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In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo
stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational
dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model
crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the
previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we
derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze
them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions
in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the
energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously
determined in molecular dynamics simulations of several model liquids. This result suggests that the average
energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We
discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously
published data suggests that it is possible to speak about configurational and vibrational contributions to the
average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is
problematic. We also introduce and briefly consider the atomic-level transverse current correlation function.
Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We
find that the peaks’ broadening (by ≈40%) occurs due to the transverse vibrational modes, while contribution
from the longitudinal modes does not change with distance.
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I. INTRODUCTION

In order to understand abrupt increase in viscosity of liquids
approaching the glass transition, it is necessary to understand
well the nature of viscosity itself. This understanding, however,
is still limited [1–11].

Computer simulations have proved to be an important
tool in addressing properties of supercooled liquids [1–5].
One standard approach to calculate viscosity in computer
simulations is based on the Green-Kubo expression that
relates viscosity to the integral of the macroscopic stress-stress
correlation function (sscf ) [1–3,12–16].

Properties of the sscf have been extensively studied from
a macroscopic perspective [1–3,16]. There have been signif-
icantly fewer studies that tried to address how the behavior
of liquids at the atomic-level translates into the macroscopic
behavior of the sscf [8–10,17–20].

The situation is similar with a related approach based on
considerations of the transverse current correlation function
(tccf ) [1–3,6,7,21–23]. Studies of vibrational dynamics in
disordered media with the tccf are common and several
important results have been obtained with it relatively re-
cently [6,7,21]. However, in all these studies, the tccf is treated
as a macroscopic quantity. Thus the relations between the
atomic-level processes and the macroscopic behavior of the
tccf remain obscure [6,7].

We previously studied the macroscopic Green-Kubo sscf
from a microscopic perspective by decomposing it into stress-
stress correlation functions (sscfs) between the atomic level
stresses [8,9]. The approach represents further development
of preceding works [16–20]. Obtained data show presence
of stress waves in the atomic-level sscf and elucidate the

connection between the stress waves and viscosity [8,9].
However, it has not been previously discussed how stress waves
and their properties translate into the observed atomic-level
sscf. It is difficult to address this issue in liquids, even
qualitatively, as vibrational and configurational dynamics
in liquids are mixed [24–26]. Moreover, vibrational and
configurational dynamics in disordered media are puzzles by
themselves [10,21,22,24–36].

On the other hand, as it appears from the literature review,
the connection between vibrational dynamics and the atomic-
level sscf has not been addressed previously even for those
systems for which it can be done relatively easily, i.e., for
crystals. Applicability of results obtained from crystal models
to liquids, in general, is not expected and should be considered
with caution. However, it has been demonstrated that parallels
between liquid and solid states can be useful [33–36].

Thus, in order to gain at least some qualitative or semi-
quantitative insight into the connection between the vibrational
dynamics of a model liquid and the atomic-level sscf observed
in MD simulations [8,9], we examine a crystal-like model
in which vibrations are represented by plane waves. These
considerations provide the needed insight. The approach also
allows developing a basis for analysis in Fourier space of the
MD data from a model liquid [8,9]. Discussions of the MD data
in this context are presented in Ref. [37]. The considerations
in this paper represent further developments and more detailed
discussions of some ideas and a model first presented in
Ref. [38].

In the context of this paper, it is natural and useful to address
several other issues. These issues are of interest and important
by themselves.
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Thus the atomic-level stress energies have been calculated
in the framework of the model. A discussion of these energies,
in connection with the previously published MD data [38–41],
is presented in Sec. IV.

The atomic-level tccf is briefly discussed and it is argued
that it is possible to study its behavior in MD simulations in a
way that has been applied to the atomic-level sscf .

In the framework of the model, it is easy to address the
broadening of the peaks in the pair distribution function with
increase of distance. This is a known effect observed in x-
ray and neutron scattering experiments [42–45]. It follows
from the obtained results that the broadening of the peaks (by
≈40%) occurs mostly because of the transverse waves. The
changes in the peaks’ widths due to the longitudinal waves are
significantly smaller.

The paper is organized as follows. In Sec. II, we describe
the model. Section III is focused on derivations and analysis
of the obtained results. In the end of Sec. III, we also
discuss the tccf and the broadening of the peaks in the pair
distribution function. In Sec. IV, the data from the previous
MD simulations are discussed in the context of the results
obtained in this paper. The conclusions are given in Sec. V.

II. THE MODEL

We consider a single component system and assume that
if the atoms are at equilibrium positions then different atoms
have identical environments. It is assumed that every atom
interacts harmonically with Nc nearest neighbors. It is also
assumed that the distribution of these neighbors is spherically
symmetric and that their equilibrium distance from the central
atom is a. Finally, we assume that the vibrations in the system
are described by plane waves.

A. Continuous spherical approximation

In the following derivations, a summation for every atom n

over its nearest neighbors m is often performed. In performing
these summations, a continuous spherical approximation is
utilized. Thus the summation over m is substituted with the
integration over the spherical angles:

∑
m

f (θm,φm) → Nc

4π

∫
f (θ,φ) sin(θ )dθdφ, (1)

where Nc is the coordination number, which is assumed to be
the same for all atoms.

B. Debye’s Model

In order to estimate various quantities to which many
different waves contribute, it is assumed that different waves
contribute independently. The Debye’s model is also utilized,
i.e., it is assumed that summation over different waves can be
changed into the integration over the wave vector q:

dN

N
=

(
a

2π

)3

4π q2 dq, Qmax =
(

π

a

)(
6

π

)1/3

, (2)

where N is the total number of atoms in the system and also
the total number of vibrational states for one polarization.
dN is the number of states in the interval dq. Qmax is the

maximum value of the wave vector. The equations in (2) are
written for one particular polarization of the waves. It will be
assumed further, as usual, that there are one longitudinal and
two transverse polarizations.

The value of Qmax and the value of the prefactor [a/(2π )]3

in (2) are connected by the normalization condition. In
principle, different values of Qmax can be assumed for different
polarizations of the waves. This issue will not be discussed
further.

