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Coherent manipulation of dipolar coupled spins in an anisotropic environment
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We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a
driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g

tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient
regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate
is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the
highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of
calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of
CaWO4 crystals with different concentrations of Nd3+ ions.
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I. INTRODUCTION

It is well known that localized electron spins in a solid
are potential qubits for quantum information processing [1]
since they provide opportunities for scaling and have long
coherence times (up to several milliseconds). Among possible
implementations are quantum dots [2], nitrogen-vacancy (NV)
centers in diamond [3], single-molecule magnets [4–7], and
paramagnetic ions diluted in single crystals [8–13]. If the
number of paramagnetic particles is large enough (>1012),
the spin manipulations necessary for quantum computing
can be achieved with the standard instrumentation of pulsed
electron paramagnetic resonance (EPR) spectroscopy. The
crystal sample is placed inside the microwave (mw) cavity
of the EPR spectrometer. A static magnetic field B0 creates
the gap ω0 between the energy levels of the spin ½. The spin
states are controlled using a pulsed mw field B1 of resonant
frequency ω0. Each pulse induces nutations of the spin vector
over the Bloch sphere, resulting in an oscillating projection of
its magnetic moment called Rabi oscillations (ROs [14,15]). If
the pulse duration is long enough, a number of oscillations can
be recorded. A successful demonstration of long-living ROs is
a necessary step before one can implement a given type of spin
qubits as a part of a working quantum computer. Note that one
should not mix the decay time of the ROs τR (that we further
call Rabi time [16]) with the phase memory time T2, since the
last one reflects the spin coherence maintained in the absence
of the driving mw field.

The ROs that are acquired from the paramagnetic centers
diluted in solids decay due to numerous reasons. As follows
from our previous research [9,17], the most influential are:
(i) dispersion of ω0 (inhomogeneous broadening of the EPR
line), (ii) spatial distribution of B1 in a mw resonator, and
(iii) magnetic dipole interactions between the paramagnetic
centers. The first two result in distribution of nutation fre-
quencies inside the spin ensemble so that the decay of ROs
is caused by the dephasing of the Bloch vectors belonging to
different spin packets. In this case, the decay rate is linear in
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the frequency of ROs �R (Rabi frequency), which itself is
linear in B1. Dipolar interactions, on the one hand, provide
entanglement of the states of different spins, which is a vital
part of the quantum computation process. On the other hand,
since these interactions are long ranged, a given paramagnetic
center is coupled simultaneously to a considerable number
of other centers in the solid, and the local magnetic field
thus produced has a randomlike character [18]. Because of
a reasonable simplicity of the experimental procedure and the
ability to control various parameters (intensity of the mw field,
the spin frequency and concentration, etc.), paramagnetic ions
diluted in a solid matrix represent a very convenient system
to study decoherence inside the spin ensemble driven by the
mws.

Until recently, the existing theoretical models accounting
for the role of dipolar interactions in the decay of ROs were
all based on certain modifications of conventional Bloch
equations [18,19], with an attempt to justify the empirical
dependence of τR on �R obtained for E′

1 centers in silica and
[AlO4]◦ centers in quartz [20], which later was proved to be
quite general [5,9,11,13]

τ−1
R = α + β�R. (1)

In our recent paper [17], we presented a microscopic model
that contained no phenomenological parameters and allowed
ab initio calculation of spin dynamics of a dipolar coupled
spin ensemble in the mw-driven regime. It was assumed that
the ensemble consisted of the spin particles with isotropic g

factor [17–19]. Such an assumption is valid if the spins are
dispersed in an amorphous medium or in a crystal of cubic
symmetry. To the best of our knowledge, no attempt to study
theoretically the dependence of τR on the directions of vectors
B0 and B1 in the case when the background symmetry is
lower than cubic has been made. In most cases, the crystal
anisotropy does not contribute much to the g factor of a
paramagnetic center which is close to that of a single electron.
A well-known exception is a rare earth (RE) ion: it has
valuable contribution to its magnetic moment from the orbital
motion of its electrons due to the presence of strong spin-orbit
coupling [21]. As a result, effective g factors of several RE
ions under certain conditions exceed 10. Spin qubits based
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on RE ions [11–13] are advantageous as they would allow
spin manipulations in low driving fields. Since the presence of
magnetic anisotropy increases the number of experimentally
controllable parameters that could in principle influence the
decoherence times (namely, the directions of vectors B0 and
B1), an appropriate choice of these parameters would enable
one to increase the number of one-qubit operations.

