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Dielectric response of laser-excited silicon at finite electron temperature
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We calculate the dielectric response of excited crystalline silicon in electron thermal equilibrium by adiabatic
time-dependent density functional theory (TDDFT) to model the response to irradiation by high-intensity laser
pulses. The real part of the dielectric function is characterized by the strong negative behavior at low frequencies
due to excited electron-hole pairs. The response agrees rather well with the numerical pump-probe calculations
which simulate electronic excitations in nonequilibrium phase immediately after the laser pulse irradiation. The
thermal response is also compared with the Drude model which includes electron effective mass and collision
time as fitting parameters. We find that the extracted effective masses are in the range of 0.22–0.36 and lifetimes
are in the range of 1–14 fs depending on the temperature. The short Drude lifetimes show that strong damping is
possible in the adiabatic TDDFT, despite the absence of explicit electron-electron collisions.
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I. INTRODUCTION

Properties of dielectrics irradiated by high-intensity and
ultrashort laser pulses have been attracting substantial interest
from both fundamental and technological points of view [1–5].
We are investigating the theory of the dielectric response
of materials to high fields at times shorter than the full
local equilibration time. Time-domain electron dynamics
simulation based on the time-dependent density functional
theory (TDDFT) is quite promising for describing the earliest
time. This is the subject of a companion paper [6] where we
reported numerical simulations of pump-probe experiments.
This theory should describe the formation of electron-hole
excitations in insulating materials and the energy deposited
in them. At the next time scale, the electron-hole excitations
will come to an equilibrium, allowing one to treat the system
as a thermalized electron-hole plasma with fixed numbers of
electrons and holes. The dielectric properties of this state are
the subject of the present paper. We will discuss them in
crystalline silicon as in Ref. [6]. At even later times, the atomic
degrees of freedom will be thermalized as well. That complete
plasma equilibrium is beyond the scope of the present work.
The two-temperature model assuming a much smaller time
scale of electronic equilibrium than that of phonons is well
established, see Ref. [7]. We will consider the response of
thermalized electrons ignoring atomic motions, keeping them
at equilibrium positions in the ground state. This treatment
should be reasonable at times before a substantial part of the
electronic excitation energies is transferred to lattice motions.

We employ a static density functional theory (DFT) at
finite temperature to describe the thermalized electronic state.
An extension of the DFT to nonzero electronic temperature
was first considered in [8], employing the grand canoni-
cal ensemble and introducing a chemical potential for the
electrons. Recent developments of finite temperature DFT
include discussions on basic aspects of the theory such as the
conditions for the validity of the adiabatic connection formula
[9] and applications to electrochemical reactions [10]. The
finite temperature DFT has been applied to the properties

of matter excited by intense and ultrashort laser pulses. For
example, in Ref. [11] lattice properties of laser-excited solids
were investigated using density functional perturbation theory
with the Fermi-Dirac distribution for electrons. In Ref. [12]
finite temperature DFT results were utilized to analyze solid
aluminum excited by XUV pulses. Our implementation of
finite temperature DFT will use the grand canonical ensemble
for the occupation in the static solution. We then calculate
the dielectric response in the linear response using a real-time
method [13,14].

Present thermal model calculations are different from pre-
vious numerical pump-probe simulations [6] in the population
distribution of electrons. The numerical pump-probe simu-
lations describe electronic states immediately after the laser
irradiation, which are highly nonequilibrium and anisotropic.
On the other hand, the present electronic thermal model
describes thermalized, isotropic electronic states. In spite of
these differences, we will show that many features of response
in the elaborated numerical pump-probe experiments may
be reproduced even at a quantitative level with the finite
temperature calculation, if we compare two systems at the
same number of excited electrons. We also compare with
a simple Drude response embedding the free electrons in a
dielectric medium [15–17].

The construction of the paper is as follows. In Sec. II we
describe the theoretical framework of the finite temperature
model and present calculated results. In Sec. III we compare
the results with the Drude model. In Sec. IV we compare results
of the finite temperature model with results of numerical pump-
probe experiments. Our findings are summarized in Sec. V.

