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Two-parameter scaling theory of transport near a spectral node
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We investigate the finite-size scaling behavior of the conductivity in a two-dimensional Dirac electron gas
within a chiral sigma model. Based on the fact that the conductivity is a function of system size times scattering
rate, we obtain a two-parameter scaling flow toward a finite fixed point. The latter is the minimal conductivity of
the infinite system. Depending on boundary conditions, we also observe unstable fixed points with conductivities
much larger than the experimentally observed values, which may account for results found in some numerical
simulations. By including a spectral gap we extend our scaling approach to describe a metal-insulator transition.
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Transport in a one-band metal is based on the dynamics
of noninteracting electrons, which are subject to random
scattering. Physical quantities, such as the conductivity or the
electronic diffusion coefficient, are obtained after averaging
with respect to a random distribution of the scatterers. Then
transport properties are controlled by large-scale correlations
in the electronic system, which occur due to spontaneous
symmetry breaking. The order parameter of the latter is the
average density of states [1], while the symmetry depends on
the specific form of the Hamiltonian H . Weak fluctuations on
large scales around the symmetry-breaking saddle point are
obtained by a gradient expansion, which has the action of a
nonlinear sigma model (NLSM) [1–3]:

S = 1

t
Tr(∂μQ∂μQ), (1)

with the nonlinear field Q. (A symmetry-breaking term is
omitted here.) The latter is determined by the underlying
symmetry of the two-particle Green’s function G(z)G(z∗)
with G(z) = (H − z)−1, rather than by the symmetry of the
Hamiltonian H itself.

A particular class of metallic systems consists of two
electronic bands with spectral nodes, where the Hamiltonian
is expanded in terms of Pauli matrices τj . Prominent examples
are graphene [4,5], topological insulators [6,7], and quasi-
particles in D-wave superconductors [8,9] with the generic
Hamiltonian

H = H0 + V, H0 = hxτx + hyτy + hzτz, (2)

where V is random with mean zero and variance g. In the
special case of graphene, we have for the vicinity of each
node hx = vF px , hy = vF py with the Fermi velocity vF , the
components of the momentum pj , and the gap parameter hz =
m. All explicit calculations will use this specific case of H .

A number of different nonlinear fields Q has been proposed
for two bands [8–11]. The reason for this variety of symmetry
groups is that there are actually two major approaches for
studying the symmetry: Either the supersymmetry is enforced
by construction [12] or spontaneous supersymmetry breaking
is permitted [13].

Motivated by the accurate transport measurements in
graphene [4,5,14–17], there has been much activity from the
theoretical side to evaluate transport quantities such as the
conductivity σ . In most calculations it is assumed that disorder
is rather smooth, which implies the absence of internode

scattering. Of particular interest is the size dependence, since
typical graphene samples are rather small and vary in size from
sample to sample. The behavior of σ under a change of the
linear system size L has been studied numerically [18–20].
There are two characteristic observations, namely (i) that the
σ (L) increases logarithmically with L and with the disorder
strength, and (ii) that the β function β = d log σ/d log L

is always positive but decreases monotonically without a
finite fixed point. These results disagree substantially with
earlier speculations on the shape of the β function, where
two finite fixed points were proposed [11]. Given the fact
that there is a very robust minimal conductivity σmin ∝ e2/h

in the experiments, it is rather surprising that the numerical
calculations do not indicate the existence of a finite fixed point
for the conductivity. This might be a hint that the simulations
have not reached the asymptotic regime.

In the following, we assume weak and slowly varying
disorder so that there is no scattering between different
spectral nodes. Then we briefly discuss the realization of the
chiral sigma model (CSM) with broken supersymmetry for a
two-band system of Ref. [9] and evaluate the corresponding
finite-size scaling of the conductivity. Although the β function
is sensitive to the existence or absence of a zero mode in
the finite system, it always describes a flow toward a finite
attractive fixed point that agrees with the minimal conductivity
at the Dirac node. This provides a surprisingly simple two-
parameter scaling picture for transport in two-band metals
with a spectral node.