C. The long-wavelength approximation

In the following, it is assumed sometimes that

sin(qanm) ≈ (qanm), cos(qanm) ≈ 1. (3)

Equations (3) are correct if the wavelength of the wave is
much larger than the interatomic distance a ≡ |anm|. In the
following, the results obtained without the long-wavelength
approximation (lwa ) are derived first and then, for comparison,
the results obtained with the lwa are presented.

III. DERIVATIONS

The major goal of this section is to derive the expressions for
the atomic-level sscfs. Another goal is to analyze the Fourier
transforms of the shear sscf. In the process of derivations of the
sscfs, the atomic-level stress energies are also calculated. The
derivations of the atomic-level stress energies are similar to
the derivations of the sscfs, but simpler.

The derivations in this section are separated into several
steps. At first, expressions for the potential energies of
atoms due to different waves, forces on the atoms, and the
dispersion relations are calculated. From these expressions,
the dependencies of the atomic mean square displacements
on temperature are extracted under the assumption of energy
equipartition for harmonic vibrations. Then the atomic-level
stresses are defined. Further, the expressions for the atomic-
level stress energies and stress correlation functions are derived
using previously obtained expressions for the mean square
displacements. Then the Fourier transforms of the shear-stress
correlation function are analyzed.

At the end of the section, we address two separate, but
related topics. In particular, we consider the transverse current
correlation function and increase in the widths of the peaks in
the pair distribution function with increase of distance.

A. Potential energy of an atom due to a plane wave

Let us assume that ro
n is the equilibrium position of the

particle n and un is the displacement of the particle n from
the equilibrium. Then rn = ro

n + un, rnm ≡ |rm − rn|, anm =
a ânm ≡ (ro

m − ro
n), and unm = um − un. Assuming that the

force between the nearest-neighbor atoms n and m at equi-
librium positions is zero, in the harmonic approximation, the
potential energy of the pair is given by

Unm = k
(
rnm − ro

nm

)2

2
≈ k

2
(ânmunm)2. (4)

The solutions for particles’ displacements in classical
harmonic crystals are plane waves. For a wave with wave
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vector q,

un(q) = uq êq Re[χn(q)], (5)

χn(q) = exp[−i(ωq t − qrn + φq)], (6)

where uq (real scalar) is the amplitude of the wave, êq (real
vector) is wave’s polarization vector, and φq is the phase.
In (5), (6), and below, the subscript q shows that parameters
with this subscript characterize a particular wave.

From (5) and (6), we get

unm(q) = uq êqRe{χn(q)[exp(iqanm) − 1]}. (7)

It is straightforward to show from (4) and (7) that the time
average of the potential energy of the atom n due to a particular
wave is

〈Un〉t ≈
(

1

2

)
ku2

q

∑
m

(ânm êq)2 sin2

(
qanm

2

)
, (8)

where the factor 1/2 is introduced to take into account that
half of the elastic energy belongs to the atom n, while another
half to the atom m.

B. Force on an atom and the dispersion relations

It follows from (4) that the force on the atom n due to its
interaction with the atom m is

f α
nm = −∂Unm

∂uα
n

= k(ânmunm)âα
nm, (9)

where the superscript α labels vector’s components. Using the
expression (7) for unm(q) in (9) for the total force on the atom
n, we get

f α
n =

∑
m

(kuq) (ânm êq) aα
nmRe{χn(q)[exp(iqanm) − 1]}.

(10)

Let us further suppose that we consider crystal lattices with
central symmetry. Then for every neighbor m, there is another
neighbor m′ such that anm′ = −anm. This assumption should
be true in the continuous spherical approximation. Taking this
into account, we rewrite (10) as

f α
n =

∑
m

(kuq)(ânm êq)aα
nm

×[cos(qanm) − 1] cos(ωq t − qrn + φq). (11)

From the fact that plane waves are the solutions for harmonic
crystals (5,6,11) and Newton’s second law, we get

êα
q ω2

L,T (q) =
(

2k

M

) ∑
m

(ânm êq) sin2

(
qanm

2

)
aα

nm, (12)

where M is the particle’s mass. Subscripts L and T label
longitudinal and transverse polarizations. Multiplication of
both sides of (12) on êα

q and the following summation over
α lead to

ω2
L,T (q) =

(
2k

M

)∑
m

(ânm êq)2 sin2

(
qanm

2

)
. (13)

The average potential energy of a site due to a wave with the
amplitude uq should be equal to Mω2

qu
2
q/4. It is easy to see

that multiplication of (13) by Mu2
q/4 leads to (8).

In the continuous spherical approximation, (13) should
not depend on the direction of q and an analytical ex-
pression for (13) can be obtained for the longitudinal and
transverse waves. For a longitudinal wave, it is sufficient to
assume that (q ‖ ẑ) and (êq ‖ ẑ). Then (ânm êq) = cos(θnm) and
sin(qanm/2) = sin[(qa/2) cos(θnm)]. For a transverse wave, it
is sufficient to assume that (q ‖ ẑ) and (êq ‖ x̂). Using (1), we
can rewrite (13) as

ω2
L,T (q) = ω2

oDL,T (qa) ≡ 2

4π

∫
fL,T (ξ,θ,φ)d
, (14)

where

ω2
o ≡

(
k

M

)
Nc, ξ ≡ qa

2
. (15)

For longitudinal (L) and transverse (T ) waves,

fL(ξ,θ,φ) = cos2(θ ) sin2 (ξ cos(θ )),

fT (ξ,θ,φ) = sin2(θ ) cos2(φ) sin2 (ξ cos(θ )).

Integrations of (14) over the spherical angles using the
MAPLE(TM) program [46] lead to

DL(qa) = [L1(ξ ) + L2(ξ )]/(6ξ 3), (16)

DT (qa) = [T1(ξ ) + T2(ξ )]/(12ξ 3), (17)

where

L1(ξ ) = −6 ξ 2 cos(ξ ) sin(ξ ) + 2 ξ 3 − 6 ξ cos2(ξ ),

L2(ξ ) = 3 cos(ξ ) sin(ξ ) + 3 ξ,
(18)

T1(ξ ) = 4ξ 3 + 6 ξ cos2(ξ ),

T2(ξ ) = −3 cos(ξ ) sin(ξ ) − 3 ξ.

