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Quantum percolation transition in three dimensions: Density of states,
finite-size scaling, and multifractality
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The phase diagram of the metal-insulator transition in a three-dimensional quantum percolation problem
is investigated numerically based on the multifractal analysis of the eigenstates. The large-scale numerical
simulation has been performed on systems with linear sizes up to L = 140. The multifractal dimensions, exponents
Dq and αq , have been determined in the range of 0 � q � 1. Our results confirm that this problem belongs to
the same universality class as the three-dimensional Anderson model; the critical exponent of the localization
length was found to be ν = 1.622 ± 0.035. However, the multifractal function f (α) and the exponents Dq and
αq produced anomalous variations along the phase boundary, pQ

c (E).

DOI: 10.1103/PhysRevB.90.174203 PACS number(s): 71.23.−k, 71.30.+h, 72.15.Rn

I. INTRODUCTION

The disorder-induced metal-insulator transition, which is a
genuine quantum phase transition, has been one of the most
studied phenomena of condensed-matter physics since the
seminal paper published over five decades ago [1]. According
to the original problem, the Hamiltonian

H =
∑

i

εia
†
i ai − t

∑
〈i,j〉

(a†
i aj + a

†
j ai) (1)

describes the behavior of noninteracting spinless electrons
in disorder. The first term in Eq. (1) represents an on-site
disordered potential, where the energies, εi , are independent,
uncorrelated random variables, drawn from a distribution
function, P (ε), whose form is usually chosen to be uniform
over an energy range that is symmetric around ε = 0, but other
forms, e.g., Gaussian or binary distributions, could be used as
well. The second term in Eq. (1) is the kinetic energy describing
the hopping of the particles over a regular lattice, but restricted
to nearest neighbors only. The energy scale associated with the
hopping process, t , can be taken as the unit of energy (t = 1).
The sites form a regular, usually simple cubic lattice. The
embedding dimension, d, of the system is a very important
parameter, since phase transition occurs for d > 2 only [2].

Besides diagonal disorder resembling substitutional disor-
der, the other main cause of irregularity in condensed systems
is structural disorder. For the investigation of topological and
structural disorder, percolation is one of the most important
and widely used models. Percolation in general has wide
applicability in many fields of physics [3]. In the Bernoulli
site-percolation problem, every site is filled with probability p

and is empty with probability 1 − p independently. The main
goal of classical percolation is to tell for a given p whether an
infinite cluster of filled sites may exist in the thermodynamic
limit or not. It turns out that there is such a critical probability,
pC

c , below which (p < pC

c ) there is no infinite cluster, but above
which (p > pC

c ) there is. In one dimension [4], pC

c = 1; in two
dimensions [5], pC

c = 0.592 746 216 ± 0.000 000 13; in three
dimensions [3], pC

c = 0.3116 ± 0.0002. In the p > pC

c case,
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the existence of an infinite cluster ensures that the system can
be treated as a conductor, since classical particles can travel
through the whole system. On the other hand, if p < pC

c , the
system consists of a set of disjoint, finite clusters, and as a
consequence it behaves as an insulator, since no particle can
escape from its initial finite cluster.

For the electric conduction properties of a sample, the
electrons are responsible whose behavior is described very
well by quantum mechanics, therefore we shall investigate
spinless noninteracting electrons on a percolated lattice; this is
called the quantum percolation model. Omitting spin and in-
teraction is necessary because even with these simplifications,
the problem seems to be hard to solve. The corresponding
Hamiltonian is

H =
∑
i∈A

εa
†
i ai −

∑
〈i,j〉

i,j ∈ A

(a†
i aj + a

†
j ai), (2)

where A is the set of filled sites, and ε is a constant on-site
energy, whose value can be safely set to zero without loss
of generality. Note that the pure site-percolation problem is
equivalent to a binary Anderson model [7–9] with constant εA

and εB but taking the limit εB → ∞:

H =
∑
i∈A

εAa
†
i ai +

∑
i∈B

εBa
†
i ai −

∑
〈i,j〉

(a†
i aj + a

†
j ai). (3)

This Hamiltonian could describe an alloy of a perfect metal
consisting of atoms A and a perfect insulator consisting of
atoms B only. All A sites are equivalent, and the B sites
cannot be reached due to their infinite on-site energy, therefore
B sites behave as if they were empty. This suggests that
quantum percolation behaves similar to the Anderson model.
In our present work, we shall show many similarities. The
most important similarity with the Anderson problem is the
existence of a metal-insulator transition for the quantum
percolation model too, however here p, or strictly speaking
(1 − p), plays the role of disorder: For p < pC

c , every state is
localized onto finite, connected islands, thus the sample is an
insulator. Increasing p beyond pC

c , however, a classical particle
can travel through the sample, the electron wave functions are
localized due to strong interference effects caused by disorder,
and the sample still remains an insulator. For p values slightly
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FIG. 1. Left side: Density of states of the quantum percolation model at different site-filling probabilities: (a) p = 0.35, (b) p = 0.4, (c)
p = 0.5, and (d) p = 0.6. (e) Small clusters corresponding to special energies taken from the review of Schubert and Fehske [6].

below 1, states are perturbed Bloch states, and the sample is
a metal. In between, there exists a mobility edge, pQ

c (E), that
is an energy-dependent quantum critical point, below which
electronic eigenstates are Anderson-localized giving rise to an
insulator, and above which they are extended forming a metal.
Along the mobility edge, pQ

c (E), the states are supposed to
be multifractals. In Sec. III B, we argue that the Anderson
model and the quantum percolation model belong to the same
universality class.

The organization of the paper is the following. In Sec. II
we examine the peculiar properties of the density of states in
quantum percolation, and we provide an overview about mul-
tifractality together with an introduction about the finite-size
scaling analysis of the corresponding generalized dimensions.
In Sec. III A we give a short overview of the technique of
the latter analysis in the case of the three-dimensional (3D)
Anderson transition, in Sec. III B we present the methods
applied in the present work, and in Sec. IV we give the results
of our analysis for the multifractal analysis. Finally, Sec. V is
left for a summary.

II. THEORETICAL AND NUMERICAL BACKGROUND

Electronic conduction is only possible on an infinite cluster,
so pQ

c > pC
c is expected; therefore, the infinite cluster should

be investigated, so only the p > pC
c regime is interesting for

us. Since numerically we can deal with a finite lattice only,
we restricted our work to the largest finite cluster found by
a Hoshen-Kopelman algorithm [10]. In a finite-size sample,
the Hamiltonian Eq. (2) is a huge sparse matrix. To obtain the
spectrum and eigenfunctions, we used the Jacobi-Davidson
method encoded in the PRIMME package [11] with ILU
preconditioning using the ILUPACK package [12].

We will first examine the density of states (DOS), because
for the quantum percolation problem it deserves a special
attention.

A. Density of states

The DOS of the giant cluster has an unusual form. The
evolution of this function with p is depicted in Fig. 1.
With increasing disorder, which in the present case means
decreasing p, more and more sharp peaks appear in the spec-
trum. These peaks correspond to special so-called “molecular
states,” which are localized to a few sites [7]. These states are
nonzero on a few sites only and exactly zero on every other one
due to exact destructive interference. Therefore, they are not
localized in the sense of Anderson localization, because there is
no exponential decay in the wave-function envelope. Typical
few-site structures and corresponding energies are given on
the right side of Fig. 1. Since the value E = 0 appears for
most clusters as an eigenvalue, the highest peak of the DOS
is at the middle of the band, and there is also a pseudogap
around it.