In general, there are three nonequivalent directions related
to the eigenvectors of anisotropic g tensor. In this paper, we
consider the simplest case of axially symmetric background
encountered when the local symmetry of the site occupied by
the RE ion is tetragonal, trigonal, or hexagonal. However,
it is straightforward to modify the results for the case of
lower symmetry (orthorhombic, monoclinic, or triclinic crystal
system). This paper is organized as follows: in Sec. II, we
develop a microscopic model of dipolar relaxation in the
transient regime and axially symmetric crystal field. In Sec. III,
we illustrate our model by studying ROs in the concentration
series of CaWO4 : Nd3+ crystal.

II. DRIVEN DIPOLAR RELAXATION IN AN AXIALLY
SYMMETRIC CRYSTAL FIELD

Let us consider an ensemble of N spins interacting with the
external magnetic field B = B0 + 2B1 cos ω0t and with each
other

H = μB

N∑
j=1

ĝBSj +
∑
j<k

∑
α,β=x,y,z

d
jk

αβS
j

α1S
k
β1. (2)

In the above Hamiltonian, Sj is the spin operator of the particle
j , μB is the Bohr magneton, and ĝ is the axially symmetric g

tensor written in its principal axes x,y,z

ĝ =
⎛
⎝g⊥ 0 0

0 g⊥ 0
0 0 g||

⎞
⎠ . (3)

Generally, the directions of B0 and B1 fields with respect to
the axes x,y,z are arbitrary. We choose the axes x and y so
that B0 is in the xz plane and at angle � from the z axis. The
direction of B1 is given by the direction cosines hx,hy,hz

B0 = (ex sin � + ez cos �) B0,

B1 = (exhx + eyhy + ezhz)B1. (4)

We are going to apply two transformations in order to simplify
the first term of the Hamiltonian in Eq. (2). By the first
transformation

S
j

x0 = (
g||Sj

x cos � − g⊥Sj
z sin �

)/
g�, S

j

y0 = Sj
y ,

S
j

z0 = (
g||Sj

z cos � + g⊥Sj
x sin �

)/
g�, (5)

where g� =
√

(g|| cos �)2 + (g⊥ sin �)2, we diagonalize the

interaction with the static field, ĝB0 Sj = g�B0S
j

z0. The

second transformation

S
j

x1 =
[
g||g⊥
g�

(hx cos � − hz sin �) S
j

x0 + g⊥hyS
j

y0

]/
g1,

S
j

y1 =
[
g||g⊥
g�

(hx cos � − hz sin �) S
j

y0 − g⊥hyS
j

x0

]/
g1,

S
j

z1 = S
j

z0, g1 = g⊥
g�

√
g2

||(hx cos � − hz sin �)2 + g2
�h2

y

(6)

is aimed at the interaction with the mw field, so that ĝB1 Sj =
g1B1S

j

x1. We have neglected the term of the interaction ∼B1S
j

z1
since it does not induce spin transitions. The Hamiltonian in
Eq. (2) can now be written as

H =
N∑

j=1

(
ωjS

j

z1 + 2�RS
j

x1 cos ω0t
)+

∑
j<k

∑
α,β=x,y,z

D
jk

αβS
j

α1S
k
β1,

(7)

where ωj = μBg�B0 is the Larmor frequency of the spin j

and �R = μBg1B1 is the Rabi frequency (� = 1). Defects of
the crystal lattice bring random contributions to the crystal
field resulting in the distribution of g⊥ and g||. We assume
here that the frequencies ωj are distributed within the EPR
line centered at ω0 and with the half-width σ � ω0. Usually
B1 � B0, and σ can be as high as several �R . The Hamiltonian
in Eq. (7) now has the same form as in the isotropic case [17],
except that D

jk

αβ are certain linear combinations of the initial

dipolar parameters d
jk

αβ . The Hamiltonian written in the rotating
reference frame (RRF) defined by the unitary transformation
R = exp(iω0t

∑N
j=1 S

j

z1) is

H ′ =
∑

j

(
εjS

j

z1 + �RS
j

x1

)

+
∑
j<k

[
Djk

zz S
j

z1S
k
z1 + D

jk
xx + D

jk
yy

2

(
S

j

x1S
k
x1 + S

j

y1S
k
y1

)]
,

(8)

where εj = ωj − ω0 is the detuning of the spin j from
resonance frequency, and we have neglected time-dependent
terms of dipolar interaction not in resonance with any possible
transition. Let us introduce a local coordinate system x̃j ,ỹj ,z̃j

in RRF associated with a given spin j (see Fig. 1). The new
spin operators that we will further mark with tildes are

S̃j
x = (

εjS
j

z1 + �RS
j

x1

)/
�j,

S̃j
y = S

j

y1, S̃j
z = (

�RS
j

z1 − εjS
j

x1

)/
�j, (9)

�j =
√

ε2
j + �2

R,

where �j is the nutation frequency of the spin j (note that
�j � �R). The Hamiltonian in Eq. (8) takes the following
form:

H ′ =
∑

j

�j S̃
j
x +

∑
j<k
αβ

D̃
jk

αβ S̃j
αS̃k

β . (10)
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FIG. 1. (Color online) Local coordinates in the rotating reference
frame associated with a given spin j (see text).