The dependencies of
√

DL(qa) and
√

DT (qa) on qa, i.e., the
dispersion relations, are plotted in Fig. 1.

The dispersion relations for the longitudinal and transverse
waves can also be obtained in the lwa :

ωlw
L (q) =

(
ωoa√

10

)
q, ωlw

T (q) =
(

ωoa√
30

)
q. (19)

Thus in the lwa , the speeds of the longitudinal waves are
√

3
times larger than the speeds of the transverse waves.

C. Mean square amplitudes of the displacements

If we assume that equipartition holds for our spherical
approximation, then the average potential energy of every wave
should be equal to kbT /2. Thus we should have

Mω2
L,T (q)u2

L,T (q)

4
= 1

2

kbT

N
,

u2
L,T (q) = 2

(
kbT

kNc

)(
1

DL,T (qa)

)
1

N
, (20)

where u2
L,T (q) is the average square amplitude of the longi-

tudinal or transverse waves with the magnitude of the wave
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FIG. 1. (Color online) Dispersion curves for the longitudinal and
transverse waves in the continuous spherical approximation. Thick
lines show the results obtained without the long-wavelength approxi-
mation. Thin lines show the results obtained with the long-wavelength
approximation. Note that (Qmaxa) ∼= 3.9.

vector q. Thus the squares of the amplitudes are inversely
proportional to the dispersion curves shown in the Fig. 1. Note
that the wave’s amplitudes diverge for small wave vectors.
However, according to (2), the volume of the phase space
associated with small wave vectors is small and the mean
square displacement due to all waves remains finite.

D. Mean square displacements due to all waves

In order to find the mean square displacements due to all
waves, assuming that all of them are independent, we have to
integrate 〈u2

L,T (q)〉 = (1/2)u2
L,T (q) of (20) over all q using (2).

For the mean square displacements due to all longitudinal
waves and both polarizations of all transverse waves, we get

〈
u2

L,T

〉 =
(

kbT

kNc

)
γL,T ,

γL = 2.8160, γT = 13.3615. (21)

Note that 〈u2
T 〉 is significantly larger than 〈u2

L〉.
It is simpler to evaluate the mean square displacements in

the lwa . In this case, we get

γ lw
L = 1.9746, γ lw

T = 11.8478. (22)

Note that the values of the coefficients in the lwa are smaller
than without the lwa . This is consistent with (20), as the values
of the frequencies are always larger in the lwa .

E. Atomic-level stress elements

Similarly to the definitions in Refs. [38–40], we define the
αβ component of the local atomic stress element on a particle
n as

sαβ
n = 1

2

∑
m�=n

f α
nmrβ

nm, (23)

where f α
nm is the α component of the force on the particle n

caused by the interaction with the particle m and r
β
nm is the

β component of the radius vector from the particle n to the
particle m. The sign in (23) is chosen in such a way that an atom
under compression has a negative stress/pressure. Using (9),
we rewrite (23) as

sαβ
n = (ka)

2

∑
m�=n

(unm ânm)âα
nmâβ

nm. (24)

Then using (7) in (24), we obtain

sαβ
n (q) = (ka)

2
uqχn(q)

×
∑
m�=n

(êq ânm)[exp(iqanm) − 1]âα
nmâβ

nm. (25)

Further, like in the transition from (10) to (11), we assume that
we consider crystal lattices with central symmetry. For the real
part of the stress from (25), we get

sαβ
n (q) = (kauq)

2
Ncϒ

αβ

1 (q,êq) sin(ωq t − qrn + φq), (26)

where

ϒ
αβ

1 (q,êq) ≡ 1

Nc

∑
m�=n

(êq ânm) sin(qanm)âα
nmâβ

nm. (27)

Formulas (26) and (27) express the local atomic stress element
through the parameters of the lattice and the parameters of the
wave.

F. Atomic-level pressure

In accord with Refs. [38–40], we define the atomic-level
pressure as

pn(q) = 1

3vo

[
sxx
n (q) + syy

n (q) + szz
n (q)

]
, (28)

where vo is the atomic volume. Here we assume that the atomic
volume is a constant approximately equal to the inverse of the
number density, i.e., vo ≈ 1/ρo.

It follows from (26)–(28) that

pn(q) = (kauq)Nc

6vo

ϒ
p

1 (q,êq) sin(ωq t − qrn + φq), (29)

where

ϒ
p

1 (q,êq) = 1

Nc

∑
m�=n

(êq ânm) sin(qanm). (30)

Summation over m (i.e., spherical integration) for a longitudi-
nal wave (note subscript L below) leads to

ϒ
p

1L(qa) =
[

sin(2ξ ) − (2ξ ) cos(2ξ )

(2ξ )2

]
, ξ = qa

2
. (31)

It also follows from (30) that transverse waves do not
contribute to the atomic-level pressure.

G. Mean square of the atomic-level pressure

It follows from (29), (30), and (31) that the time averaged
square of the atomic-level pressure due to a longitudinal wave
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with the wave vector of magnitude q is

〈[pn(q)]2〉 = (kauq)2N2
c

72v2
o

ϒ
p

2L(qa), (32)

where

ϒ
p

2L(qa) ≡ [
ϒ

p

1L(qa)
]2

. (33)

In the lwa ,

ϒ
p,lw

2L (qa) ≈ 1
9 (qa)2. (34)

Use of u2
q from (20) in (32) leads, after integration (2), over

q, to

〈
p2

n

〉 ≈ kbT

(
ka2Nc

36v2
o

)
0.29 . (35)

Calculations in the lwa lead to ≈1.11 instead of ≈0.29.