There are several options to evaluate the transport properties
at the Dirac node. One is based on the diffusion coefficient

D0 = lim
ε→0

ε2
∑

r

r2
k Tr2〈Gr0(iε)G0r(−iε)〉d , (3)

another one is provided by the Kubo formula of the conduc-
tivity as

σ (ω) = −e2ω2

2h

∑
r

r2
k Tr2〈Gr0(ω/2)G0r(−ω/2)〉d , (4)

for the response to an external electromagnetic field with
frequency ω. Tr2 is the trace with respect to the Pauli
matrices of the two-band Hamiltonian. These expressions
are connected by the analytic continuation ε → iω/2. The
correlation function

Krr′ = 〈Grr′ (iε)Gr′r(−iε)〉d , (5)
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which appears in both expressions from the average 〈. . .〉d
with respect to random scatterers, is available from a field-
theoretical calculation [24]. This is based on the symmetry
relation −τxH

∗
0 τx = H0 of the two-band Hamiltonian. A

consequence is that the energy eigenfunction in the upper and
the lower band are related as �−E = τx�

∗
E . It allows us to

write

G(−iε) = (H0 + V − iε)−1 = −τx(H ∗
0 − V + iε)−1τx, (6)

which implies the chiral symmetry eŜĤ eŜ = Ĥ for

Ĥ =
(

H0 + V 0
0 H ∗

0 − V

)
, Ŝ =

(
0 ϕτx

ϕ′τx 0

)
. (7)

The symmetry group depends only on the single pair of
Grassmann variables (ϕ,ϕ′). Thus, the nonlinear field is
Q = eŜ and we can write

Krr′ = 4η2

g2

1

N

∫
ϕrϕ

′
r′e

−S2D[ϕ], N =
∫

e−S2D[ϕ], (8)

with the bilinear CSM action

S2 = 4η

g
[εTr(ϕϕ′) + DTr(∂μϕ∂μϕ′)]. (9)

It should be noticed that the bilinear form is characteristic for
the Dirac node. There are also quartic terms away from the
node [28]. D is the (renormalized) diffusion coefficient

D = ηg

2
Tr

∑
r

r2
k Ḡr0(iη)Ḡ0r(−iη), (10)

with the effective Green’s function Ḡ(z) = (〈H 〉d − z)−1. The
definition of the diffusion coefficient D0 in Eq. (3) and the
correlation function in Eqs. (5) and (8) imply the relation
D0 = 2ηD/g. Moreover, by comparing the NLSM action of
a one-band metal with the CSM action S2 we get for their
prefactors the relation

t−1 ←→ 4ηD/g = 2D0, (11)

which is the conductivity due to the Einstein relation σ =
2e2ηD/gh = e2D0/h. This can be used now to calculate the β

function from D0, in analogy with the treatment of a one-band
metal. In order to determine the size dependence of D0 we use
a simple approximation for a first estimate and in a second step
a more detailed numerical summation of D in Eq. (10).

For a finite sample of size L × L and no gap (m = 0) the
main effect on D is an infrared cutoff in the Fourier integral,
assuming that the largest wavelength is L:

σ ≈ 2η2

π

∫ ∞

L−1

kdk

[k2 + η2]2
∼ 1

π

(
1 − 1

η2L2

)
, (12)

for ηL � 1. This result indicates that the conductivity in-
creases monotonically with the size and its L-dependence
scales with the scattering rate η: σ (L,η) = σ (ηL). Moreover,
the β function reads in this approximation

β ∼ 2π (1 − πσ ), (13)

which has a fixed point σ ∗ = 1/π in units of e2/h. This is
the well-known minimal conductivity σmin of Dirac fermions.
Although this approximation is reliable near the fixed point,
it may not be so good further away from the fixed point. The

reason is that we have not considered (i) that the spectrum of
a finite system is discrete and (ii) that the boundary conditions
can be crucial. The effect of the latter is know to be important,
for instance, in graphene ribbons, because the system may or
may not have a gap [25–27].

The discrete spectrum of the gapless Dirac Hamiltonian
H0 in Eq. (2) is E = ±√

k2
n + k2

m, with wave numbers
kj = 2(πj + δ)/L, j = 0, ± 1, ± 2, ± 3, . . . . The parameter
δ depends on the boundary condition (BC). In particular,
we have δ = 0 for periodic BC and δ 
= 0 for BC with a
phase shift δ of the wave function at opposite boundaries.
Thus, only δ = 0 has a zero mode, whereas δ 
= 0 has a
spectral gap that increases with increasing δ. This mimics the
situation of the tight-binding model in the case of a graphene
ribbon, where armchair (zigzag) boundaries provide a gapless
(gapped) spectrum [25–27]. With this discrete spectrum we
calculate the conductivity in Eqs. (10) and (11) as a function
of size L with generic BC, characterized by the phase shift δ,
at the Dirac point (E = 0):

