anisotropy,
typical of thin film magnetic elements, with an easy axis in the film plane and a hard axis out of the plane.
Using a method that averages the energy over precessional orbits, we derive analytic expressions for the current
that generates and sustains out-of-plane precessional states. We find that there is a critical angle of the spin
polarization necessary for the occurrence of such states and predict a hysteretic response to applied current. This
model can be tested in experiments on orthogonal spin-transfer devices, which consist of both an in-plane and
out-of-plane magnetized spin polarizers, effectively leading to an angle between the easy and spin-polarization
axes.
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I. INTRODUCTION

Magnetic excitations in spin valves and magnetic tunnel
junctions present a set of phenomena that are of considerable
interest, both for the physics they present and for a variety
of potential applications. More specifically, the effects of
thermal noise, combined with spin transfer torques induced by
a current, present novel phenomena. On the technological side,
large-angle steady-state magnetic excitations in spin valves
and magnetic tunnel junctions induced by dc currents has re-
cently attracted much attention [1,2]. In conjunction with their
magnetoresistance (MR) response, persistent magnetization
oscillations could lead to wide-band tunable rf oscillators [3]
operating in the GHz to THz frequency range. To these
ends, it is of importance to understand the physics of current
induced magnetic excitations in the presence of noise and to
understanding the factors that determine the tunability and
quality factors of these systems.

Within a macrospin picture, current-induced steady-state
motion appears when the magnetization settles into a stable
oscillatory trajectory that balances the spin torque and damp-
ing [4]. The oscillatory behavior is magnetization precession at
a frequency associated with the element’s magnetic anisotropy,
which can arise, for example, because of the element’s
shape (i.e., magnetic shape anisotropy) or magnetocrystalline
anisotropies. Thermal noise can, however, alter the frequency
and amplitude of the motion as well as change the conditions
under which steady-state precession occurs. As a result, it is
important to know both how an applied current will influence
the amplitude and frequency of a stable magnetic oscillation
and how thermal noise will perturb this configuration by
inducing amplitude and phase noise.

If amplitude and phase diffusion due to spin torque and
thermal noise effects occurs on a time scale much larger
than that of magnetization precession, it becomes possible to
analyze the steady-state dynamics perturbatively [5]. In this
case, the magnetization dynamics will consist of a fast
gyromagnetic precession whose amplitude slowly changes
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over time due to spin torque and thermal effects. This has
successfully been used to study the dynamical and thermal
stability of nanomagnets subject to spin-polarized currents [6].
This separation of dynamical time scales falls under the
framework of multiscale analysis, which can be applied in
various ways.

Three different approaches have been proposed in the
literature in the context of spin-transfer. Apalkov and
Visscher [7] employed an effective Fokker-Planck (FP) equa-
tion, which described the diffusion of a macrospin’s energy
under the influence of both spin-transfer torque and thermal
noise. This has been used to interpret results on studies of
thermally activated magnetic switching [8,9]. Kim, Slavin,
and Tiberkevich [5,10] studied the Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation by noting its analogy to the
van der Pol oscillator equation [11]. This resulted in an
elegant treatment of the leading nonlinear effects governing the
oscillatory equilibrium steady-state dynamics of the spin-wave
eigenmodes. The approach [12] has had success in explaining
the experimentally observed dependence of the oscillator’s
output power on bias current for spin valves and magnetic
tunnel junctions [13–17], as well as providing a framework
for the extension of multiscaling methods to spatially extended
magnetic systems in which multiple coupled spin-wave modes
may be excited [18].

Finally, macrospin dynamics subject to thermal noise have
been modeled using a stochastic Langevin equation for the
time evolution of the macrospin energy by Newhall and
Vanden-Eijnden [19] and in previous work by the authors [20].
This reduces the complexity of the LLGS equations to a one-
dimensional (1D) stochastic differential equation. Stochastic
energy space dynamics have been used to describe the full
nonlinear dependence of mean switching time on applied
current [21] for biaxial macrospin models [log τ ∝ (1 − I )β(I )]
as an analytic continuation of the uniaxial macrospin model.
Recently, Dunn and Kamenev have extended this approach to
propose ac current-driven resonant switching [22].

Recent research on spin-torque oscillators has focused on
the excitation of stable in-plane (IP) and out-of-plane (OOP)
precession about the easy and hard magnetic anisotropy axes
of thin film nanomagnets with biaxial magnetic anisotropy. In
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this article we present a stochastic theory of these precessional
dynamics valid over a wide range of parameters. We focus
on the OPP dynamics and show the conditions under which
precessional motion about the hard axis occurs. The oscillator
behavior we find is reminiscent of that observed in experiments
on a spin valve where spin-torque effects are due to the
influence of both a perpendicularly magnetized polarizer and
in-plane magnetized reference layer [2]. The two contributions
lead to a net spin torque which can be formally thought to
arise from a tilted spin polarizer [23–26]. The precessional
dynamics are found to be stable at room temperature and, as a
result, have great potential for the development of spin-torque
nano-oscillators.

II. GENERAL FORMALISM

We study a monodomain of magnetization M of constant
modulus (MS = |M|) with a biaxial magnetic anisotropy, with
easy direction n̂K and hard direction n̂D . Its energy landscape
depends on the projection of the magnetization onto these two
axes. We write the easy and hard axis anisotropy energies as
K = (1/2)μ0MSHKV and KM = μ0M

2
SV , where HK is the

anisotropy field and V is the volume of the magnetic element.
To lowest order, in the absence of external magnetic fields and
magnetic dipole fields arising from other magnetic layers, the
energy can be written as

U (m) = K[D(n̂D · m)2 − (n̂K · m)2], (1)

where m = M/|M| is the normalized magnetization vector
and D ≡ KM/K = MS/HK is a dimensionless ratio of the
two anisotropy constants. This energy has minima and thus
stable magnetic configurations for m parallel and antiparallel
to n̂K .