It is clear that in the absence of dipolar couplings (D̃jk

αβ = 0),
the interaction of a given spin j with the steady and mw
magnetic fields would result in its precession with frequency
�j around the x̃j axis of RRF. The dipolar interactions
introduce the correlations between the spin states so that
the dynamics of the spin j would depend on positions
and directions of the nearby spins k, which, in turn, are
also influenced by their local spin background. The average
strength of dipolar coupling in the dilute spin ensemble is
determined by the dipolar half-width 
ωd [22], which is linear
in the spin concentration C. In the case of axially symmetric
crystal field, one obtains [23]


ωd = 4π2g2
dμ

2
BC

9
√

3�
, g2

d = g4
⊥sin2� + g4

||cos2�

g2
⊥sin2� + g2

||cos2�
. (11)

Usually, C is small enough (<1020 spins/cc), so that the
condition 
ωd � σ,�R is satisfied. We can neglect all terms in
the dipolar coupling except D̃

jk
xx S̃

j
x S̃k

x , i.e., leave only a secular
part with respect to the first term of Eq. (10). Indeed, the terms
D̃

jk
xy S̃

j
x S̃k

y and D̃
jk
xz S̃

j
x S̃k

z that cause the transition of the spin k

with respect to the x̃k axis would change the total energy by
�k and are unfavorable since D̃

jk

αβ � �R . The terms D̃
jk
yy S̃

j
y S̃k

y

and D̃
jk
yz S̃

j
y S̃k

z related to mutual transitions of the spins j and k

would change the energy by �j ± �k which are, on average, of
the same order as either �R or σ . If the mw field was switched
on at the moment t = 0, then, at any time t > 0, the magnetic
moment of the spin ensemble is given by

M(t) = μB ĝTr

⎧⎨
⎩e−iH ′t ρeiH ′t

∑
j

Sj

⎫⎬
⎭ . (12)

The initial density matrix ρ can be written in the high-
temperature approximation ω0 � T , generally valid even at
liquid helium temperatures

ρ = 1

2N

∏
j

(
1 − ω0S

j

z1

T

)
. (13)

The calculation of the trace in Eq. (12) is best done on the
basis of |mj 〉, where mj = ±1 is related to the eigenvalues
±1/2 of the spin operator S̃

j
x . Depending on the experimental

pulse sequence, a certain projection of M(t) is detected. For
example, the longitudinal (parallel to B0) component of the

magnetization is

M|| (t) = −g�μBω0�
2
R

2N+2T

∑
j

�−2
j

×
∑

m1,m2,...=±1

cos

[(
�j + 1

2

∑
k

′
D̃jk

xxmk

)
t

]
, (14)

where the time-independent part of M|| is neglected, and the
prime symbol in the last sum indicates that the term with k = j

is omitted. The argument of the cosine function has a simple
interpretation: the secular part of the interaction with the spin
k shifts the nutation frequency of the spin j by D̃

jk
xxmk/2.

Summation over all possible spin directions yields

M||(t) = M0�
2
R

N

∑
j

�−2
j cos �j t

∏
k

′
cos

(
D̃jk

xxt
/

2
)
, (15)

where M0 = −Ng�μBω0/4T is the longitudinal magnetic
moment at t = 0. The dipolar factor

∏
k

′
cos(D̃jk

xxt/2) is
responsible for the decay of ROs. As seen from Eq. (15),
not all spins contribute equally to the ROs. Spins with large
detuning (εj 	 �R) have negligible impact since �2

R/�2
j �

1. Spins with moderate detuning (εj ∼ �R) represent valuable
contribution during, roughly, the first period of oscillations, but
after that, they become dephased with respect to the resonant
part of the ensemble. Since D̃

jk
xx � �R , the decay of ROs that

is caused by the dipolar interactions reveals itself long after
the first period, and we will further focus on the resonant spins
(εj � �R). The subsequent calculations involve integration
over random spin positions rk within the crystal sample
volume V and over their frequency detunings εk within
the EPR line weighted with the spectral density f (εk). We
make the following assumptions: (a) the spin coordinates can
be treated in the framework of the continuum approximation,
i.e., regardless of the discrete periodic structure of the crystal
lattice; (b) relative positions of any two spins rjk = rj − rk do
not correlate with their detunings εj and εk . These assumptions
are the basics of the statistical method of line broadening [24]
and are reasonable in the case of the spin concentrations less
than 1 at.%. Thus, the averaging procedure starts as follows∏

k

′〈
cos

(
D̃jk

xxt
/

2
)〉

rk ,ωk

=
{

1

V

∫
dεkf (εk)