II. ELECTRONIC THERMAL MODEL

A. Ground state

We model the electronic state of crystalline silicon after
irradiation of a high-intensity laser pulse by static DFT for a
thermal ensemble of electrons. Atomic positions are kept at
their equilibrium positions in the ground state, assuming that
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electron thermalization time is so short that atomic motions
may be ignored. The Kohn-Sham equation for orbitals is given
by {

− �
2

2me

∇2 + Vion +
∫

d�r ′ e2

|�r − �r ′|ρ
T (�r ′) + μxc

}
φi(�r)

= εiφi(�r). (1)

The electron density at temperature T , ρT (�r), is given by

ρT (�r) =
∑

i

nT
i |φi(�r)|2, (2)

where nT
i is the temperature-dependent occupation number of

Fermi-Dirac distribution,

nT
i = 1

1 + e(εi−μ)/kBT
. (3)

Here εi is the energy of electron orbitals, μ is the chemical
potential, and kBT is the temperature in energy units. We note
that all the quantities related to the orbitals φi , εi , and μ depend
on the temperature T due to the self-consistency requirement.

For the present purpose it is essential to use a functional
which reproduces both indirect and direct band gaps. The
reproduction of the indirect band gap is important to produce
correct density of electron-hole pairs for a given electronic
temperature. The reproduction of the direct band gap is
important for reasonable descriptions of the optical properties.
We choose the meta-GGA (generalized-gradient approxima-
tion) potential of Tran and Blaha [18] for the exchange-
correlation potential μxc. The meta-GGA potential depends
on the density ρT (�r), the gradient of the density |∇ρT (�r)|,
and the kinetic energy density τT (�r) = ∑

i n
T
i |∇φi(�r)|2. The

Tran-Blaha meta-GGA potential is known to resolve to some
extent the band gap problem inherent to the local density
approximation. It includes a parameter c to which the band gap
is sensitive [19]. We treat it empirically, determining c = 1.04
which reproduces the measured indirect band gap of silicon at
1.17 eV. As will be shown later, the optical gap is also found
to be described reasonably. The calculated optical gap is about
3.1 eV, in reasonable agreement with the experimental optical
gap 3.4 eV [20].

Practical calculations are achieved as follows. We consider
only valence electron orbitals treating electron-ion interaction
by a norm-conserving pseudopotential [21,22]. We use a
three-dimensional grid representation to represent orbital wave
functions. The cubic unit cell of a side length a = 10.26 a.u.
containing eight silicon atoms is discretized into 203 grid
points. The k space is also discretized into 323 grid points.

Figure 1 shows the number density of excited electrons as
a function of electron temperature for crystalline silicon. Here
we define the number density of excited electrons ne-h by

ne-h = 1

�

∑
i=cond.

nT
i , (4)

where the sum is carried out for conduction bands.
As seen from the figure, the number density of excited

electrons monotonically increases as the electron temperature
increases. At electron temperature of 1.0 eV, which corre-
sponds to 11 600 K, the number density of electron-hole pairs is
0.2 per atom, indicating excitations of 5% of valence electrons.
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FIG. 1. (Color online) The number density of electron-hole pairs
is shown as a function of electronic temperature in the thermal DFT
calculation of crystalline silicon.

We note that electronic temperatures and number densities
of excited electrons shown in Fig. 1 correspond to values of
physical interests. It has been often argued that the critical
electron density is related to the laser damage threshold. The
critical electron density is so defined that the plasma frequency
of excited carriers coincides with the laser frequency. For Si
at λ = 625 nm, it is estimated to be nc = 8.7 × 1021 cm−3

[15]. We also note that several experiments have observed
laser-excited solids where the number density of excited
electrons exceeds 1022 cm−3 [15,23]. In theoretical ab initio
calculations, transition of laser-irradiated silicon into liquid
phase has been discussed [24]. In the analysis, initial electronic
temperature which is necessary for liquid transition is reported
to be 25 000 K (2.15 eV). In [11], instabilities of phonon modes
of silicon are reported following thermal electronic excitations
at temperature 1.5 eV.

Figure 2 shows occupation distributions at various temper-
atures, as well as the density of states shown by the black
solid line. At temperatures around 1 eV, we find a substantial
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FIG. 2. (Color online) Occupation number distribution of silicon
at various temperatures. The density of states is also shown by the
black solid line.
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excitations of electrons from orbitals within 3 eV below the
highest occupied orbital to orbitals within 5 eV above the
lowest unoccupied orbitals. From the figure, we find that
there is little change in the amount of band gap for wide
temperatures. In literature [25,26], changes of band gap due
to band gap renormalization effect [26] and to a decrease
of electron-hole attraction [25] have been investigated. They
are originated from screening effects by excited carriers. We
consider that these correlation effects are not properly treated
in our thermal TDDFT calculation with meta-GGA potential.