The evolution of such a macrospin subject to thermal noise
and spin-transfer torques is described by a stochastic Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation of the form

ṁi = Ai(m) + Bik(m) ◦ Hth,k, (2)

where the stochastic contribution Hth is taken to have
zero mean and δ-function correlation 〈Hth,i(t)Hth,k(t ′)〉 =
2Cδi,kδ(t − t ′). The diffusion constant C = α

2(1+α2)ξ (with
ξ ≡ K/kBT as the energy barrier height divided by the
thermal energy) is chosen to satisfy the fluctuation-dissipation
theorem, and multiplicative noise “◦Hth,k” is interpreted in the
Stratonovich sense [27]. The expressions for the drift vector
A(m) and diffusion matrix B̂(m) terms, written in vectorial
form, read

A(m) = m × heff − αm × (m × heff)

−αIm × (m × n̂p) − α2Im × n̂p,
(3)

Bik(m) =
√

α

2ξ (1 + α2)
[−εijkmj − α(mimk − δik)],

where heff = − 1
μ0MSHKV

∇mU (m) is the effective field rescaled
by HK , I = q(�/2e)ηJ/(αμ0MSHKd), with d the thickness
of the magnetic free layer, is a natural current scaling with
η = (J↑ − J↓)/(J↑ + J↓), the spin polarization of incident
current density J along polarization axis n̂p and q a normal-
ization constant which will be discussed below. The temporal

FIG. 1. (Color online) Uniaxial easy n̂K and hard-axis n̂D mag-
netic anisotropy directions are shown along with spin-polarization
direction n̂p . The spin polarization is tilted by an angle ω with respect
the magnetic easy axis.

derivatives appearing in (2) and throughout this paper are
with respect to the natural time scale τ = [γ /(1 + α2)]μ0HKt ,
where γ is the gyromagnetic ratio. The dynamics associated
with (2) [7,28,29] result in Boltzmann equilibrium conditions
at long times. When n̂K and n̂D lie perpendicular to each other
(such as in typical spin valves), the macrospin’s geometry is
fully determined by two angles: ω is the angle between the
spin-polarization axis n̂p and n̂K and the azimuthal angle ψ

characterizing the extent to which n̂p, n̂K , and n̂D are coplanar
(see Fig. 1). We choose a coordinate frame where n̂K and n̂D

define the x and z axes, respectively.
A tilted spin-polarization axis allows modeling a spin

torque that results from more than one “polarizing” layer in
a spin-valve (or MTJ) stack or, more generally, a free layer
that has an easy axis tilted relative to the spin-polarization
axis. This is particularly relevant to experiments employing a
perpendicular polarizer layer with an in-plane magnetized spin
valve, consisting of a free and reference layer [30–36]. In this
case, the effective spin polarization will be tilted with respect
to the easy axis of the free layer. The net spin polarization axis
can be written as

n̂p = ηref n̂ref + ηpoln̂pol√
η2

ref + η2
pol

, (4)

where n̂ref and n̂pol are the spin-polarization axes directions
of the reference and polarizer layers. The tilt angle ω can
then be written in terms of the ratio of the spin-torque
efficiencies ω = atan(ηpol/ηref). The normalization factor q =√

η2
ref + η2

pol appears in the definition of the applied current I

discussed earlier.
All numerical results we present have been obtained by

solving (2) for ensembles of 5120 independent macrospins
using an integration time step of 0.01 in natural time, i.e., τ .
For concreteness, we set the damping constant α = 0.04 and
barrier height ξ = 80.

III. ENERGY-AVERAGED DYNAMICS

In the absence of damping and thermal noise, the dynam-
ics (2) preserve the macrospin’s energy which, expressed in
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dimensionless form, reads

ε = U (m)

K
= Dm2

z − m2
x. (5)

The conservative trajectories come in two different types. For
−1 < ε < 0 the magnetization gyrates around the easy axis n̂K

and is said to be precessing “in-plane” (IP). For 0 < ε < D,
the magnetization precesses about the hard axis n̂D and is said
to be precessing “out-of-plane” (OOP). The evolution of such
trajectories can be described analytically by solving the LLGS
equation in the absence of noise, damping, and spin-transfer
torque [37]:

ṁ0
x = −Dm0

zm
0
y,

ṁ0
y = (D + 1)m0

zm
0
x, (6)

ṁ0
z = −m0

ym
0
x.

For IP trajectories [21] one has

m0
x(t) = ±

√
D − ε

D + 1
dn

[√
D − εt,k2

IP

]
, (7)

m0
y(t) = √

1 + ε sn
[√

D − εt,k2
IP

]
, (8)

m0
z(t) =

√
1 + ε

D + 1
cn

[√
D − εt,k2

IP

]
, (9)

where k2
IP ≡ D 1+ε

D−ε
and sn[·],dn[·],cn[·] are Jacobi elliptic

functions [38]. The period of these trajectories as a function of
energy can be expressed as a complete elliptic integral of the
first kind:

T (ε) = 4√
D − ε

∫ 1

0

dx√
(1 − x2)

(
1 − k2

IPx
2
)

= 4√
D − ε

K
(
k2

IP

)
. (10)

The amplitudes of an orbit’s precession, projected onto the ẑ-ŷ
plane, are1

Aẑ(ε) =
√

1 + ε

D + 1
, (11)

Aŷ(ε) = √
1 + ε. (12)

Analogously, for OOP trajectories

m0
x(t) =

√
D − ε

D + 1
cn

[√
D(1 + ε)t,k2

OOP

]
, (13)

m0
y(t) =

√
D − ε

D
sn

[√
D(1 + ε)t,k2

OOP

]
, (14)

m0
z(t) = ±

√
1 + ε

D + 1
dn

[√
D(1 + ε)t,k2

OOP

]
, (15)

1Precession is around the x̂ axis.

FIG. 2. (Color online) Constant energy trajectories for D = 10.
ε < 0 trajectories are shown in red, whereas ε > 0 trajectories are
shown in blue. Notice how two distinct basins exist for positive and
negative energy trajectories. The singular separatrix, corresponding
to ε = 0, separating the different basins is shown in black.

with k2
OOP ≡ D−ε

D(1+ε) . Period and projected precession ampli-
tudes in the x̂-ŷ plane are

T (ε) = 4√
D(1 + ε)

∫ 1

0

dx√
(1 − x2)

(
1 − k2

OOPx
2
)

= 4√
D(1 + ε)

K
(
k2

OOP

)
, (16)

Aŷ(ε) =
√

D − ε

D
, (17)

Ax̂(ε) =
√

D − ε

D + 1
. (18)

A sample of these trajectories for positive and negative
energies is shown in Fig. 2, and orbital frequency as a function
of energy is plotted in Fig. 3. The unit magnetic sphere can be
separated into four distinct basins, two corresponding to ε < 0
dynamics and the others two to ε > 0. For large values of D

the ε > 0 OPP basin can lead to a larger oscillatory resistance
signals than the ε < 0 IP basin due to the larger precessional
amplitudes (18).