∫
V

d3rk cos
(
D̃jk

xxt
/

2
)}N−1

. (16)

In the macroscopic limit N,V → ∞, while keeping
C = N/V = const., one obtains∏

k

′〈
cos

(
D̃jk

xxt
/

2
)〉

rk ,ωk

= exp

{
−C

∫
dεkf (εk)

∫
∞

d3rjk

[
1 − cos

(
D̃jk

xxt
/

2
)]}

.

(17)

Integration over rjk gives (see Appendix A)∫
∞

d3rjk

[
1 − cos

(
D̃jk

xxt
/

2
)] = 2π2g̃2μ2

B�Rt

9
√

3��k

. (18)
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FIG. 2. (Color online) Function G(ξ ) that enters the modified g

factor g̃, Eq. (19).

This result has the same form as in the isotropic case [17],
except that the isotropic g factor is now substituted for the
modified g factor g̃ that depends on the ratio g||/g⊥ and on the
angle � (i.e., the direction of B0)

g̃2 =
⎧⎨
⎩

g2
||g

2
⊥

g2
�

G
( g2

�

g2
||

)
, g|| > g⊥,

g2
⊥G

( g2
||

g2
�

)
, g|| < g⊥.

(19)

Function G(ξ ) is shown in Fig. 2. Combining this result with
Eq. (15), we obtain the longitudinal magnetization

M||(t) = M0�
2
R exp(−�dt)

∫
dεf (ε)

cos
√

�2
R + ε2t

�2
R + ε2

, (20)

or, in much the same way, the transverse (perpendicular to B0)
component of the magnetization

M⊥(t) = M0�R exp(−�dt)
∫

dεf (ε)
sin

√
�2

R + ε2t√
�2

R + ε2
, (21)

where �d is the dipolar-induced decay rate

�d = 1

2

ω̃d�R

∫
f (ε) dε√
�2

R + ε2
. (22)

The modified dipolar half-width 
ω̃d has the same form as
in Eq. (11), but with g̃ instead of gd . The function G(ξ )
can be replaced by unity in approximate calculation since
0.82 < G(ξ ) � 1. A certain choice of � would minimize g̃2

that enters the decay rate �d and, consequently, increase the
number of coherent oscillations n = �R/2π�d . This increase
is considerable only when g|| is larger than g⊥. In this case,
the favorable direction of the static magnetic field would be
close to the z axis (� = 0), with g̃min ≈ g⊥. In the case when
g|| < g⊥, only a small deviation of g̃ from the in-plane g

factor g⊥ is expected. Thus, g̃min ≈ g⊥ regardless of the ratio
g||/g⊥. Note that n indirectly depends on the direction and
strength of the mw field B1 since the latter determines the Rabi
frequency �R . The integration over ε in Eqs. (20) and (22) is

straightforward if one knows the exact EPR lineshape function
f (ε). There are, however, two important limiting cases when
the final result can be expressed in general form:

(a) Narrow line σ � �R . The lineshape function can be
approximated by Dirac δ function f (ε) = δ(ε), all spins have
their nutation frequencies equal to �R , and we obtain

�d = 
ω̃d/2, M|| (t) = M0e
−
ω̃d t/2 cos �Rt,

M⊥ (t) = M0e
−
ω̃d t/2 sin �Rt. (23)

The decay rate reaches its highest value (a half of the modified
dipolar half-width) and does not depend on the Rabi frequency.

(b) Broad line σ 	 �R . Since now only the central part of
the EPR line is excited, the lineshape function can be replaced
by its resonance value f (0), and

�d = 
ω̃df (0) �R ln
σ +

√
σ 2 + �2

R

�R

,

M|| (t) = M0πf (0) �Re−�d t j0 (�Rt) , (24)

M⊥ (t) = M0πf (0) �Re−�d tJ0 (�Rt) (σ t 	 1) .