B. Linear response

We calculate dielectric properties of the medium in the
adiabatic TDDFT using the same Tran-Blaha meta-GGA
potential for the response calculation. Numerically we solve
the following time-dependent Kohn-Sham equation in real
time to calculate the dielectric property:

i�
∂

∂t
ψi(�r,t) =

{
1

2me

[
�p + e

c
�A(t)

]2
+ Vion

+
∫

d�r ′ e2

|�r − �r ′|ρ(�r ′,t) + μxc

}
ψi(�r,t).

(5)

The density ρ(�r,t) is constructed from time-dependent orbitals
as ρ(�r,t) = ∑

i n
T
i |ψi(�r,t)|2, using the occupation numbers in

the ground states. To explore the dielectric property, we apply
a distorting vector potential of step function in time [14,27]:

�A(t) = �eβA0θ (t), (6)

where �eβ is a unit vector in the β direction. We calculate the
current flowing within the unit cell from the solution by

�J (t) = − e

�

∑
i

nT
i

∫
�

d�rd�r ′ψ∗
i (�r,t)�v(�r,�r ′)ψi(�r ′,t), (7)

where � is a volume of the unit cell and the velocity operator
�v(�r,�r ′) is defined by

�v(�r,�r ′) = − i�

me

�∇δ(�r,�r ′) + 1

i�

[�rV NL
ps (�r,�r ′) − V NL

ps (�r,�r ′)�r ′],
(8)

where V NL
ps is the nonlocal part of the pseudopotential. The

conductivity is calculated from the induced current by

σαβ(ω) = − c

A0

∫ T

0
dteiωtW (t/T )Jα(t), (9)

where Jα(t) is the α component of �J (t), and T is the duration
of time evolution. We use the mask function W (x) given
by W (x) = 1 − 3x2 + 2x3 [28]. The dielectric function is
obtained from the conductivity by

εαβ(ω) = δαβ + 4πiσαβ (ω)

ω
. (10)

In silicon, only diagonal element appears in the thermal model
εαβ(ω) = δαβε(ω).

In time evolution calculations we use the same grid points in
the real space and the k space as those in the static calculation.
The time propagation is computed using a fourth-order Taylor

-80

-60

-40

-20

 0

 20

 40

R
e[

ε(
ω

)]

0.0 eV
0.2 eV
0.4 eV
0.6 eV
0.8 eV
1.0 eV
1.2 eV
1.4 eV

-10

 0

 10

 20

 30

 40

 50

 60

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Im
[ε

(ω
)]

ω (eV/-h)

FIG. 3. (Color online) The dielectric function of silicon in the
finite temperature model at several temperatures. Top panel shows
the real part of the dielectric function, and the bottom panel shows
the imaginary part.

expansion method [13], with a time step of �t = 0.04 a.u. The
total duration of the time evolution is T = 1280 a.u. with the
number of time steps NT = 32 000.

In Fig. 3 we show dielectric functions of silicon at several
electron temperatures. In the real part of the dielectric function,
all responses at finite temperatures show a strong negative
behavior at low frequencies. This Drude-like behavior comes
from excited electron-hole pairs. The low energy component
of the imaginary part shows absorptive contributions at low
frequencies, increasing monotonically as the temperature
increases. In our previous study employing numerical pump-
probe experiments [6] which catch nonequilibrium distri-
butions of electron-hole pairs, we have observed a similar
behavior of Drude-like divergence in the real part. However,
the absorptive contribution in the imaginary part was not
observed.

A convenient way to exhibit the plasmon contribution to
the response is to plot the imaginary part of the inverse
dielectric function Imε−1. This is shown in Fig. 4 for several
temperatures up to kBT = 1.4 eV. At the lowest temperature,
one sees a very sharp plasmon peak, located at an energy
of ∼0.4 eV. The plasmon excitation energy increases with
temperature, due to the increased density of electron-hole
pairs. We note that the width of the plasmon also increases
with temperature, up to about kBT ≈ 0.6 eV. Beyond that,
the width does not change very much, up to the maximum
temperature considered.