Upon introducing the contributions of spin torque, damp-
ing, and thermal noise, a macrospin’s dynamical evolution will
deviate from a constant energy trajectory. Applied currents
can reorient the magnetization by pumping energy into
the magnetic system. We may then ask how the constant
energy trajectories will be perturbed. This can be expressed
mathematically by computing how the magnetization energy
changes as a result of LLGS evolution. Taking the time
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FIG. 3. (Color online) Orbital frequencies plotted as a function
of ε for different D. To compare the results, the positive portion
of ε axis has been rescaled by D. Frequency is expressed in units of
(GHz/T). Physical frequency is obtained upon multiplying by μ0HK .
The sharp minimum in the frequency is a result of the precessional
period diverging at ε = 0.

derivative of (5), we write2

ε̇ = 2[Dmzṁz − mxṁx] (19)

as the dynamical evolution equation for the macrospin’s
energy. Expressing the time derivatives of the magnetization
components in terms of the full stochastic LLGS dynamics by
using (2), one obtains a stochastic evolution equation of the
form

ε̇ = f (m) + g(m) ◦ Ẇ . (20)

We now consider qualitatively how the macrospin dynamics
change if the time scale for energy pumping/sinking, due to
the collective effects of damping, spin torque, and thermal
noise, is much larger than the precessional period of the
conservative dynamics. In such a scenario, the full stochastic
LLGS dynamics might be expected to follow constant energy
trajectories fairly closely, with the macrospin drifting slowly
from one constant energy trajectory to the other. Averaging the
right-hand side (RHS) of (20) over constant energy trajectories
will then lead to a single stochastic differential equation for
the evolution of the macrospin’s energy. This approach is
justified when the energy drift over the period of a single
conservative orbit T (ε)ε̇ is sufficiently small. As mentioned in
the Introduction, we focus here on deriving averaged energy
dynamics valid in the domain ε > 0.3

In this approach we now consider damping, applied current,
and thermal noise effects on an OOP ε > 0 orbit. First, we av-
erage (20) over conservative positive energy trajectories (13).
Due to the symmetry of such trajectories, most terms average
to zero with the remaining nonzero terms leading to the

2The chain rule for stochastic variables is unchanged if the
multiplicative noise follows the Stratonovich convention.

3Refer to our previous publication [21] for more details, and a
discussion of the in-plane (ε < 0) precessional dynamics.

constant-energy orbit-averaged (CEOA) equation:

〈∂tε〉 = 2α[I (D − ε)(sin ω cos2 ψ)〈mz〉 − D(D + 1)
〈
m2

z

〉
+ ε(1 + ε)] + h(ε)

+
√

2αD(D + 1)

ξ

√〈
m2

z

〉 − ε(1 + ε)

D(D + 1)
· Ẇε, (21)

where angular brackets 〈·〉 denote averaging over a constant-
energy trajectory with energy ε. The second drift term (fol-
lowing the square brackets) h(ε) is a result of transforming (2)
into its Itō representation before performing the average over
orbits (see Appendix B). As a result, the multiplicative noise
terms appearing in the averaged energy equation above are
now interpreted in the Itō sense.4

We note that, as has been found for negative CEOA
states [21], the dynamics as a function of applied current
for different spin-polarization tilts are identical, the current
is simply rescaled by sin ω cos2 ψ (refer to Fig. 1). This allows
us to numerically verify the CEOA approach by checking
that the macrospin’s evolution over some (properly rescaled)
applied current is exactly identical for different tilts of the
spin-polarization axes.

Under our assumptions, thermal noise will influence the
dynamics in two distinct ways. The first, just discussed,
is by nudging the magnetization onto a different energy
orbit. The second is by perturbing the precessional phase of
the magnetization along a given constant energy orbit. As
such, (21) must be supplemented by an equation describing
the stochastic evolution of the dynamical phase. This can be
written down by noting that noise must influence energy and
phase diffusion identically because it is isotropic:

〈∂tχ〉 = 2π

T (ε)
+

√
2αD(D + 1)

ξ

√〈
m2

z

〉 − ε(1 + ε)

D(D + 1)
· Ẇχ ,

(22)
where T (ε) is the period of the orbit at energy ε. We distinguish
between the two independent noise terms Ẇε and Ẇχ by the
fact that they act in orthogonal directions: respectively away
and along the constant energy orbit. Whereas (21) does not
depend explicitly on the phase χ , (22) does however depend
explicitly on the energy ε. This will become important when
we discuss different aspects of phase noise in Sec. VI.

To compute the averages 〈mz〉 and 〈m2
z〉 explicitly, we

note that the positive energy trajectories can be geometrically
parametrized as follows:

m0
x(s) = √

ε sinh(s), (23)

m0
y(s) = ±√

1 + ε

√
1 − γ 2 cosh2(s), (24)

m0
z(s) = ±

√
ε

D
cosh(s), (25)

γ 2 = ε(D + 1)

D(ε + 1)
, (26)

4We distinguish equations written in Itō vs Stratonovich form by
writing the multiplicative noise as “· ˙Wε,φ .”
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where the parameter s ranges from −acosh(1/γ ) <

s < acosh(1/γ ). Upon computing the averages explicitly
(Appendix A), the CEOA equations for the positive energy
dynamics (0 < ε < D), expressed in terms of γ , read5

∂tε(γ ) = πα

η0(γ )

D(D + 1)

[D(1 − γ 2) + 1]3/2

(
± Ĩ (1 − γ 2) − 2

π

√
D(1 − γ 2) + 1

{
η1(γ ) − γ 2

[D(1 − γ 2) + 1]
η0(γ )

})

+h(ε) +
√

2α

ξ

D(D + 1)

D(1 − γ 2) + 1

1

η0(γ )

[
η1(γ ) − γ 2

D(1 − γ 2) + 1
η0(γ )

]
· Ẇε, (27)

∂tχ (γ ) = π

2η0(γ )

√
D(D + 1)

D(1 − γ 2) + 1
+

√
2α

ξ

D(D + 1)

D(1 − γ 2) + 1

1

η0(γ )