Here, J0(ξ ) is the Bessel function of the first kind, and
j0(ξ ) = ∫ ∞

ξ
J0(ζ )dζ . In most cases, these functions can be

approximated by the slowly decaying cosine

j0 (ξ > 1) ≈ J0 (ξ + π/2)

≈
√

2(1 + (πξ )2)−1/4 cos (ξ + π/4) . (25)

While the above asymptotic relations are valid for arbi-
trary symmetric f (ε), exact results can be derived irre-
spective of �R/σ ratio in the two frequently encountered
cases of Gaussian f (G)(ε) = (2πσ 2)−1/2 exp[−ε2/2σ 2] and
Lorentzian f (L)(ε) = σ/[π (ε2 + σ 2)] lineshapes

�
(G)
d = �R
ω̃d

2σ
√

2π
exp

[(
�R

2σ

)2]
K0

[(
�R

2σ

)2]
,

�
(L)
d =

⎧⎪⎨
⎪⎩

�R
ω̃d

π
√

σ 2−�2
R

ln
σ+

√
σ 2−�2

R

�R
, �R

σ
< 1,

�R
ω̃d

π
√

�2
R−σ 2

arccos
(

σ
�R

)
, �R

σ
> 1,

(26)

where K0(ξ ) is the modified Bessel function of the second
kind. As shown in Fig. 3, �d grows monotonously with the
ratio �R/σ and tends to its limiting value 
ω̃d/2 at high Rabi
frequencies. Let us now draw a comparison between our results
and the predictions of the phenomenological models [18,19].
If the range of �R/σ is small enough, the relaxation rate can
indeed be approximated by the linear dependence in Eq. (1)
(see the dashed line in Fig. 3). However, this dependence is not
universal since the coefficients α,β depend on the point of the
curve through which a tangent line is drawn. It is clear that,
on a wider range of Rabi frequencies, the approximation in
Eq. (1) becomes incorrect. Our experimental results presented
in Sec. III confirm the nonlinearity of �d (�R).

III. RABI OSCILLATIONS IN CaWO4 : Nd3+ CRYSTAL

CaWO4 single crystal has a scheelite structure with lattice
constants a = 5.243 Å, c = 11.374 Å [25]. Nd3+ ions sub-
stitute for Ca2+ ions in the host crystal at sites with S4 point
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FIG. 3. (Color online) The dipolar-induced decay rate expressed
in units of 
ω̃d as a function of the ratio �R/σ . The two thick
lines represent the cases of Gaussian and Lorentzian lineshapes,
Eq. (26), while the two thin lines are their asymptotic approximations
calculated according to Eq. (24). The dashed line represents the linear
approximation in Eq. (1) in the range 0.05σ � �R � 0.3σ .

symmetry. The samples of Nd-doped CaWO4 single crystal
were grown using the Czochralski method in the Magnetic
Resonance Laboratory of Kazan Federal University by N. A.
Karpov. Experimental data were acquired by means of
Bruker Elexsys 580/680 X-band spectrometer working at mw
frequency ω0/2π = 9.7 GHz and at temperature T = 6 K.
Actual concentration of neodymium ions in each sample
(C = 4.00 · 1017 ÷ 1.04 · 1020 ions per cc, see Table I) was
determined by comparative measurement of the EPR line
intensities with respect to the reference sample of CaF2 : Er3+
(0.28 at.%). The continuous-wave EPR spectrum shown in
Fig. 4 contained an intense central peak arising from even
Nd isotopes with nuclear spin I = 0 (natural abundance
79.5%) and a number of hyperfine satellites coming from
143Nd (I = 7/2, 12.2%) and 145Nd (I = 7/2, 8.3%). The
lines had nearly Lorentzian lineshapes and almost equal
half-widths σ that varied with C and the sample orientation.
Our crystal field calculations, as well as the experimental data,
are in agreement with the literature g factor values g|| = 2.034
and g⊥ = 2.528 [26].

FIG. 4. (Color online) EPR spectrum of the sample no. 1. B0⊥c,
T = 15 K.

The measurements described below were taken at the
central peak and at certain 143Nd and 145Nd satellites (see
the arrows in Fig. 4). The orientation of the crystal sample in
the mw resonator was chosen to be B0 ⊥ c, B1 || c, with the
exception of the sample no. 4, where both B0 and B1 were
perpendicular to the crystal c axis. First, spin-lattice relaxation
times T1 and phase memory times T2 were obtained for each
sample in the concentration series (see Table I). The length of
π /2 pulse was 8 ns in all T1 and T2 measurements. Because
of the role of random electric fields, σ depended on the exact
orientation of B0 in ab plane, with minima and maxima of
σ at certain angles [27,28]. For comparison reasons, all the
data presented below were recorded at the minima of σ . At
the maxima, T2 and τR were several percent longer, while
T1 showed no visible variation. As for the Rabi times, this
result is much expected since, in the latter case, the mw pulse
affects fewer Nd ions. A similar increase of T2 times and their
dependence on the isotopic concentration are in accordance
with the theoretical estimations that indicate instantaneous
diffusion and spectral diffusion as dominant contributions
into the phase relaxation in CaWO4 : Nd3+ crystal [29]. The
spin-lattice relaxation times for the first three samples were in
the range T1 = 15 ÷ 25 ms and did not vary with the isotopic
concentration; these results are consistent with the literature
data [30,31], where direct and Raman processes are singled out
as being the dominant contributions. However, we cannot give

TABLE I. Concentration C of Nd3+ ions, half-width σ , inhomogeneity parameter βB1, and relaxation times T1 and T2 in the crystal samples
no. 1–4.