We note that local field corrections are not important in the
above results. Namely, results shown above hardly change if
we fix the Kohn-Sham Hamiltonian in Eq. (5) to that in the
thermal ground state.

174303-3



S. A. SATO, Y. SHINOHARA, T. OTOBE, AND K. YABANA PHYSICAL REVIEW B 90, 174303 (2014)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-I
m

[ε
-1

(ω
)]

ω (eV/-h)

0.3 eV
0.4 eV
0.6 eV
0.8 eV
1.0 eV
1.2 eV
1.4 eV

FIG. 4. (Color online) The imaginary part of the inverse dielec-
tric function for various electronic temperatures.

III. COMPARISON WITH FREE-CARRIER MODELS

The dielectric response of solids excited by intense and
ultrashort laser pulses is often modeled by a simplified
dielectric function, adding a Drude-like component to the
dielectric function in the ground state [16,17]. In this section
we will show that a model of this kind can reproduce quite
well our calculated finite-temperature response.

We consider a model proposed by Sokolowski-Tinten and
von der Lind [15], which we shall call the SL model. They
consider three physical effects for the dielectric response of
the laser-excited semiconductor: (i) state and band filling,
(ii) renormalization of the band structure, and (iii) the free-
carrier response. The SL dielectric function is parametrized
as

εSL(ω) = 1 + [ε0(ω + �Egap) − 1]
n0 − neh

n0

− 4π
e2neh

m∗ω(ω + i/τ )
. (11)

Here ε0(ω) is the dielectric function in the ground state for
which we employ the one calculated at zero temperature.
�Egap is the change of the band gap by the laser irradiation
for which the calculated shift of the gap energy is used. neh is
the electron-hole pair density for which we use the calculated
values. Three other parameters are: the effective mass m∗,

the Drude damping time τ , and the active number of valence
electrons n0. These are treated as fitting parameters.

The fit is carried out by minimizing the mean square error
as given by

Ierror =
∫ ωf

ωi

dω
∣∣ε−1

T (ω) − ε−1
SL (ω)

∣∣2
, (12)

where εT (ω) is the dielectric function in the thermal model. We
take the interval �ωi = 0.3 eV and �ωf = 6.0 eV. The quality
of the fit is shown in Fig. 5 for temperatures of kBT = 1.4 and
0.4 eV in the thermal model. The fit is very good except for
the Imε at the lowest frequencies. In particular, the plasmon
peak in the inverse dielectric function is very well reproduced.

In Fig. 6 we show the fitted effective mass m∗ and the
collision time τ as functions of the temperature in the thermal
model. The top panel shows that the effective mass m∗
increases as the temperature increases. We have found a similar
behavior in the numerical pump-probe experiments in Ref. [6].
The change of effective mass may be understood by the change
of the distribution of the electron-hole pairs in k space.

The bottom panel of Fig. 6 shows that the damping time
τ becomes very small as the electron temperature increases.
The value of τ monotonically decreases and reaches a value
of 1.0 fs at kBT ≈ 1.4 eV. At first sight this is puzzling,
because there are no explicit collision effects in either the
TDKS equation or in the thermal model in the adiabatic meta-
GGA which we adopted. Since we fix ion positions during
time evolution calculations of orbitals, no electron-phonon
interactions are taken into account. In spite of them, our
plasmon peak has a large damping, corresponding to collision
times as short as 1.0 fs in the thermal model. We consider
that the damping arises from the elastic scattering of electrons
from ionic core potentials. Since the electron-ion interactions
constitute periodic potential for electrons, we may equivalently
say that the damping is due to the interband transitions of
excited carriers. We note that TDDFT treatment of linear
response describes the dielectric function of metals fairly well,
including the width of plasmon seen in the inverse dielectric
function [14].
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FIG. 5. (Color online) Comparison of the thermal model and a fit with the SL model. The electronic temperature in the thermal model is
kBT = 0.4 eV (left) and 1.4 eV (right).
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IV. COMPARISON WITH NUMERICAL PUMP-PROBE
EXPERIMENTS

In the preceding paper [6] we have carried out numerical
pump-probe experiments to extract dielectric properties of
laser-excited silicon immediately after irradiation by the laser
pulse. This method catches fully the nonequilibrium nature
of the excited electrons. The difference between the numerical
pump-probe calculations and the present thermal model comes
entirely from the different electron-hole distributions in the
excited system to be probed. In this section we compare their
predicted dielectric functions.