[
η1(γ ) − γ 2

D(1 − γ 2) + 1
η0(γ )

]
· Ẇχ , (28)

where η0(γ ) = K[1 − γ 2] and η1(γ ) = E[1 − γ 2] are ex-
pressed in terms of complete elliptic integrals of the first and
second kind. For notational simplicity, the geometrical tilts
have been absorbed into Ĩ ≡ I sin ω cos2 ψ .6 It is important to
note the applied current acts either to positively or negatively
dampen the dynamics depending on which ε > 0 basin the
magnetization is in (see Fig. 2). The second drift term h(ε),
appearing in (27), is the correction due to our change to Itō
calculus. As discussed in Appendix B, the extra drift term
results in a negligible correction. The following analysis will
hence ignore its second order effects although they can be
reintroduced straightforwardly if higher quantitative accuracy
is desired.7

In following the outlined procedure, we have reduced
the complexity of the magnetization dynamics to a one-
dimensional stochastic differential equation, whose properties
we will now show to be analytically tractable.

IV. FIXED POINT ANALYSIS

As seen from (27), in the absence of applied currents, the
deterministic drift portion (first term on the RHS) of the energy
diffusion dynamics is globally negative, ∂tε < 0. The energy
ε flows from positive to negative energy basins toward its
minimum value of −1. This is consistent with our physical
notion of the ε > 0 basins being energetically unfavorable.
Upon introducing an applied current, the behavior remains
unchanged as long as no tilt is present between easy and
spin-polarization axes (ω = 0). If a nonzero tilt is introduced
into the system, the symmetry of the two positive energy
basins is broken. In particular, due to the dependence on
±Ĩ (everything else inside the circular brackets is always
negative), a critical current will exist, corresponding to a fixed
point in the energy dynamics appearing in the positive ẑ, ε > 0

5We can allow ourselves the freedom to switch between expressions
involving γ and ε. γ 2 = ε(D+1)

D(ε+1) is a monotonically increasing function
of ε with the convenient property that ε = 0 → γ = 0 and ε = D →
γ = 1. As such, limits written in terms of γ and ε are equivalent.

6Note that in contrast to the in-plane precessional dynamics
discussed in [21], the current is rescaled by sin ω as opposed to
cos ω.

7The Itō drift-diffusion correction becomes relevant for dynamics
close to the ε = 0 separatrix.

basin. The presence of a fixed point in the energy dynamics
corresponds to a stable precessional (limit cycle) state of the
magnetization dynamics. The dynamics in the negative ẑ basin,
on the other hand, will continue to be globally dissipative.
Physically this is explained by the fact that the tilt ω biases the
magnetic evolution away from one basin in favor of the other.

The critical current at which a fixed point appears can be
obtained by studying the behavior of the energy dynamics in
the limit ε = γ → 0. Requiring that

lim
ε→0

T(ε)ε̇ ∝ −2
√

D + 1 + πĨ = 0, (29)

we obtain

ĨOOP = 2

π

√
D + 1 (30)

as the current where a stable fixed point appears at ε = 0.
Increasing Ĩ further will shift the fixed point to higher energies.
Qualitatively this will result in an increase of frequency and
decrease of amplitude of the limit cycle oscillations. The
maximum possible energy obtainable by the oscillator is
ε = D. This is achieved when8

Ĩmax = D + 1
2 . (31)

Increasing the current beyond Ĩmax simply overdrives the
magnetization. As we will see later, the CEOA approxima-
tion breaks down beyond this point and stable oscillations
disappear. Figure 4 shows a sample of the drift field due
to (27) for Ĩ < ĨOOP, ĨOOP < Ĩ < Ĩmax, and Ĩ > Ĩmax. ĨOOP and
Ĩmax represent the lower and upper threshold currents for the
appearance of steady-state precessions in the stable OOP basin
due to the nonlinear character of the magnetization dynamics.

Comparing with the CEOA treatment of magnetic switch-
ing [21], we note that Ĩescape, the critical current for escape
out of the in-plane ε < 0 basin, equals

√
DĨOOP. As such,

the minimal currents sustaining stable OOP precessional
states are generally smaller than the critical escape current.
This results in the prediction of a hysteretic dependence
of IP � OOP transitions on applied current, which has
been observed recently in experiment [39]. In detail, since
Ĩescape = Iescape cos ω and ĨOOP = IOOP sin ω cos2 ψ , one can

8One analogously seeks a null net drift of the energy dynamics at
ε = D: lim

ε→D
T(ε)ε̇ = 0.
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FIG. 4. (Color online) Three regimes of deterministic energy
flow ε̇ as a function of energy for D = 10. Blue dashed line: Ĩ < ĨOOP,
subcritical regime. Energy flows from positive to negative energy
basins due to dynamics being globally dissipative (overdamped).
Red dash-dotted line: Ĩ > Ĩmax, supercritical regime. Energy flows
towards limiting stable value ε = D due to dynamics being overdriven
by applied current. Green dotted line: ĨOOP < Ĩ < Ĩmax, oscillator
regime. Energy flow will stabilize at a fixed point corresponding to a
precessing oscillator state. In this regime, the fixed point represents
a constant energy trajectory where spin torque and damping effects
balance.

see that the relation between direct critical escape current and
threshold current for sustainment of OOP precessions is

IOOP = Iescape√
D tan ω cos2 ψ

. (32)

V. LIMITS OF THE CEOA APPROACH

For our approximations to be valid, the averaged energy
flow [T (ε)|∂tε|] over any given orbit must be small compared

to the maximum allowable energy variations (0 < ε < D):

max
ε

T (ε)|∂tε| 
 D. (33)

This has been discussed elsewhere [9,21] so we simply state
the results for OOP dynamics. For CEOA to be applicable one
must have ĨOOP � Ĩ � Ĩmax.

In Fig. 5 we show a comparison between theory and
numerical results by plotting average energy 〈ε〉 as a function
of applied current. Ensembles consisting of 10 000 macrospins
were initialized antiparallel to the easy axis and allowed to
relax subject to a steady applied current. Upon varying the
angular tilt ω between easy and spin-polarization axes, we
notice that the data follow our theory down to a minimum
critical angle ωC . For angular tilts less than ωC , stable
positive energy steady states cease to be accessible regardless
of the applied current. The origin of this angular cutoff is
geometrical in nature and corresponds to the necessity for the
spin-polarization axis to be pointing inside the positive energy
basin. The condition for this to happen can be seen from (5)
by solving for the separatrix of the energy basins. One obtains

ωC = π

2
− arctan(

√
D), (34)

which is in excellent agreement with numerical data. This
geometrical intuition can be seen from theory by determining
the tilt for which the threshold current for OOP precessions
equals that for direct switching. Starting with (32), and setting
ψ = 0 for convenience, leads to (34).