σ (η,L) = 4η2

L2

∑
n,m

1[
k2
n + k2

m + η2
]2 . (14)

The sum converges and gives us a conductivity that depends
only on ηL. σ (ηL) is plotted in Fig. 1(a), where for ηL ∼ ∞
its value agrees with the minimal conductivity of Eq. (12). For
intermediate values ηL, on the other hand, the conductivity
depends strongly on the parameter δ, though. In the case of pe-
riodic BC (δ = 0) the behavior is dominated by the zero-energy
mode. Its contribution to the conductivity decreases as ∼L−2

with increasing sample size, and the conductivity represents
a monotonically decreasing function of the length L. For
δ � π/4 the zero mode is strongly suppressed. In this case the
conductivity increases monotonically with ηL [cf. Fig. 1(a)].
In particular, there is a relatively broad regime where it grows
logarithmically with ηL, i.e., ∼ const + 2.5 ln(ηL), which
agrees with known analytical [10,21] and numerical [18,19]
results. Finally, there is an intermediate regime for 0 < δ <

π/4, in which the conductivity increases up to a maximum
and then approaches the asymptotic minimal conductivity from
above.

The scattering rate η, which so far appeared in the
conductivity as a free parameter, can also be calculated as
a function of system size L and disorder strength, using the
self-consistent Born approximation [22,23]

1

g
= 1

L2

+L∑
n,m=−L

1

k2
n + k2

m + η2
. (15)

The calculation for a finite sample is again a sum over the
discrete wave numbers kj , in analogy to the calculation for
the conductivity, and gives a nonmonotonous scattering rate
with respect to L that increases up to a certain length and
approaches asymptotically a finite value. The asymptotic value
depends on g but is indifferent to δ. The way η approaches this
value depends significantly on δ, though: It decreases with
increasing g and decreasing δ, cf. Fig. 2.

Once the L-dependence of the scattering rate is taken
into account the β function for different values of δ and g

is calculated from Eq. (14). Plotting the curves for different

174207-2



TWO-PARAMETER SCALING THEORY OF TRANSPORT . . . PHYSICAL REVIEW B 90, 174207 (2014)

0

4

8

12

1 2 3 4

σ(
L)

Log(L)

(a)δ=0δ=π/8

δ=π/6

δ=π/4
δ=π/2

-1

0

2.5

5

0 4 8 12 15

β(
σ)

σ

•• °

(b)

FIG. 1. (Color online) (a) Conductivity in units of e2/πh as a function of length L at fixed scattering length η ∼ 0.2, calculated for different
BC (i.e., different values of δ). (b) The β-function of the weakly disordered massless Dirac electron gas in two dimensions for different BC.
There is a universal attractive fixed point at σ = e2/πh.

values of g together, the graphs collapse on a single curve, as
depicted in Fig. 3(a). Moreover, regardless of the parameters,
all solutions are attracted to the fixed point σ ∗ with the value
of the minimal conductivity. However, there are two types of
β functions, one that approaches the fixed point from positive
values [like the approximation in Eq. (13)] and another one
from negative values. The positive branch of the β function
coincide with δ > π/4, while the negative branch is associated
with δ < π/4. The negative branch also starts for small L

with positive values of the β function and reaches an unstable
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FIG. 2. The behavior of the scattering rate calculated from
Eq. (15) for two fixed values of the disorder strength g = 1.1
(a) and g = 1.6 (b), for three different values of δ each.