In the numerical pump-probe calculation we solve the
TDKS equation in real time where the electric fields of both
pump and probe pulses are included. The pump electric field
EP (t) excites electrons and the probe electric field Ep(t) is
used to extract dielectric properties of excited silicon. The
dielectric properties are examined from the currents induced by
the electric fields. In practice, we performed two calculations.
In one calculation, we include both pump and probe electric
fields EP (t) + Ep(t) in the TDKS equation. We denote the
current in this numerical pump-probe calculation as JPp(t).
The other calculation includes only the pump field EP (t) and
we denote the current as JP (t). The difference of the currents
Jp(t) = JPp(t) − JP (t) brings information of excited silicon.
The electric conductivity σ (ω) of excited silicon is given by

σ (ω) =
∫

dtJp(t)eiωt∫
dtEp(t)eiωt

, (13)

and the dielectric function by ε(ω) = 1 + 4πiσ (ω)/ω. In the
numerical pump-probe experiment, we note that the responses
are not isotropic but depend on the angle between electric

10-6

10-5

10-4

10-3

10-2

10-1

100

1010 1011 1012 1013

N
um

be
r d

en
si

ty
 o

f e
xc

ite
d 

el
ec

tro
ns

 
  (

/A
to

m
)

Intensity  (W/cm2)

Critical density

aI2

FIG. 7. (Color online) The number density of electron-hole pairs
of the crystalline silicon in the final state following the pulsed
excitation as a function of the maximum pump intensity determined
as I = cE2

0/8π . The critical density is indicated by the horizontal
line. The squared intensity line normalized at 1010 W/cm2 is also
shown by the blue-dotted line. Taken from [6].

fields of pump and probe fields. We consider two cases: the
pump and probe electric fields are parallel and perpendicular
to each other.

To compare results of the thermal model with those of the
numerical pump-probe experiments, we first need to assume a
correspondence between the excited systems that we wish to
compare. Since the plasmon characteristics are closely tied to
the number of electron-hole pairs, we shall use that measure
to make the comparison.

In Ref. [6] we reported calculations solving the TDKS
equation with the electric field of the applied laser pulse whose
vector potential is given by

A(t) =
{

−c E0
ωP

cos (ωt) sin2(πt/τL) (0 < t < τL)

0 (otherwise),
(14)

where ω and τL is the average frequency and the time length of
the laser pulse, respectively. E0 is the maximum electric field
strength in the medium. We denote the maximum intensity
of the pulse given by I = cE2

0/8π . Using the laser pulse
of the frequency �ω = 1.55 eV and the duration of the
pulse τL = 18 fs, the number density of excited electrons is
calculated for laser pulses of several intensities. We show the
result in Fig. 7 which is taken from [6]. Combining Figs. 7
and 1 we can relate the laser intensity I and the electronic
temperature kBT through the number density of electron-hole
pairs neh. For example, in the TDKS calculation using the
laser pulse of I = 1.0 × 1012 W/cm2 excites electron hole
pairs of neh = 0.016/atom. From Fig. 1 the corresponding
temperature is given by kBT = 0.4 eV. For the laser pulse
of I = 5.0 × 1012 W/cm2, the density of electron-hole pair
is neh = 0.31/atom. Corresponding temperature is kBT =
1.4 eV. In the following we use neh to specify calculations
of the finite temperature model and the numerical pump-probe
experiments.

We show a comparison of dielectric function by two meth-
ods for two cases, neh = 0.016/atom and neh = 0.31/atom, in
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Fig. 8. The black lines show dielectric function of thermal
model. The red-dashed line and the blue-dotted line show
the results of the numerical pump-probe calculations for
probe polarization parallel and perpendicular to the pump,
respectively.

As seen from the figure, the real part of the dielectric
function of silicon excited by the pump pulse is close to
the thermal model for two cases. At lower excitation of
neh = 0.016/atom, the thermal model is close to the pulsed
excitation in the parallel probing. At higher excitation of
neh = 0.31/atom, the thermal model is again close to the
pulsed excitation in the parallel probing at higher frequencies
(�ω > 1 eV) and is between the parallel and perpendicular
probings at low frequencies (�ω < 1 eV). The imaginary
part of the dielectric function looks rather different. While
the thermal model predicts the positive imaginary part below
the band gap, the pulse-excited silicon shows a much smaller
value, even negative in certain frequencies.