For large currents Ĩ > Ĩmax, numerical results seem to
indicate a steady drop in ensemble energy as the applied current
is increased. In fact, contrary to the CEOA description, the
macrospin’s magnetization ceases to precess around the hard
axis and instead settles into a magnetic configuration where
all static torques balance and spin-torque effects compete with
the magnetic anisotropies.

FIG. 5. (Color online) Steady-state ensemble energy as a function of dimensionless applied current Ĩ [rescaled by ĨOOP = (2/π )
√

D + 1]
for a model with D = 10, ξ = 80, and α = 0.04. Red line shows an analytic fit to numerical data within the current limits defined by the
theory (for reference Ĩmax/ĨOOP ≈ 4.97). Insets shows density plots in spherical coordinates of 10 000 numerical trajectories for a sample with
a 2.56ωC tilt between easy and spin-polarization axes, driven by a current of Ĩ /ĨOOP = 4 (top), and Ĩ /ĨOOP = 15 (bottom). The dotted line
denotes the conservative trajectory.

174405-6



SPIN-TORQUE OSCILLATORS WITH THERMAL NOISE: A . . . PHYSICAL REVIEW B 90, 174405 (2014)

VI. THERMAL STABILITY, PRECESSION LINEWIDTH,
PHASE, AMPLITUDE, AND POWER FLUCTUATIONS

So far we have provided an analytical approach that enables
the study of the properties of OOP dynamics. Once the strength
of the applied current Ĩ has been chosen, and provided that
the angular tilt of the spin-polarization vector is sufficient
(ω > ωC), the average energy ε0 = 〈ε〉 of the equilibrium
steady-state trajectory can be obtained by solving for the fixed
point of the energy dynamics (27). Due to the dependence of
the precessional period T(ε) on the energy of the orbit, the
expected precessional frequency can be inferred.

Thermal noise will, however, perturb the magnetization
about the fixed point, resulting in fluctuations of the
macrospin’s energy around its average ε0 value and diffusion
of its phase χ along the relevant constant energy orbit. These
deviations are believed to be the source of the oscillator’s
experimentally measured frequency, linewidth, and phase
decoherence. We will now proceed to derive an estimate for
such linewidths.

The general stochastic energy evolution equation (27) can
be written concisely as

∂tε = f (ε,Ĩ ) + h(ε) + g(ε) · Ẇε, (35)

where f (ε,Ĩ ), h(ε), and g(ε) are, respectively, the determin-
istic drift, Itō drift-diffusion correction, and multiplicative
noise. Following Ref. [21], one can use the stochastic energy
evolution equation to compute the mean time one must wait
to observe a thermal excitation out of an OOP trajectory. The
asymptotic dependence of such a mean escape time is then

log(〈τjump〉) ∝ 2
∫ ε0(Ĩ )

0
dx

f (x,Ĩ )

g2(x)
= ξ

(
ε0 − Ĩ

ĨOOP

∫ ε0

0
dx

× D − x√
1 + x[Dη1(x) − xη0(x)]

)
, (36)

where ε0 ≡ 〈ε〉 is the usual solution of the fixed point
equation (dependent on Ĩ ). Due to the dependence of the
equilibrium oscillator energy on the applied current ε0(Ĩ ), the
thermal stability of the OOP precessional states will depend
nonlinearly on the applied current Ĩ .

The Fokker-Planck (FP) equation is

∂tρ = ∂ε

[
f (ε,Ĩ )ρ − 1

2g2(ε)∂ερ
]
, (37)

whose solution describes the full evolution of the energy
distribution ρ(ε,t) as a function of time (Appendix B). At
equilibrium (∂tρ = 0), the saddle point approximation can be
used to determine a steady-state distribution

ρeq(ε) ∝ exp

[
2
∫ ε

0
dx

f (x,Ĩ )

g2(x)

]
� exp

[
f ′(ε0,Ĩ )

g2(ε0)
(ε − ε0)2

]
,

(38)

that is valid as long as Ĩ > ĨOOP. We can then write an
expression for the amplitude noise by computing the variance
of the energy in an equilibrium OOP distribution:

〈(ε − ε0)2〉 � g2(ε0)

2|f ′(ε0,Ĩ )| . (39)

In Fig. 6 we compare the theoretical approximation resulting
from (39) with the equilibrium energy variance extracted from

FIG. 6. (Color online) Standard deviation of the energy distribu-
tion plotted as a function of dimensionless applied current Ĩ [rescaled
by ĨOOP = (2/π )

√
D + 1] for D = 10, ξ = 80, and α = 0.04. The

solid blue line shows the theoretical prediction (39) calculated
within the current limits defined by the theory (for reference
Ĩmax/ĨOOP ≈ 4.97).

our numerical simulations. Whereas the variance does not
appear to rescale trivially with the spin-polarizer tilt, all tilts
seem to show a variance versus applied current curve that
peaks within the same general region predicted by our rough
estimate. For currents Ĩ � ĨOOP,Ĩmax the approximation breaks
down due to failure of the CEOA approximation.

Using (38) we see that all energy-dependent stationary
characteristics 〈Q〉 = ∫

Q(ε)ρeq(ε) of the oscillator can be
computed via distribution averaging. However, we employ our
saddle point estimate (39) to study thermal fluctuations. The
relative fluctuation of a quantity Q(ε) at equilibrium will be
given by δQ/Q = [Q′(ε)/Q(ε)]|ε=ε0

√
〈(ε − ε0)2〉.