H. Atomic-level pressure energy

In several previous publications, the atomic-level stress
energies have been discussed [38–40]. These quantities are of
interest, in particular, because of their values in a liquid state.
According to MD simulations, the stress energy for every stress
component is very close to (1/4)kbT = (1/6)(3/2)kbT in the
liquid state. It is well known that the average potential energy
of a classical 3D harmonic oscillator is equal to (3/2)kbT .
Since the stress tensor (24) is symmetric it has six independent
components. Thus the values of the atomic-level stress energies
are such that it appears that the average potential energy of a
3D harmonic oscillator is equally divided between the six
independent components of the atomic-level stress tensor. On
this basis, it has been argued in Refs. [38–40] that atoms
with the shells of their nearest neighbors can be considered as
independent harmonic oscillators. Essentially in Refs. [38–40],
the high-temperature limit (i.e., classical limit) of the Einstein
model for specific heat has been adopted to describe the
behavior of the atomic-level stress energies. In the framework
of our model, we essentially consider the classical limit of the
Debye model for the atomic-level stress energies.

The expression for the local atomic pressure energy
is [38,40]

〈Up〉 ≡ vo

〈
p2

n

〉
2B

. (36)

In order to evaluate (36), we need to know the value of the bulk
modulus B. The expressions for the elastic constants have been
discussed before [38,40]. The results of their evaluations are

B = �

8
, G = �

30
, � = (ka2)

Nc

vo

, (37)

where G is the shear modulus. Using the value of the bulk
modulus B for the average pressure stress energy, we get

〈Up〉 ≈
(

1

4

)
kbT

(
1

7.76

)
. (38)

This energy is approximately 7.76 times smaller than the value
of the atomic-level pressure energy that has been obtained in
MD simulations of liquids.

In the lwa , we get

〈
U

p

lw

〉 ∼=
(

1

4

)
kbT

1

2.03
. (39)

Thus, in the lwa , the atomic-level pressure stress energy is
approximately two times smaller than (1/4)kbT , in agreement
with Ref. [38]. We discuss atomic-level stress energies further
in Sec. IV.

I. Atomic-level shear-stress and shear-stress energy

In accord with Refs. [38–40], we define

σ ε
n (q,êq) ≡

(√
2

vo

)
sxy
n (q,êq). (40)

Both longitudinal and transverse waves contribute to σ ε
n (q,êq).

Their contributions depend on the magnitude and direction of
q and the direction of êq . Below, for brevity, we present the
formulas for the transverse waves only. The formulas for the
longitudinal waves are analogous.

From (26), (27), (40), and (20), we get

〈[
σ ε

n,T (q)
]2〉 =

(
A

4

)
2

N

[
ϒ

xy

2T (qa)

DT (qa)

]
, (41)

where

A ≡ kbT

(
ka2Nc

v2
o

)
, (42)

ϒ
xy

2T (qa) ≡ 〈[
ϒ

xy

1T (q,êq,a)
]2〉

, (43)

and ϒ
xy

1T (q,êq,a) follows from (27). The averaging in (43)
and (27) is over all directions of êq orthogonal to q and then
over the directions of q.

We have not been able to produce analytical expressions
for ϒ

xy

2T (qa) and ϒ
xy

2L(qa). However, we calculated them
numerically [47]. Figure 2 shows the dependencies of

H
p

L (qa) ≡
[
ϒ

p

2L(qa)

DL(qa)

]
(qa)2, (44)

H
xy

L (qa) ≡
[
ϒ

xy

2L(qa)

DL(qa)

]
(qa)2, (45)

H
xy

T (qa) ≡
[
ϒ

xy

2T (qa)

DT (qa)

]
(qa)2 (46)

on qa without the lwa . In (44)–(46), the factor (qa)2 is
introduced, as further integration over q is assumed.

We also obtained analytical expressions for (43) in the lwa :

ϒ
xy,lw

2L (qa)

DL(qa)
≈

(
8

675

)
,

ϒ
xy,lw

2T (qa)

DT (qa)
≈

(
18

675

)
. (47)

In order to evaluate the mean square stresses due to all
waves it is necessary to integrate (41) over q using (2), i.e.,
to integrate the curves in Fig. 2 over q. The results of these
integrations, expressed in terms of the average energy of the
atomic-level shear stresses, are

vo

〈[
σ ε

n,L,T

]2〉
4G

≈
(

1

4

)
kbT τL,T , τL ≈ 3.1

135
, τT ≈ 20.6

135
.

(48)
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FIG. 2. (Color online) Functions H
p

L (qa), Hxy

L (qa), and H
xy

T (qa)
from (44)–(46). Note that the H

xy

L (qa) curve was scaled by 100,
while the H

xy

T (qa) curve was scaled by 50. Thus the contribution
of the transverse waves to the average square of the shear stress is
significantly larger than the contribution from the longitudinal waves.
Also note that there are two polarizations of the transverse waves,
while the figure shows the contribution from one polarization only.

The shear-stress energy coefficient due to all waves is

τL + 2τT ≈ (44.3/135) ≈ 1
3 . (49)

This result is three times smaller than the equipartition result,
i.e., (1/4)kbT , obtained for liquids in MD simulations in
Refs. [39,40]. Also note that this result is more than two
times larger than the result that has been obtained for the
pressure (38).

In the lwa , we get

τ lw
L = 24

135 , τ lw
T = 54

135 , (50)

τ lw
L + 2τ lw

T = (132/135) ≈ 1. (51)

Thus in the lwa , we essentially have (1/4)kbT dependence.
We discuss atomic-level stress energies further in Sec. IV.

J. Pressure-pressure correlation function

The primary goal of this paper is to address the behavior
of the atomic-level stress correlation function, which is
analogous to the function F (t,r) which can be derived from
the macroscopic Green-Kubo stress correlation function and
that has been studied by MD simulations in Refs. [8,9]. Thus
we introduce a function which is analogous to F (t,r):

Cp(t,r) ≡
(

a

2π

)3

N

∫ Qmax

0
Cp(t,r,q) 4πq2dq, (52)

where

Cp(t,r,q) ≡ 〈pn(to,q) pm(to + t,q)〉. (53)

Spherical averaging and the averaging over to are assumed
in (53).

The correlation function introduced in (52) and (53) is
the correlation function per pair of particles. The correlation

function between “a central particle” and “the particles in the
spherical annulus,” introduced in Refs. [8,9] is 4πr2Cp(t,r).