The difference between two calculations comes entirely
from different distributions of electron-hole pairs: thermal
equilibrium distributions in the thermal model and nonequilib-
rium distributions in the numerical pump-probe simulation. To
clarify the difference, we investigate population distributions
in energy and momentum space.

We first denote the orbital index {i} in terms of {b,�k},
where b indicates bands and �k indicates the Bloch momentum.
Occupation numbers are expressed as nX

b�k , where X = T

for thermal model and X = NPP for numerical pump-probe
simulation. We define the occupation distribution function by

f X(�k,ε) =
∑

b

nX

b�kδ
(
ε − εX

b�k
)
. (15)

For numerical pump-probe simulation, we define the energy
eigenvalue εNPP

b�k by solving the following Kohn-Sham equa-
tion:

ĥNPP
KS (tf )φNPP

b�k = εNPP
b�k φNPP

b�k , (16)
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FIG. 9. (Color online) Population distribution of electrons and
holes in laser-excited silicon.

where hNPP
KS (tf ) is the time-dependent Kohn-Sham Hamilto-

nian at time tf when the laser pulse ended. The occupation
number in the numerical pump-probe simulation is defined by

nNPP
b�k =

∑
b′ �k′

∣∣〈φNPP
b�k

∣∣ψNPP
b′ �k′ (tf )

〉∣∣2
, (17)

where ψNPP
b�k is the solution of Eq. (5) at time tf .

Using the occupation distribution function, we first calcu-
late the occupation distribution as a function of energy,

DX(ε) =
∑

�k
{f X(�k,ε) − f 0(�k,ε)}, (18)

where f 0(�k,ε) is the occupation distribution function in the
ground state at zero temperature. The calculated results are
shown in Fig. 9 for cases when ne-h = 0.31/atom. The red-
solid line shows the distribution of the numerical pump-probe
simulation, and the green-dotted line shows that of the thermal
model. We set the highest energy of the valence band to zero.
Positive values at a positive energy region show distribution
of electrons in the conduction band, while negative values
at a negative energy region show the hole distribution in the
valence band.

From the figure we observe that electrons and holes
distribute in a wider energy region in the numerical pump-
probe simulation than those in the electron thermal model. The
decrease of the lower energy electron-hole and the increase
of higher energy electron-hole in the numerical pump-probe
simulation may cause optical emissions which negatively
contribute to the imaginary part of the dielectric function.
This explains small or even negative values of the imaginary
part of the dielectric function in the numerical pump-probe
simulation.

To further clarify the difference in electron-hole distribu-
tions, we calculate the distribution in the Bloch momentum
space. We note that the Bloch momentum does not correspond
to that in the primitive cell since we employ the cubic unit cell
containing eight silicon atoms in our calculation. We define
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excited electrons
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FIG. 10. (Color online) Population distributions of excited electrons and holes in the Bloch momentum space. (a) The excited electron
(left-hand side) and hole (right-hand side) distributions in the thermal model at electron temperature kBT = 1.4 eV, while (b) shows the excited
electron distribution in the numerical pump-probe method at the pump intensity I = 5.0 × 1012 W/cm2. The population distributions are shown
in the kx-kz plane integrating over ky .

the distribution of electrons in the following way:

DX
e (�k) =

∫ ∞

0
dε

{
f X(�k,ε) − f 0(�k,ε)

}
. (19)

For the distribution of holes, integration is achieved for ε < 0.
We note that there holds DNPP

e (�k) = −DNPP
h (�k).

Figure 10(a) shows the distributions of electrons and holes
in the thermal model at electron temperature T = 1.4 eV,
while Fig. 10(b) shows the distribution of electrons in the
numerical pump-probe simulation at the pump intensity
I = 5.0 × 1012 W/cm2. The polarization direction of the
pump pulse is set parallel to z direction. In both panels,
distributions integrated over ky are shown in the kx-kz plane.
As is evident from Figs. 10(a) and 10(b), there is a large
difference in the distribution in momentum space between
the thermal model and the numerical pump-probe simulation.
In the thermal model, distributions of electrons and holes
are different, reflecting the indirect band gap structure. The
distribution in the numerical pump-probe simulation shows
much more complex, structured, and nonuniform behavior
than that in the thermal model, since electrons and holes are in
nonequilibrium phase immediately after the laser irradiation.
We note that the real parts of the dielectric functions do
not show large differences between two calculations (see
Fig. 8). This indicates that the real part of dielectric function
is sensitive to the number density of excited electrons, not to
the detailed distribution of electrons and holes.