As a first example, the experimentally observed oscillator
power depends on the square of the oscillator’s precession
amplitude along the in-plane direction. Having chosen a
coordinate system with the reference magnetic layer aligned
in-plane, power fluctuations are directly proportional to fluctu-
ations in the precession amplitude of the oscillator as projected
along the in-plane axial direction. From our previously derived
expression of the oscillation amplitude along the in-plane
direction (18), one has

δP

P
= δA2

x̂

A2
x̂

�
√

〈(ε − ε0)2〉. (40)

Analogously denoting the oscillation frequency by ν(ε) =
2π/T (ε), one finds for the precession linewidth quality factor
Q dependence on amplitude noise:

1

Q
= δν

ν
� T′(ε0)

T(ε0)

√
〈(ε − ε0)2〉. (41)

Figure 7 shows how the quality factor is a monotonically
increasing function of applied current. Overall, increasing
the driving current reduces the linewidth of the oscillator in
line with classical oscillator theory which predicts a linewidth
scaling dependent on the ratio of the thermal and oscillator
energy (kBT /ε). In practice, however, at currents high enough
for the breakdown of the macrospin model, micromagnetic
effects due to Oersted fields are expected to complicate the
physical picture in nontrivial ways.
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FIG. 7. (Color online) Inverse quality factor (41) vs applied
current for D = 10 set at room temperature (ξ = 80). Red dashed
line denotes the upper bound of the validly of the CEOA formalism:
Ĩmax/ĨOOP ≈ 4.97 for the parameters chosen.

One may proceed further and ask whether the CEOA
formalism is capable of shedding light on the phase noise
and, more generally, the phase decoherence driving a magnetic
system. The assumption that “sufficiently weak” noise drives
diffusion from one energy orbit to another does not impose
any limit on how strong the noise driving the phase of the
actual constant energy oscillation can be. Both phase noise
due to thermal diffusion along a given constant energy orbit
and amplitude noise can drive phase decoherence in a magnetic
system. As such, the relative intensity of both effects must be
determined to understand phase decoherence.

To do so, we consider how energy fluctuations about the ε0

equilibrium fixed point influence the phase dynamics described
in (27). Let ε(t) ≡ ε0 + δε(t) and expand (35) in powers
of δε. Denoting F (ε) ≡ f (ε) + h(ε), the resultant stochastic
differential equation can be formally integrated to give

δε(t) = eF ′(ε0)t

[
c + g(ε0)

∫ t

0
dt ′e−F ′(ε0)t ′ · Ẇε

]
, (42)

where primes represent differentiation with respect to en-
ergy [F ′(ε0) ≡ ∂εF |ε=ε0 ], and c is an (unimportant) initial
condition. |F ′| represents the relaxation rate of amplitude
fluctuations to the ε0 baseline. Given the explicit dependence of
the phase χ on the energy evolution, such energy fluctuations
are expected to play a crucial role in the thermally driven phase
dynamics.

Expanding the phase dynamics about ε0 to lowest order, we
have

∂tχ = 2π

T (ε0)
− 2πT ′(ε0)

T 2(ε0)
δε(t) + g(ε0) · Ẇχ . (43)

Substituting (42) into (43) and recalling that Ẇε and Ẇχ are
uncorrelated stochastic processes, the expected phase variance
at equilibrium can be evaluated to give (we suppress the
dependence on ε0)

〈�χ2〉(t) = g2

{[
1 +

(
2πT ′

F ′T 2

)2]
|t | + 1

2F ′

(
2πT ′

F ′T 2

)2

× [4(1 − eF ′ |t |) − (1 − e2F ′ |t |)]}, (44)

which closely resembles the more general prediction
from oscillator theory [6,40]. Since the power spec-
trum can be written as a Fourier transformation of
the correlation function 〈exp{i[χ (t) − χ (t)]}〉 ≈ exp[i〈χ (t) −
χ (t)〉] exp[−〈�χ2〉(t)/2], the linewidth can be predicted [41]
by inspecting (44).

The temporal dependence of the phase variance is respon-
sible for the decoherence of the magnetic ensemble over
time. We interpret the decoherence time τdec as the time
scale necessary for the ensemble to homogeneously distribute
itself along a given constant energy orbit similarly to what
is shown in Fig. 5. We quantify τdec by asking on what
time scale the width of the phase distribution begins to
encompass the entire constant energy orbit: 〈�χ2〉(τdec) =
4π2. Although the temporal dependence is generally quite
complicated, two limiting regimes can be explored. For low
enough temperatures, the phase decoherence time τdec will
be larger than the relaxation time scale of the amplitude
fluctuations τdec � 1/|F ′|. Decoherence can then be expected
to mostly take place due to the differences in orbital evolution
at the different energies explored by the amplitude fluctuations.
This will eventually lead the spin ensemble to decohere and
thermalize to a homogenous distribution of phases relative to
the referential ε0 orbit. The dominant amplitude fluctuations
driving such a low temperature regime result in a linear

FIG. 8. (Color online) Switching probability vs spin-current
pulse length for a macrospin model with D = 10, ω = 2.12 ωC)
driven by a spin-current intensity of Ĩ = 2.75 ĨOOP in the absence
of thermal noise. Times are shown in units of (s T), where T stands
for Tesla: Real time is obtained upon division by μ0HK . Before
the current pulse is switched on, the magnetic ensemble is taken
to be antiparallel to the easy axis of the magnetic film. Switching
probability is defined as the ensemble fraction that relaxes into a
parallel configuration upon switching the current pulse off. The
right-hand vertical axis plots the evolution of the average 〈mz〉
component. In the absence of thermal noise the oscillator remains
coherent at all times and its periodic motion is clearly seen. Due
to the deterministic nature of the zero-temperature dynamics, the
macrospin will deterministically switch either into the parallel or
antiparallel state at all times.
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FIG. 9. (Color online) Switching probability vs spin-current pulse length for a macrospin model with D = 30, ω = 3ωC driven by a
spin-current intensity of Ĩ = 5 ĨOOP in the presence of thermal noise corresponding to ξ = 80 (left) and ξ = 1200 (right). Times are shown in
units of (s T), where T stands for Tesla: Real time is obtained upon division by μ0HK . Before the current pulse is switched on, the magnetic
ensemble is taken to be antiparallel to the easy axis of the magnetic film. Switching probability is defined as the fraction of the ensemble
that relaxes into a parallel configuration upon switching the current pulse off. For long pulse times the switching probability converges to a
value indicating that the phase of the OOP precession has decohered. The red dashed lines are a qualitative graphical representation of the
decoherence time.

dependence of the phase variance

〈�χ2(t)〉 ≈ g2

[
1 +

(
2πT ′

F ′T 2

)2]
|t |. (45)

Due to the dependence of the multiplicative noise term
in (27) on temperature [g(ε) ∝ √

T ], the decoherence time
τdec ∝ T −1/2 ∝ √

ξ can be predicted to depend on the inverse
square root of temperature. Furthermore, a linear dependence
on time will imply a Lorentzian power spectrum with linewidth
�νL = (g2/2π )(1 + μ2) (μ = 2πT ′/F ′T 2).