From (29) and (30), it follows that

Cp(t,r,q) = (kauq)2

36v2
o

ϒ
p

2L(qa)〈sin(ωq to − qrn + φq)

× sin[ωq(to + t) − qrm + φq]〉. (54)

From representing the product of sines as a difference of
cosines it follows that one of the cosines gives zero on
averaging over φq . Thus we get

Cp(t,r,q) = (kauq)2

36v2
o

ϒ
p

2L(qa)
1

2

〈
cos

(
ωq t − qrnm

2

)〉
. (55)

Further, we rewrite the cosine in (55) as〈
cos

(
ωq t

2

)
cos

(
qrnm

2

)〉
+

〈
sin

(
ωq t

2

)
sin

(
qrnm

2

)〉
.

(56)

Spherical averaging of the second term over the directions of
rnm is zero. Spherical averaging in the first term gives

〈
cos

(
qrnm

2

)〉
= 2

sin(qr/2)

(qr/2)
. (57)

Using the expression (20) for u2
q , we rewrite (55) as

Cp(t,r,q) =
(

A

36

)
2

N

[
ϒ

p

2L(qa)

DL(qa)

]

×
[

cos(ωq t/2) sin(qr/2)

(qr/2)

]
, (58)

where A is given by (42) and, according to (14), ωq =
ωo

√
DL(qa). The product of the cosine and sine in (58) can

be rewritten as

1

2

[
sin

(
qr − ωq t

2

)
+ sin

(
qr + ωq t

2

)]
. (59)

The first sine in (59) corresponds to a wave propagating
away from the central particle. This sine is zero when r −
(ωq/q)t = 0. Thus the speed of this wave, for a given r , should
be determined from the time when the sign of the sine changes
from positive to negative.

The argument of the second sine in (59) is always positive
for t > 0 and r > 0. For t > 0, the contribution to the sscf due
to all waves from the second sine is much smaller than from
the first sine.

In order to find the pressure correlation function due to
all waves it is necessary to integrate (58) over all q using (2).
Figure 3 shows the results for the pressure-pressure correlation
function due to all waves without the lwa . Figure 4 shows the
result with the lwa .

K. Shear-stress correlation function

In order to introduce the shear-stress correlation function,
which is analogous to the function F (t,r) in Refs. [8,9], we
introduce at first a correlation function due to a particular
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FIG. 3. (Color online) Pressure-pressure correlation function
without the long-wavelength approximation. The scaled time is ωot .

transverse wave:

Cε
T,q(t,r,q,êq) ≡

(
2

v2
o

)〈
sxy
n (to,q,êq)sxy

m (to + t,q,êq)
〉

=
(

A

4

)
2

N

[
ϒ

xy

2T (q,êq,a)

DT (qa)

]

×〈sin[ωq to − qrn + φq] sin[ωq(to + t)

− qrm + φq]〉 . (60)

FIG. 4. (Color online) Pressure-pressure correlation function
with the long-wavelength approximation. The scaled time is ωot .

FIG. 5. (Color online) Contribution from one polarization of the
transverse waves to the shear-stress correlation function. The scaled
time is ωot . No damping of the waves is assumed.

In (60), A is given by (42). Similarly to how it has been done
in the transition from (55) to (58) for the pressure-pressure
correlation function, the averaging over the directions of rnm is
performed first. Then the averagings over the polarization and
the direction of the wave are performed. These averagings are
identical to the averagings done in the derivations of (41,43).
Thus we get

Cε
T (t,r) =

(
a

2π

)3

N

∫ Qmax

0
Cε

T (t,r,q) 4πq2dq, (61)

where

Cε
T (t,r,q) = A

2

N

[
ϒ

xy

2T (qa)

DT (qa)

]

×
[

cos(ωq t/2) sin(qr/2)

(qr/2)

]
. (62)

Figure 5 shows the sscf calculated numerically from (61,62)
with the coefficient A = 1.

Formulas (61) and (62) have been derived under the
assumption that vibrations are nondecaying plane waves. In
order to make a comparison with a liquid state, it is reasonable
to assume that the vibrations decay with the increase of time.
In order to study how this attenuation can affect the sscf, we
phenomenologically introduce into (62) a damping function.
Thus we define

C
ε,damp
T (t,r,q) ≡ Cε

T (t,r,q)E(ωq,t), (63)

where

E(ωq,t) = exp[−0.3(ωq/ωo)2ωot]. (64)

The form of the damping function (64) is based on multiple
studies on attenuation of waves in liquids [22,48].
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FIG. 6. (Color online) Scaled shear-stress correlation function, f (t,r) (66), due to the transverse waves with exponential damping in time
and its Fourier transforms. (a) r-scaled shear-stress correlation function (62,66) integrated over all q with E(ωq,t) given by (64). It was assumed
that the numerical prefactor is equal to 1. Scaled time is ωot . (b) Time to frequency Fourier transform of the scaled stress correlation function
in the panel (a). Angular frequency is measured in units of ωo. (c) Distance to wave vector Fourier transform of the scaled stress correlation
function in the panel (a). The unit of the wave vector is 1/a. (d) Time to frequency and distance to wave-vector Fourier transforms of the
scaled stress correlation function in the panel (a). Note that the center of the diagonal high-intensity region follows the dispersion curve for the
transverse waves in Fig. 1. It is clear that the broadening of the dispersion curve is caused by the exponential damping (64).

Panel (a) of Fig. 6 shows the sscf calculated from (61,63),
i.e., now with C

ε,damp
T (t,r,q) instead of Cε

T (t,r,q).
It is of interest to compare the panel (a) of Fig. 6 with the

panel (b) of Fig. 4 in Ref. [9]. Note that in the present paper we
changed the axes and now the x axis shows the distance, while
the y axis shows the time. In the panel (b) of Fig. 4 in Ref. [9],
we see two waves. One wave is longitudinal and another wave
is transverse. There is also the structural contribution to the
sscf . In the panel (a) of Fig. 6, we see the contribution from the

transverse waves only, as the contribution from the longitudinal
waves has not been included. The structural contribution is
also absent in the panel (a) of Fig. 6. Besides the differences
mentioned above, it is clear that the contribution to the sscf
from the transverse waves observed in MD simulation is
qualitatively similar to the sscf obtained from the formulas
in this section if the damping (64) is included. In particular,
if we consider how the intensity changes with the increase of
time for a given distance, we observe at first positive intensity
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and then negative intensity. This observation is natural in view
of the paragraph after (59).