fixed points at values much larger than the experimentally
observed conductivity. However, the β function does not stop
there but keeps flowing toward the only attractive fixed point
at the observable value σ ∗. Thus, the BC-related parameter
δ enforces the two-parameter scaling, whereas for fixed δ we
obtain the one-parameter scaling. In particular, the positive
branches resemble the numerically evaluated β functions
found in Refs. [18] and [19]. Moreover, the main part of
these branches is fitted excellently with the double logarithm
formula obtained in leading order of perturbation theory
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FIG. 3. (Color online) (a) The same β function as described
in the legend of Fig. 1(a) represented as the scaling plot for
different strengths of disorder. Different branches are calculated
with (clockwise) δ = π/2 (antiperiodic BC), δ = 0.16π , δ = π/8,
δ = 0.101π , and δ = 0 (periodic BC). The disorder strength varies
within g ∈ [0.5,2]; pieces calculated for different disorder are
depicted in different colors. (b) A particular branch of the β function
calculated with δ = π/4 and fitted with the conductivity formula
σ (L) = k log[1 + u2 log2 L] from Ref. [28] with k = 1 and u = 7.5
(dashed line). (c) The absolute value of the β function in the vicinity
of the fixed point calculated with δ = π/2 (left branch) and δ = 0
(right branch). The red dashed line represents a fit with the formula
|σ − σ ∗|0.875 (shown here only as a guide to the eye), which is the
best match in this parametric area.
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FIG. 4. (Color online) Metal-insulator transition in the gapped disordered 2D Dirac electron gas. Left: Qualitative phase diagram of the
metal-insulator transition. Red arrow marks the line of constant disorder strength along which we cross the separation line between metallic
and isolating phases. Right: Scaling flow of the conductivity along the red arrow. Solid lines represent the β function calculated with δ = π/2,
the dashed lines those with δ = 0. The disorder strength is fixed at g = 2 and the gap is equidistantly changed from m1 = 0.301 to m5 = 0.305.
There is a critical gap mc ∼ 0.303 39 (blue line), separating the conducting from the insulating regime. The fixed point of the conducting
regime is shifted with m toward zero, thus suggesting the second order phase transition scenario.

in Ref. [28], cf. Fig. 3(b). However, the limitation of the
one-loop approximation does not allow us to approach ana-
lytically the quasifixed point at which the β function changes
the sign.

Close to the fixed point, the β function exhibits a power-
law behavior β(σ ) ∼ |σ − σ ∗|y , with an exponent y that
approaches unity for very small deviations from the fixed
point, in agreement with the approximation in Eq. (13). For
|σ − σ ∗|/σ ∗ ∼ 10−4 we can fit our curves with y ∼ 7/8, as it
is shown in Fig. 3(c). This is a crossover to asymptotic power
law with exponent 1, which might be important for comparison
with numerical simulations and experimental measurement.
For the latter we have typical values of η ≈ 0.7 . . . 70 meV
[14,29] and typical sizes L ≈ 10−4 m [30,31], such that we
get ηL/vF � ≈ 7 × 102 . . . 7 × 105, which matches well the
parametric regime |σ − σ ∗|/σ ∗ ∼ 10−4.

Metal-insulator transition in the gapped disordered 2D
Dirac electron gas. Returning to the Hamiltonian in Eq. (2)
we include now a gap term mτz. This would allow us to study
a metal-insulator transition (MIT), as predicted earlier in the
literature [24,32]. The possibility of tuning the gap experi-
mentally in a sample with a particular disorder configuration,
for instance, by controllable hydrogenation [15,16], provides
a transition at fixed disorder strength by varying the gap: For
0 < m < mc we have a metal and for m � mc a band insulator.
On the level of practical implementation, the gap is built into
Eq. (14) and in the self-consistent Born approximation by
replacing k2

n + k2
m with k2

n + k2
m + m2. Then both the scattering

rate and the conductivity depend also on m, which describes the

β function β(σ,δ,m) in a 3D parametric space, as illustrated in
Fig. 4. The fixed point σ ∗ turns out to be unstable with respect
to the variable m: Gradually increasing the gap from zero
upward we observe a shift of the fixed point from σ ∗ = 1/π

toward zero. At zero a critical gap is reached, where the critical
value mc depends on the disorder strength. For m > mc the
system does not have any fixed points with finite conductivity
but undergoes a transition to the insulating phase. For a broad
range of disorder strengths it is verified that the asymptotical
behavior of the β function on the critical trajectory is β ∼ 1.

Conclusions. A number of experimental investiga-
tions [4,5,14–17] provides strong evidence for a universal,
sample shape and disorder strength independent conductivity
of a weakly disordered 2D Dirac electron gas. This apparently
contradicts to claims of some numerical [18,19] and analyti-
cal [10,11,21] work, which predict a supermetallic fixed point
at infinite conductivity. In this work we have investigated the
conductivity within the CSM approach [24] and found that the
conductivity can indeed flow to (unstable) fixed points at values
much larger than the experimentally observed conductivity.
However, the β function does not stop there but keeps flowing
back to smaller conductivities to reach eventually the attractive
bulk fixed point at σ ∗ = 1/π in units of e2/h. The details of
this flow depend crucially on the boundary condition. The
conductivity σ depends on the scattering rate η and the system
length L as σ (η,L) = σ̄ (ηL). A spectral gap shifts the fixed
point σ ∗ to smaller values, indicating an unstable fixed point
against gap opening. This leads eventually to a metal-insulator
transition.
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