In a high temperature limit, pure phase noise will compete
with the amplitude noise effects by decohering the ensemble on
a time scale smaller than the amplitude fluctuation relaxation
rate τdec 
 1/|F ′|. The exponential contributions in (44) cease
to be negligible and the approximate temporal dependence of
the phase variance can be written to second order in time as

〈�χ2(t)〉 ≈ g2

[
|t | + 2

(
2πT ′

F ′T 2

)2

|F ′||t |2
]
. (46)

If (2πT ′/
√|F ′|T 2)2 � 1 (typically the case when ε0 
 D),

the term linear in time can be dropped altogether resulting in
a purely quadratic dependence of the phase variance on time.
In such a scenario, the decoherence time can be expected to
scale linearly with the inverse temperature τdec ∝ T −1 ∝ ξ .
A phase variance scaling quadratically in time will in turn
lead to a Gaussian power spectrum with linewidth �νL =√

2gμ2F ′/2π .
We explore these predictions by studying switching proba-

bility curves of a macrospin ensemble at varying temperatures
for applied current intensities and effective spin-polarization
axial tilt consistent with an OOP precessional behavior. Upon

switching the current off, the phase of the oscillator will select
the macrospin’s relaxation outcome (either parallel or antipar-
allel to the easy axis of the magnetic film) with high probability.
In the absence of thermal noise, a current pulse of fixed dura-
tion will lead to either a parallel or antiparallel relaxed state
after the pulse terminates (see Fig. 8) with absolute certainty.
At nonzero temperatures, however, oscillator ensemble phase
decoherence is expected due to thermal noise. As a result, long
spin-current pulse times will lead to equally likely parallel
(antiparallel) relaxation due to ensemble thermalization along
the OOP constant energy orbit. In Fig. 9 we find good
qualitative agreement between such an understanding of
phase decoherence behavior and numerical simulations. The
equilibrium probability bias for higher P switching is due to
some of the states thermally equilibrating into the IP energy
basin before the current pulse is switched off.

The switching probability curves can be employed to
numerically extract the decoherence time at different tem-
peratures. Figure 10 shows a log-log plot of τdec on ξ for a
D = 30 model with a ω = 3 ωC tilt, driven by a Ĩ = 1.5 Ĩswitch

applied current. Linear regression to numerical data shows an
inverse proportionality τdec ∝ 1/T ∝ ξ between decoherence
time and temperature for temperatures larger than a certain
critical temperature. For T < TC , however, both amplitude and
phase noise seem to contribute to ensemble decoherence, thus
not allowing us to probe the pure amplitude noise decoherence
mechanism previously discussed.

VII. CONCLUSION

We have analyzed the out-of-plane (OOP) precessional
behavior of a biaxial macrospin in the presence of spin torque
due to both a perpendicularly magnetized polarizer and an
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FIG. 10. (Color online) Log-log plot of ensemble decoherence
time vs energy barrier height to thermal energy ratio ξ for a macrospin
model with D = 30, ω = 3 ωC driven by a spin-current intensity of
Ĩ = 1.5 Ĩswitch. Times are shown in units of (s T), where T stands for
Tesla: Real time is obtained upon division by μ0HK . Linear regression
(solid lines) of data points demonstrates a transition between a phase
noise dominated regime τdec ∝ 1/T below a certain critical inverse
temperature ξ < ξC . Above ξ > ξC (T < TC), both amplitude and
phase noise contribute to ensemble decoherence.

in-plane (IP) magnetized reference layer. Their combined spin-
torque effects lead to an effective tilt ω between the easy and
spin-polarization axes. The problem was treated analytically
by employing multiscaling techniques to separate the fast
oscillatory behavior due to conservative dynamical terms from
the slow magnetic diffusion due to noise and spin-transfer
torque. By averaging the stochastic LLG dynamics over
constant energy trajectories we constructed a 1D stochastic
evolution equation for the macrospin’s energy. The features
of the energy evolution equation were explored in detail
analytically, and confirmed by numerically simulating the
full thermally activated LLGS dynamics. We found that our
multiscaling assumptions are valid for normalized applied cur-
rents in the range (2/π )

√
D + 1 < I sin ω cos2 ψ < D + 1/2,

where D is the ratio between hard- and easy-axis anisotropy, I
is a rescaled applied current, and ω is the effective tilt between
easy and spin-polarization axes.

Within this regime we found that changing the effective
tilt serves to rescale the applied current; the dynamical
behavior is otherwise identical. For applied currents greater
than IOOP = (2/π )

√
D + 1/ sin ω, a stable fixed point appears

in the macrospin’s energy dynamics. This is consistent with
the description of a stable limit cycle, interpreted as an OOP
precessional state. We predict that stable OOP precessions
are possible only in one of the two out-of-plane directions,
selected by the direction of the applied current. Furthermore,
by comparing our results to those obtained via CEOA methods
to study the threshold currents for magnetic switching, we
predict the occurrence of hysteretic transitions between IP
and OOP stable states for effective tilts larger than a critical
tilt ωC = arctan(1/

√
D), which has been observed in very

recent experiments [39]. For tilts ω < ωC , we predict that
magnetic switching will take place since the threshold current
for onset of stable OOP precessionary states is expected to
be larger than that required for a direct switch. Overall, this

leads to a very simple condition that a spin valve must satisfy to
behave like a STNO (ηref/ηpol <

√
D). Our theory agrees with

numerical results and could be a starting point for testing how
well the macrospin approximation captures the magnetization
dynamics in real devices.

Upon exploring the thermal contribution to oscillator
linewidth broadening, we observe the existence of a critical
temperature TC separating a regime where phase noise
dominates decoherence and one where decoherence is the
result of both phase and amplitude noise. The former cannot
be accounted for by our CEOA theory and is a result of the full
complexity of the LLG dynamics. This is in agreement with
the nonlinear oscillator model where a transition temperature
is predicted to exist between a phase noise dominated
regime at large temperatures and one limited by thermal
deflections about the equilibrium magnetic trajectory at low
temperatures [40,42].