Formula (59) suggests that the speed of the wave corre-
sponds to the slope of the boundary between the positive
and negative intensities. This interpretation is different from
the one adopted in Ref. [9]. There, it was assumed that the
wave’s speed should be extracted from the maximum of the
positive intensity. With the new interpretation, the speed of
the longitudinal waves in the panel (b) of Fig. 4 in Ref. [9] is
cl ≈ 7500 m/s. It was previously argued that it is 6000 m/s.
The new speed of the transverse waves is ct ≈ 5000 m/s, while
before it was argued that it is 3000 m/s. Note that, according to
the new values, cl/ct ≈ 1.5. This value is close to

√
3 predicted

by Eq. (19).

L. Fourier transforms of the shear-stress correlation function

The atomic-level sscfs, like those in (58) and (62), can be
calculated in MD simulations [8,9]. In this section we analyze
what information can be obtained by performing the Fourier
transforms of these sscfs [(58) and (62)]. Thus, further, we
consider a function that is structurally similar to the sscfs [(58)
and (62)]:

f (t,r) ≡
∫ Qmax

0
h(q,t) cos

(
ωq t

2

)
sin

(
qr

2

)
dq. (65)

For the shear sscf due to the transverse waves [(61) and (63)]
with damping [(63) and (64)], for example, we have

f (t,r) ≡ rC
ε,damp
T (t,r), (66)

h(q,t) ≡ α

(
Y

xy

2T (q)

DT (qa)

)
E(ωq,t) q, (67)

where α is a numerical coefficient and E(ωq ,t) is given by (64).
Note that the case without damping is obtained from (67) by
assuming that E(ωq,t) = 1. Also note that f (t,r), as we define
it, is the correlation function per pair of particles multiplied by
r .

Further we define

f̃ (t,q) ≡
∫ ∞

0
f (t,r) sin(qr)dr, (68)

f̃ (ω,r) ≡
∫ ∞

0
f (t,r) cos(ω t)dt, (69)

f̃ (ω,q) ≡
∫ ∞

0

∫ ∞

0
f (t,r) cos(ω t) sin(qr) dt dr. (70)

From (68), (65), and (67), we get

f̃ (t,q) ≡
(

π

2

)
h(2q,t) cos

(
ω2q t

2

)
, (71)

where ω2
2q = ω2

oDT (2qa). Thus f̃ (t,q), for every value of q,
oscillates in time with the period determined by the dispersion
relation. The decrease in the amplitude of oscillations with
increase of time is determined by the damping function
E(ωq,t) (67). If there is no damping function, the amplitude
of oscillations remains constant.

The situation with the Fourier transform of f (t,r) over time,
if the damping is present, is more complicated. If there is no
damping, i.e., if E(ωq,t) = 1, then from (69), (65), and (67),
the Fourier transform of f (t,r) over t is

f̃ (ω,r) ≡
(

π

2

)
h(q2ω) sin

(
q2ωr

2

)
, (72)

where (2ω)2 = ω2
oDT (q2ωa). Thus, in the absence of damping,

the Fourier transform of f (t,r) over time (72) should exhibit
for every frequency constant amplitude oscillations with the
wavelength determined by the dispersion relation.

In the absence of damping, the Fourier transforms of f (t,r)
over r and t (70) lead to

f̃ (ω,q) ≡
(

π

2

)2

h(2q)δ

(
ω − ω2q

2

)
, (73)

i.e., to the dispersion relation.
The function f̃ (ω,q) can be obtained by the Fourier

transform over time of the expression (71). It is clear from the
form of (71) that the presence of damping in h(2q,t) should
lead to the broadening of the δ function in (73).

Panel (a) of Fig. 6 shows the function f (t,r) from (65)–(67)
with E(ωq,t) given by (64). It was assumed that α = 1. Panels
(c), (b), and (d) show the Fourier transforms (68)–(70) of the
function f (t,r).

M. Transverse current correlation function

The transverse current correlation function (tccf ) is often
used in studies of liquid dynamics [1–3,6,21–23]. However,
usually it is considered as a macroscopic quantity. In this
section, we suggest that the tccf also can be studied from a
microscopic perspective, as it has been done with the sscf [8,9].

In agreement with the definitions in Refs. [1–3,6,21–23],
we consider the following expression for the real part of the
transverse current:

JT (k,t) =
∑

i

vT
i (t) cos[kr i(t)], (74)

where vT
i (t) = vi(t) − (vi(t)k̂). For the contribution from a

transverse wave with the wave vector q and the polarization
êq from (74), (5), and (6), we get

JT (k,q,êq,t) = −uq êqωqB1(k,q,t),
(75)

B1(k,q) ≡
∑

i

sin[ωq t − qr i(t) + φq] cos[kr i(t)].

Then for the correlation function due to this wave, we have

CJT (k,q,êq,t) ≡ 1

N
〈JT (. . . ,to)JT (. . . ,to + t)〉. (76)

The averaging in (76) is over the initial time to.
From (75), (76), and (20), using the same logic that has

been used in the derivations of (58) and (62), we get

CJT (k,q,êq,t) =
(

Ce

N

)
cos(ωq t)(X1 + X2), (77)

Ce ≡ u2
qω

2
q

4
= kbT

2NM
, X1,2 ≡

∑
ij

sin(|k ± q|rij )

|k − q|rij

. (78)
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In the derivations of (77) and (78), there also appear two other
terms, which, however, vanish in the limit N → ∞. After the
integration over q, the contributions from X1 and X2 terms
are equal to each other. Note that if k = 0 then the structure
of (77) and (78) is similar to the structures of (58) and (62).
It follows from (75)–(78) that it is possible to introduce and
consider the atomic-level tccf similarly to how it has been done
for the atomic-level sscf in Refs. [8,9].