Sample no. 1 2 3 4

C Ions per cc 4.00×1017 1.29×1018 6.64×1018 1.04×1020

Atomic % 0.0031 0.010 0.052 0.81
σ/2π , MHz 3.5 3.4 5.0 47
βB1 0.05 0.05 0.05 0.06
T1, ms Central line 23 23 15 0.1

143Nd 23 24 16 –
145Nd 23 25 15 –

T2, μs Central line 2.5 1.0 0.4 0.14
143Nd 80 25 3.5 0.25
145Nd 100 29 4.2 0.16
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FIG. 5. (Color online) The pulse sequence that was used for
acquisition of ROs.

a direct account of the abrupt decrease of T1 in the last sample
with the highest neodymium concentration. This change may
arise as the result of local deformation of the crystal lattice near
the paramagnetic impurity and subsequent perturbation of the
vibrational spectrum of the crystal, which is more pronounced
at higher C.

Each data point of the ROs was obtained after the pulse
sequence shown in Fig. 5, where the transient pulse was
followed by the spin-echo detection sequence, which finally
gave the longitudinal component of the magnetization M||.
Some of the recorded ROs are presented in Figs. 6 and 7. Here,
M||(t) were calculated in the most general way according to
Sec. II as

M||(t) = A(t) cos(�Rt + ϕ),

A(t) ∼ [1 + (βB1�Rt)2]−3/4[1 + (π�Rt)2]−μ exp(−κ�dt).

(27)

A decay factor [1 + (βB1�Rt)2]−3/4 was added to the
amplitude A(t) in order to account for the spatial distribution
of B1 in the mw resonator [9]. The corresponding decay
rate is linear in �R: �B1 = βB1�R . However, in contrast
to the dipolar contribution exp(−κ�dt), the B1-type decay
is determined by the slowly reducing rational function. The
inhomogeneity parameter βB1 represents a relative decrease
of �R(r) at the sample edges with respect to its maximal
value �R = �R(0) at the center of the cavity. In most cases,
βB1 � 0.1, so this effect can be neglected in T1 and T2

measurements, where short pulses with the lengths less than the
Rabi period are used. For a small sample with the dimensions
lx×ly×lz placed at the center of TE011 cylindrical resonant
cavity of radius R and length L [9]

βB1 = ν2
01

(
l2
x + l2

y

)/
16R2 + π2l2

z

/
8L2, ν01 = 3.832. (28)

The parameters βB1 that were found to best describe the
experimental data in the samples no. 1–4 are presented in
Table I. They are very close to the value βB1 = 0.05 for the
3 mm sample that was estimated according to Eq. (28). The
two other parameters, 0 � ϕ � π/4 and 0 � μ � 1/4, are
determined by the ratio �R/σ . As follows from Eqs. (23) and
(24),

ϕ = 0, μ = 0 (�R/σ < 1) ,

ϕ = π/4, μ = 1/4 (�R/σ > 1) . (29)

The parameter κ that was introduced into the exponent in
Eq. (27) is the ratio of neodymium ions corresponding to the
given EPR line to the total number of Nd3+ ions in the crystal
sample: κ = 0.795, 0.015, and 0.01 for the central line, 143Nd
and 145Nd satellites, respectively.

Rabi rates τ−1
R as functions of �R collected from all four

samples are represented by symbols in Fig. 8. They are in

(a)

(b)

(c)

FIG. 6. (Color online) ROs in sample no. 3 recorded at different
strengths of the mw field (circles). Longitudinal magnetization M||(t)
(solid line) and its envelope (dashed line) were calculated accord-
ing to Eq. (27). (a) �R/2π = 1.8 MHz; (b) �R/2π = 4.5 MHz;
(c) �R/2π = 8.2 MHz.

excellent agreement with the calculated dependences (solid
and dashed lines). Rabi rates τ−1

R always grew monotonously
with �R , i.e., with the strength of the mw field. For samples
no. 1 and no. 2 with lower C, the dependence τ−1

R (�R)
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(a)

(b)