Our methodology is similar to that proposed by Slavin,
Tiberkevich, and Kim [5,6,10]. However, instead of ap-
proaching the multiscaling analysis by studying the complex
oscillatory amplitude of the macrospin’s dynamics using a self-
oscillator equation, we focused on the macrospin’s diffusion
over its energy landscape. The loss of generality in doing so is
compensated by new insights into the macrospin’s dynamical
characteristics.
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APPENDIX A: 〈mz〉 and
〈
m2

z

〉

To compute the constant energy orbit averages in (20) we
write the integrals using the geometric parametrization (21)–
(24):

〈mz〉m0 = ±
T(ε)

∫ T

0
dtmz(t) = ±4

T(ε)

∫ acosh(1/γ )

0
ds

∣∣∣∣∂sm
0
z

ṁ0
z

∣∣∣∣m0
z

= ±4

T(γ )

γ√
D(D + 1)

∫ acosh(1/γ )

0
ds

cosh(s)√
1 − γ 2 cosh2(s)

= ±π

2
√

D(1 − γ 2) + 1

1

K[1 − γ 2]
. (A1)

Proceeding analogously for
〈
m2

z

〉
:

〈
m2

z

〉
m0 = 1

T(ε)

∫ T

0
dtm2

z(t) = 4

T(ε)

∫ acosh(1/γ )

0
ds

∣∣∣∣∂sm
0
z

ṁ0
z

∣∣∣∣(m0
z

)2

= 4

T(γ )

γ 2

√
D(D + 1)

√
1 + D(1 − γ 2)

×
∫ acosh(1/γ )

0
ds

cosh2(s)√
1 − γ 2 cosh2(s)

= 1

1 + D(1 − γ 2)

E[1 − γ 2]

K[1 − γ 2]
, (A2)
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where, as stated in the main text, E[x] is the complete elliptic
integral of the second kind.

In both derivations we have taken advantage of Eqs. (15)
and (24) to write the period as a function of γ . Written
explicitly, the period reads

T(ε) = 4√
D(1 + ε)

K

[
D − ε

D(1 + ε)

]

= 4

√
1 + D(1 − γ 2)

D(D + 1)
K[1 − γ 2]. (A3)

APPENDIX B: ORBIT AVERAGING OF A
STRATONOVICH EQUATION

There are several advantages in adopting a Stratonovich
convention when writing the dynamical equations. First, it
is the most natural way of modeling a physical process where
the Gaussian noise represents the short correlation time limit
of a colored noise process: By the Wong-Zakai theorem [43],
such a limit of multiplicative noise converges to Statonovich
calculus. Second, a Stratonovich interpretation follows the
conventional rules of calculus in dealing with functions of
a stochastic variable. Third, many conventional numerical
schemes used to simulate Langevin equations (such as the
Heun scheme adopted for this work) evolve towards the
Stratonovich solution.

The Stratonovich formulation of a stochastic differential
equation (SDE), however, fails to accurately represent the
correlation between multiplicative terms and the specific noise
realization [27]. To average the multiplicative noise terms over
constant energy orbits, we take advantage of the fact that
sums of Gaussian random variables

∑
i μixi (where xi are

standard 0 mean and variance 1 Gaussian variables) behave like
a single Gaussian variable x̃ with variance given by the
square sum of the individual variances μ̃2 = ∑

i μ
2
i . Since

the multiplicative noise terms B̂(m) ◦ Ẇ appearing in our
LLGS equations are state dependent, the Gaussian variable
summation cannot be employed due to the temporal correlation
between the state-dependent variances B̂2(m) and the specific
noise realization Ẇ.

This problem can be avoided by converting the LLGS
equations into their Itō representation. The multiplicative noise
terms of (21) become (DmzB̂xj − mxB̂zj ) · Ẇj (with summa-
tion over repeated indices). The state-dependent variances are
now uncorrelated with respect to the noise realization, and

so a summation of Gaussian random variables can now be
employed. Averaging over constant energy orbits then leads,
after a bit of algebra, to the noise term appearing in (21).

Altering the multiplicative noise convention can generally
alter the qualitative nature of the solution to the stochastic
differential equation. To maintain consistency between Itō
and Stratonovich models, the drift term must be modified to
ensure that Boltzmann equilibrium is obtained at long times
in the absence of nonconservative forces (in our case, the
applied current). The fundamental reason is that the SDE is
simply a model of the underlying dynamics subject to two
constraints: the chosen form of the thermal noise and the
steady-state equilibrium Boltzmann distribution [44,45]. In the
absence of applied currents, (21) can be written more concisely
as

〈∂tε〉 = [−αf (ε) + h(ε)] +
√

2α

ξ
f (ε) · Ẇ , (B1)

with

f (ε) = 2
[
D(D + 1)

〈
m2

z

〉 + ε(1 + ε)
]
, (B2)

where h(ε) represents the extra modification necessary in the
drift term to retain all physically relevant Boltzmann relaxation
properties. Deriving the Itō Fokker-Planck equation relative to
such a dynamic then gives

∂tρ = ∂ε

{
[αf (ε) − h(ε) + α

ξ
∂εf (ε)]ρ + α

ξ
f (ε)∂ερ

}
.

(B3)

Upon imposing h(ε) ≡ α
ξ
∂εf (ε), the steady-state solu-

tion reduces to the simple form ρeq(ε) ∝ exp[−ξ ε] as
expected.

Employing the previously derived expression for 〈m2
z〉 from

Appendix A, h(ε) is found to be (in terms of the auxiliary
variable γ )

h(ε) = α

ξ

D(1 − γ 2) + 1

1 − γ 2

[
1 −

(
D(1 − γ 2) + 2

D(1 − γ 2) + 1

)
E[1 − γ 2]

K[1 − γ 2]

+ 1

γ 2(2 − γ 2)

(
E[1 − γ 2]

K[1 − γ 2]

)2]
+ α

ξ

D(1 + γ 2) + 1

D(1 − γ 2) + 1
,

(B4)

which can be shown to lead to a negligible correction of
the drift dynamics (≈0.1 α/ξ ≈ 10−5 since typical parameter
values are α ∼ 0.01 and ξ ∼ 100).
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