N. The widths of the peaks in the pair distribution function

Atoms located close to each other in crystal lattices exhibit
a certain degree of coherence in their motions. Because of
this coherence, the peaks in the pair distribution function at
small distances are narrower than at large distances [42–45].
The dependence of the peaks’ widths on distance has been
investigated previously using a detailed model and evolved
simulations [43,44]. In the framework of our model, we can
address this effect in a simple and intuitive way.

The average square of the peak width in the pair distribution
function is determined by [43,44]

〈(�rnm)2〉 ∼= 〈(
r̂o

nmunm

)2〉
. (79)

In (79), the notation 〈. . .〉 is used for the time and spherical
averagings. Spherical averaging in (79) is over the directions
of ro

nm, i.e., over the positions of the atoms m. The expression
for 〈(�rnm)2〉 is analogous to the expression (4), but with ro

nm

instead of anm. Thus, in analogy with how (8) has been derived,
we obtain

〈(�rnm(q))2〉 ∼= u2
q

〈(
r̂o

nm êq
)2

sin2

(
qro

nm

2

)〉
. (80)

Using the expression (20) for u2
q , we get

Nck〈(�rnm(q))2〉
2kbT

∼=
〈(

r̂o
nm êq

)2
sin2

( qro
nm

2

)〉
∑

m(ânm êq)2 sin2
( qanm

2

) . (81)

In order to estimate the peak width due to all waves, it is
necessary to integrate the numerator and denominator on the
right-hand side of (81) over the spherical angles and then their
ratio over all q using (2). The dependencies of the peak’s
width on the absolute value of ro

nm (assuming that Nc = 1) for
all longitudinal waves and one polarization of all transverse
waves are shown in Fig. 7.

For large ro
nm, motions of the atoms n and m should be

uncorrelated. It is straightforward to show from (79) that
if atoms n and m vibrate independently then 〈(�rnm)2〉 =
(2/3)〈(un)2〉. This should be the large ro

nm limit of the peak’s
width. In order to get this limit from the curves in Fig. 7
it is necessary to multiply the limiting value by 2 for the
longitudinal waves (the prefactor in (81)) and by 4 for the
transverse waves (the prefactor and two polarizations). Then
the results can be compared with (21).

Note that the contribution to the peak’s width from the shear
waves increases more than twice as the distance increases from
the nearest neighbors, i.e., (r/a) = 1 to infinity. Also note that
there is essentially no change in the peak’s width with distance
due to the longitudinal waves.

FIG. 7. (Color online) Contributions to the peak’s width in the
pair distribution function from longitudinal and transverse waves as
a function of distance. The blue curve represents contributions from
all longitudinal waves. The red curve represents contributions from
one polarization of all transverse waves.

IV. DISCUSSION OF THE ATOMIC-LEVEL
STRESS ENERGIES

In this section, we discuss why the atomic-level stress
energies obtained in MD simulations are significantly larger
than the values obtained within the model considered in this
paper. The results of the previous MD simulations on a model
iron (see Fig. 3 of Ref. [39] and Fig. 5 of Ref. [40]) can be
summarized as follows. In the glass state (T < 900 K), the
stress energy of every independent component of the atomic-
level stress tensor depends on the temperature approximately
as Uo + (1/10)kbT [39,40]. Thus, in the glass state at T = 0
K, the average energy of every atomic-level stress component
has a finite value, Uo. The value of Uo depends on cooling
history, but approximately (Uo/kb) ≈ 200 (K). In the liquid
state (T > 1300 K), the energy of every component of the
atomic-level stress tensor is equal to (1/4)kbT with rather
good precision. It has been observed in MD simulations that
different components of the atomic-level stress tensor have
equal values of the stress energies. Thus it is possible to speak
about the equipartition of the total atomic-level stress energy
between the six independent stress components.

The (1/4)kbT temperature dependence of the atomic-
level stress energies has been analytically derived from the
Boltzmann distribution for the atomic-level stress energies in
a model that assumes that the atoms with their nearest-neighbor
shells act as independent 3D harmonic oscillators [38,40].
In this model, the definition of the atomic-level stresses
automatically includes into itself variations in the coordination
numbers between the different atoms. Because of this defini-
tion, the coordination number Nc is not explicitly present in
the derivations.

The derivation of the (1/4)kbT temperature dependence
implies the presence of ergodicity for every central atom
and its coordination shell. In the liquid state, time averaging
over every atom is equal to the ensemble averaging. In the
glass state, the coordination numbers of many atoms are
fixed on the time scale of a simulation. Thus time averaging
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of the stress energy for every particular atom is not equal
to the ensemble averaging. Therefore different temperature
dependencies of the atomic-level stress energies in the glass
and liquid states might reflect the breakdown of ergodicity at
the glass transition.

At T = 0 K, there are no vibrations in the classical
systems. Thus, in the glass state, the value of the atomic-level
stress energies at T = 0 K, i.e., Uo, is determined only by
the structural disorder, which also includes variations in the
coordination numbers between the different atoms, as can be
seen in Fig. 2 of Ref. [41]. In the glass state, it is natural to
associate Uo with the structural contribution, while (1/10)kbT

with the vibrational contribution.
In the liquid state, the atomic-level stress energies closely

follow an (1/4)kbT temperature dependence. Absence of any
Uo in this dependence suggests that in the liquid state, there
is no “frozen in” structural contribution. This observation
suggests that in the liquid state, it may not be possible
to separate structural and vibrational contributions to the
atomic-level stress energies.

The results of our calculations in this paper can be summa-
rized as follows. If the long-wavelength approximation (lwa )
is not assumed, then the pressure and shear-stress energies
obtained within the considered model are approximately eight
and three times smaller than (1/4)kbT , respectively. If the
lwa is assumed, then the pressure stress energy is two
times smaller than (1/4)kbT , while the shear-stress energy
is approximately equal to (1/4)kbT . In the framework of the
studied model, the average atomic-level stress energies in the
lwa are similar to those in Ref. [38].

In our present calculations of the atomic-level stress
energies, it has been assumed that every atom interacts with
Nc neighbors. In particular, it has been assumed that Nc is
the same for every atom. Thus the situation with the nearest
neighbors in the model discussed in this paper is different from
the situation in MD simulations. In our model, all atoms have
the same coordination number, while in MD simulations the
coordination numbers of different atoms can be different.