We thus conclude that the thermal model describes the
real part of the dielectric function quite well, provided the
number density of electron-hole pairs is the same. The dif-
ference between two calculations comes from the nonthermal
distribution of electron-hole pairs in numerical pump-probe
simulation. It seems that the difference is more evident for
the imaginary part. A nonequilibrium phase of electronic
excitations manifests more sensitively in the imaginary part
of the dielectric function.

V. SUMMARY

We investigated the change of dielectric response induced
by intense and ultrashort laser pulses by a thermal model,
assuming electronic equilibrium. This description is expected

to apply to excited matter after a few tens of femtoseconds
following the laser irradiation. We first solved the static Kohn-
Sham equation with finite temperature Fermi-Dirac function
occupation factors. Its dielectric response was then computed
by applying the linear response theory using the real-time
method.

The calculated thermal dielectric function is characterized
by the strong negative behavior in the real part at low frequen-
cies caused by excited electron-hole pairs. The imaginary part
shows absorptive contributions at low frequencies, increasing
monotonically as the temperature increases. Plotting it in the
inverse dielectric function, a sharp plasmon feature manifests
clearly. The frequency of the plasmon increases monotonically
with temperature due to the increased density of electron-hole
pairs. The width also increases at low temperature region, then
becomes almost constant.

The thermal dielectric function is compared with a simple
Drude model of free-electron dynamics, embedded in the
dielectric medium corresponding to the ground state. There are
three basic parameters determining the electron-hole plasma
properties, namely the density of electron-hole pairs, their
effective mass m∗, and the collision time τ . The density of
electron-hole pairs is known from the thermal ground state
calculation, but the other quantities are fit. We find the collision
time of as short as 1.0 fs gives reasonable fit. This short value
for the collision time is unexpected, since there are no explicit
collision terms in the time-dependent Kohn-Sham equation
that we solve. We consider the short collision time comes
from the elastic scattering of electrons from atoms.

We also compared the thermal dielectric function with
that derived from numerical pump-probe calculation in which
electronic response is derived from time evolution of Kohn-
Sham orbitals under electric fields of both pump and probe
pulses. The numerical pump-probe simulation describes the
response of excited matter in the nonequilibrium state reached
just after the pulse has been applied. We find the real part of
the dielectric function shows reasonable correspondence if we
compare them at the same number density of electron-hole
pairs. However, the imaginary part shows marked difference.
The thermal dielectric function shows positive imaginary
part, while the numerical pump-probe calculation gives small
contribution in the imaginary part, even negative contribution.
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The above difference comes from the distributions of
electrons and holes. To clarify the origin of the difference,
we investigated the distribution in energy and momentum
space. From the population distribution in energy domain,
we found that electrons and holes distribute in a wider energy
region in the numerical pump-probe simulation than those
in the thermal model. The decrease of the lower energy
electron-hole and the increase of higher energy electron-hole
in the numerical pump-probe simulation may cause optical
emission which negatively contribute to the imaginary part of
the dielectric function. This explains small or even negative
values of the imaginary part of the dielectric function in
the numerical pump-probe simulation. From the population
distribution in Bloch momentum, we found large differences
between the thermal model and the pump-probe simulation.
The distribution in the numerical pump-probe simulation is
very structured and nonuniform compared with the thermal
case, reflecting nonequilibrium phase immediately after the
end of the incident pulse.

In spite of the large difference of the electron-hole distribu-
tions between the thermal model and the numerical pump-
probe simulation, the real parts of the dielectric functions

are qualitatively similar. Moreover, the real parts of the
dielectric functions in both cases can be well described
by the Drude model. The real part of the dielectric is
well described by the Drude model using only the num-
ber density of excited-electrons and the effective mass.
Therefore, we may validate the estimation of the number
density of excited-electrons in laser-excited solids using the
Drude model for both nonequilibrium and thermal phases,
based on the microscopic treatment of the quantum electron
dynamics.
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