FIG. 7. (Color online) ROs in sample no. 4 (circles). Longitudi-
nal magnetization M||(t) (solid line) and its envelope (dashed line)
were calculated according to Eq. (27). �R/2π = 6 MHz. (a) Central
line; (b) 143Nd.

was almost linear, meaning that the dominant contribution
came from B1 inhomogeneity. This also accounts for the fact
that there is only a small difference between the nutation
signal of different neodymium isotopes in these samples.
On the contrary, τ−1

R (�R) of sample no. 4 was nonlinear,
indicating the domination of dipolar contribution; the decay
rates of 143Nd and 145Nd isotopes were much smaller than
the ones of the central line (see Fig. 7 and the dashed
line in Fig. 8). Note that, in our calculations, we did not
account for the dynamics of the nuclear spin of Nd ion. The
hyperfine interaction (hfi) would result in the renormalization
of �R and of the dipolar interaction parameter D̃

jk
xx , thus

changing the decay rate, especially in the case when the Larmor
frequency of the hyperfine satellite differs substantially from
that of the central line. The corresponding corrections are of
the order of |AmI |/ω0, where A is the hyperfine coupling
parameter, mI is the nuclear spin projection (see Appendix B).
Our experimental data were obtained at the closest 143Nd
and 145Nd satellites corresponding to mI = −1/2; in this
case, |AmI |/ω0 ∼ 0.01, and the hyperfine correction to τR

is negligible.

FIG. 8. (Color online) Measured (symbols) and calculated
(curves) decay rates of ROs τ−1

R as functions of Rabi frequencies
�R/2π in samples no. 1–4. Squares, triangles, and circles correspond
to the data recorded at the central line, 143Nd, and 145Nd satellites,
respectively.

As was expected, the longest coherence times were obtained
for sample no. 1. There, we observed τR up to 1 μs and
over 50 visible periods of ROs. That long-lasting transient
coherence permitted us to detect an interesting phenomenon.
In Fig. 9, one can see the amplitude modulation resulting from
the interference of the signals that come from different parts of
the crystal sample. The arrow shows the dip at t0 = 0.55 μs,
which is the first point of destructive interference. Roughly, one
expects this dip to occur when the phases of the oscillations
at the center (ϕc) and at the edge (ϕe) of the sample differ by
π . It follows from the calculations presented in our previous
paper [9] that ϕc = �Rt and ϕe = (1 + βB1)�Rt . This gives
us an estimated value t0 = π/βB1�R = 0.67 μs which is in
reasonable agreement with the experimental one.

FIG. 9. (Color online) Amplitude modulation of ROs resulting
from the interference of signals coming from different parts of
sample no. 1. The arrow points at the dip located near the time point
t = π/βB1�R .
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IV. CONCLUSIONS

This paper represents a quantitative description of ROs of
paramagnetic impurity ions in the anisotropic crystal field.
We developed a microscopic theory of dipolar relaxation
in the transient regime that contained no phenomenological
parameters and, in contrast to existing phenomenological
models, predicted nonlinear dependence of the decay rate
on the Rabi frequency. In addition, we accomplished an
experimental study of ROs in the concentration series of
Nd:CaWO4 single crystals. The experimental data obtained
for the whole range of spin concentrations, the strengths of
the mw field, and isotopic numbers of Nd ions are in excellent
agreement with our ab initio calculations.

Finally, let us discuss the relation between the spin coher-
ence times T2 and τR . In quantum computation processing,
it is advantageous to increase both these quantities in order
to obtain a higher number of qubit operations. Generally,
the ratio T2/τR depends on the spin concentration, on the
field inhomogeneity inside the crystal sample, and on the
strength of the mw field during the transient pulse and
the spin-echo sequence. Under our experimental conditions,
we found T2/τR = 1 ÷ 300. The longest τR ∼ 1 μs were
observed in the sample with the lowest spin concentration.
It was possible to increase the Rabi times by using smaller
crystal samples in order to reduce the inhomogeneity of B1,
but with the substantial loss of the signal intensity.
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APPENDIX A: CALCULATION OF
THE DIPOLAR FACTOR

Here, we calculate the integral in the left part of the Eq. (18)

J =
∫

∞
d3rjk

[
1 − cos

(
D̃jk

xxt
/

2
)]

. (A1)

First, we need to express the effective dipolar coupling D̃
jk
xx

through the initial dipolar parameters d
jk

αβ . This can be done

using Eqs. (2)–(10), and d
jk

αβ are defined by the following
relation:

∑
α,β=x,y,z

d
jk

αβSj
αSk

β

= μ2
B

�r3
jk

{
(ĝSj · ĝSk) − 3(ĝSj · rjk)(ĝSk · rjk)

r2
jk

}
. (A2)