Formulas (38) and (41) show that the average squares of
the atomic-level stresses are proportional to Nc, while (37)
shows that the elastic constants are also proportional to Nc.
From this perspective, if all atoms have the same coordination,
the atomic-level stress energies, which are proportional to the
ratio of the average squares of the stresses to the relevant
elastic constants, should not exhibit a dependence on Nc.
However, in MD simulations, the average squares of the
stresses and the average values of the elastic constants have
been obtained by averaging over the atoms with different
Nc. Thus a (large) part of the average atomic-level stress
energies obtained in MD simulations might be related to the
variations in the coordination numbers between the different
atoms.

Atomic-level stresses originally have been applied to a
model of metallic glass in order to describe structural disorder
at T = 0 K [49]. Later, it was briefly discussed that it
might be possible to speak about structural and vibrational
contributions to the atomic-level stresses [38]. However,
previously, there were no systematic attempts to separate
structural and vibrational contributions to the atomic-level
stresses.

Note that the rates of increase of the atomic-level stress
energies in the glass state obtained from MD simulations,
i.e., (1/10)kbT , are still larger than the values that have been
derived in this paper [see formulas (38) and (48)]. Note also
that according to the present paper, the rates of increase of
the pressure and shear energies should be different. However,
the results from MD simulations show similar rates. This can
reflect the fact that vibrations in disordered media are not plane
waves as we assumed here. It also can reflect the fact that the
degree of the structural disorder can also change in the glass
state. For example, as temperature increases (still in the glass
state), there is a weak change in the number of atoms with
a given coordination as can be seen in Fig. 2 of Ref. [41].
However, this weak change can also be a consequence of the
vibrational dynamics.

In the context of the considerations in this section, it makes
sense to draw an analogy with the Einstein and Debye models
for heat capacity. Both of these models lead to the same value
of the average atomic potential energy in the classical limit
of high temperatures, i.e., to (3/2)kbT . The Einstein model
assumes absence of any correlations between the different
atoms. The Debye model, in contrast, assumes that atomic
dynamics is cooperative. The assumption that the atoms with
their nearest-neighbor shells act as independent harmonic
oscillators is equivalent to an adoption of the Einstein model.
This model describes the behavior of the atomic-level stress
energies in some model liquids surprisingly well [38–40].
However, it is impossible to explain in the framework of
this Einstein-like model, the nonlocal behavior of the sscf
observed in Refs. [8,9]. In this paper, we tried to assess
the nonlocal nature of the sscf using the Debye-like model.
These considerations bring a certain degree of qualitative
understanding into the data observed in Refs. [8,9]. However,
the model does not describe well the dependence of the
atomic-level stress energies on temperature.

Finally, we note that in the glass state, the total potential
energy of the system per atom follows the (3/2)kbT law (see
Fig. 3 of Ref. [41]). Thus, in the glass state, the total potential
energy grows faster than the energy of the atomic level stresses,
i.e., ≈6(1/10)kbT . In the liquid state, the total potential energy
follows the Rosenfeld-Tarazona law U = Ug + bT 3/5 (see
Fig. 3 of Ref. [41]) [50,51]. The value of the coefficient b

is such that at all reasonable temperatures the total potential
energy of a liquid again grows faster than the energy of the
atomic-level stresses, i.e., (3/2)kbT . This suggests that the
energies of the atomic-level stresses do not reflect all processes
that happen in the model liquid upon heating.

V. CONCLUSION

The primary goal of this paper has been to gain insights into
the connection between the atomic-level vibrational dynamics
and the atomic-level Green-Kubo stress correlation function.
It is necessary to understand this connection in order to
interpret the results of the previous MD simulations of a model
liquid [8,9]. For this purpose, we considered a simple model
in which vibrations are plane waves. Such representation of
vibrations does not imply that we think that vibrations in
liquids or glasses are plane waves. The situation in disordered
materials is much more complex [26,28–30]. However, the
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model that we consider is solvable, and it provides the needed
insight. It also provides a recipe for the analysis in Fourier
space of the atomic-level stress correlation functions obtained
in MD simulations [37].

Atoms, as they move, do not decompose their motions into
the orthogonal vibrational modes. Instead, they experience
forces and stresses. From this perspective, the comparisons
of the atomic level stress correlation functions from different
liquids and temperatures may provide valuable and, probably,
more physical insights into the atomic scale dynamics than
considerations of the vibrational eigenmodes.

By analogy with the atomic-level stress correlation func-
tion, we addressed the possibility for the atomic scale studies
of the transverse current correlation function. The energies
of the atomic-level stresses also has been considered. The
atomic-level stress energies obtained in the framework of the
studied model are significantly smaller than the atomic-level
stress energies obtained in MD simulations previously. This
difference, most probably, is largely caused by the variations
in the coordination numbers between the different atoms in
MD simulations of glasses and liquids. In the data obtained
from MD simulations, a coordination number is embedded
into the definition of the atomic-level stresses. Thus it is
likely that a large part of the atomic-level stress energies
obtained from MD simulations is caused by the variations
in coordination numbers between the different atoms. In the
framework of the model studied in this paper, the coordination

numbers of all atoms are the same. This is likely to be the
reason for the smaller values of the energies of the atomic-
level stresses obtained in this paper. Analysis of the MD
data suggests that in the glass state, it might be possible to
separate vibrational contributions to the atomic-level stress
energies from the contribution associated with variations in
coordination numbers. In the liquid state, it may not be possible
to make such separation. The role of the coordination number
in formation of the atomic-level stress energies deserves a
more detailed investigation. Analysis of the previous MD data
also shows that the rate of increase of the atomic-level stress
energies is always smaller than the rate of increase of the total
potential energy. This observation suggests that atomic-level
stress energies do not reflect all processes that happen in the
model glasses and liquids upon heating.

We demonstrated that in the framework of the model, the
increase in the widths of peaks in the pair distribution function
(by 40%) with the increase of distance occurs primarily
because of the transverse waves. The contribution to the peaks’
widths from longitudinal waves does not exhibit significant
distance dependence.
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