Thus, we obtain

D̃jk
xx = − (g2

|| + g2
�)g2

⊥μ2
B�R

4�g2
�r3�k

×
{

1 − 3cos2θ + 3
g2

|| − g2
�

g2
|| + g2

�

sin2θ cos 2ϕ

}
, (A3)

where r,θ,ϕ are spherical coordinates of the vector rjk .
Integration over r yields

J = π (g2
|| + g2

�)g2
⊥μ2

B�Rt

6�g2
��k

×
∫ π/2

0
dϕ

∫ 1

0
dξ |1 − 3ξ 2 + 3δ(1 − ξ 2) cos 2ϕ| (A4)

where δ = |g2
|| − g2

�|/(g2
|| + g2

�), and finally

J = 2π2g̃2μ2
B�Rt

9
√

3��k

, g̃2 =
⎧⎨
⎩

g2
||g

2
⊥

g2
�

G
( g2

�

g2
||

)
, g|| > g⊥,

g2
⊥G

( g2
||

g2
�

)
, g|| < g⊥.

(A5)

The function G(ξ ) (Fig. 2) is expressed through the
complete elliptic integrals K(ζ ) and E(ζ ) as

G (ξ ) =
{√

1−2ξ

π

{
3E

[
ξ (2−ξ )
2α−1

] − (1 + α)K
[

ξ (2−ξ )
2α−1

]}
, 0 � ξ < 1

2 ,

G(1 − ξ ), 1
2 < ξ � 1.

(A6)

APPENDIX B: AN ACCOUNT OF
THE HYPERFINE INTERACTION

The hfi that is present in the case of 143Nd and 145Nd ions
was not included into the Hamiltonian in Eq. (2). Let us now
estimate if it has any influence on τR under our experimental
conditions. The hfi of a given neodymium ion j with its nuclear
spin I (index j is omitted below for simplicity) is

Hhf i = A||SzIz + A⊥(SxIx + SyIy), (B1)

where A|| = g||A/gJ and A⊥ = g⊥A/gJ , gJ is the Lande
g factor, A/2π = −220 MHz and A/2π = −137 MHz

represent the hyperfine coupling constants for the isotopes
143Nd and 145Nd, respectively [21]. In the electronic coordinate
system in Eq. (6), the above interaction takes the form

Hhf i =
∑

α,β=x,y,z

AαβSα1Iβ2, (B2)

where Aαβ are certain linear combinations of A|| and A⊥. Index
“2” in the operator Iβ2 denotes a specific rotation of the nuclear
coordinate system that is applied in order to exclude the terms
with Azx and Azy . Since (i) the relaxation time of the nuclear
states in magnetically diluted crystals is usually much longer
than τR , (ii) |A| � ω0, and (iii) the interaction energy of the
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nuclear spin with the external magnetic field is negligible with
respect to A, the projection mI of the nuclear spin along the
z2 axis represents a good quantum number. Indeed, the terms
of the hfi AxxSx1Ix2, AxySx1Iy2, etc. that are responsible for
the nuclear transitions are ineffective since they also change
the electron spin energy by ω0. We can now replace Iz2 with
mI and neglect the terms with Ix2 and Iy2 that mix different
nuclear spin states

Hhf i = AzzSz1mI + (AxzSx1 + AyzSy1)mI . (B3)

This interaction should be added to each j term of the
Hamiltonian in Eq. (7). The first part in the right-hand side of
Eq. (B3) gives a shift AzzmI of the spin Larmor frequency ω

that results in the complex hyperfine structure which is clearly
visible in the EPR spectrum (see Fig. 4). Since the second part

of Eq. (B3) contains no time-dependent terms ∼e±iω0t , it does
not shift �R directly. Instead, it slightly tilts the quantization
axis of the electron spin from z1 direction and finally yields
rather small (� a factor of |AmI |/ω0) corrections to ω, �R ,
and to the dipolar coupling parameters. The full expressions
with explicit dependences on B0 and B1 direction cosines
are rather cumbersome and need not be given here. Note
that our experimental data were obtained at the central line
(I = 0) and at the closest 143Nd and 145Nd satellites (I = 7/2,
mI = −1/2); in the latter case, |AmI |/ω0 ∼ 0.01, and the
hyperfine correction to τR is negligible. Even for the most
distant satellites with mI = ±7/2, this correction is rather
small. However, at radio frequencies (ω0/2π ∼ 300 MHz), hfi
would definitely play an important role. The theory in this
specific case cannot be based on the perturbation approach
and lies beyond the scope of this paper.
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