Considering other few-site clusters, there is no reason
for the eigenvalues to avoid any part of the band, therefore
peaks in the DOS corresponding to molecular states should
appear densely in the thermodynamic limit. The energy of a
molecular state is a strict value, thus the peaks in the DOS
appear as a series of Dirac δs. As we can see, the spectrum
consists of two parts: a dense point spectrum due to molecular
states, and a continuous one due to all other states [7]. This
statement has been rigorously proven recently in the case of
a two-dimensional (2D) square lattice, and for tree graphs
corresponding to an effective infinite dimension, therefore it
is conjectured to be true in any dimension [13].

Since molecular states are strongly localized, they cannot
contribute to conduction. Therefore, we restrict our investi-
gation to the continuous part of the spectrum only. With the
numerical method described above, we are able to compute one
single eigenstate of the Hamiltonian having an eigenenergy
close to a given value of E. In Fig. 1 it is shown that in a finite
system, molecular states appear frequently at a few special
energies only, e.g., E = 0, ± 1, ± √

2, . . . , therefore for our
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purpose we have chosen energy windows avoiding the peaks
in the DOS.

The cubic lattice is a bipartite lattice, and the Hamilto-
nian (2) couples nearest neighbors only, therefore from one
sublattice, α, it is possible to hop to the other sublattice,
β, only. The Hamiltonian anticommutes with an operator C,
which is 1 on sublattice α and −1 on sublattice β, thus C acts
like a chirality transformation [14]. Therefore, the quantum
percolation model is symmetric not only on average for the
exchange of eigenenergies, −E ↔ E, but for every single
disorder realization. In the low- (high-) energy range, the
states have antibonding (bonding) character. In the middle of
the band, around E = 0, chessboard-like chiral states appear.
These chiral states exactly at E = 0 are eigenfunctions of C as
well, therefore they are protected against off-diagonal disorder.

To understand the subgap appearing around the middle of
the band, E = 0, we invoke the arguments of Ref. [14]. The
square of the Hamiltonian, H2, connects the sites of the same
sublattice only, see Fig. 2, thus one can “renormalize” H2

acting on one of the sublattices [14]. The vicinity of E = 0
belongs to the low-energy regime of the spectrum of H2,
therefore here antibonding states should appear, which are
more or less visible in the wave functions themselves, too. But
the hopping elements to the diagonal-lying second neighbors
in Fig. 2 introduce triangles. Triangles and the antibonding
nature together lead to frustration. Based on the frustration of
the states around zero energy, Naumis et al. [14] showed in
two dimensions that the width of the pseudogap around zero
energy, �, is connected to the peak at E = 0: � ∼ √

ρ0, where
ρ0 stands for the weight of the zero-energy states in the spectra.
They also showed that the width of the pseudogap tends to
zero in the nondisordered limit, limp→1 � = 0. The extension
of these arguments to three dimensions should be valid,
since the most important ingredient of their calculation is the
coordination number of the lattice and not the dimensionality
itself explicitly.

The states close to E = 0 belong to the edge of the spectrum
of H2, which is a disordered Hamiltonian. Therefore, the
pseudogap might be qualitatively interpreted as the Lifshitz
tail of H2, leading to localized states close E = 0.

FIG. 2. (Color online) Hopping elements in the “renormalized”
Hamiltonian, H2.

B. Introduction to multifractals

In recent high-precision calculations [15], the so-called
multifractal exponents (MFEs) have been used to describe
the Anderson metal-insulator transition (AMIT). The renor-
malization flow of the AMIT as mentioned in the Introduction
has three fixed points: a metallic, an insulating, and a critical
one. In the metallic fixed point, every state is extended with
probability 1, thus with increasing system size the effective
size of the states also grows proportional to the volume. So
the fractal dimension of the states, which will be defined
more precisely later, is just the embedding dimension q-
independently, Dmet

q ≡ d. In the insulating fixed point, every
state is exponentially localized; their effective size does not
change with growing system size, thus for q � 0, Dins

q ≡ 0, and
for q < 0, Dins

q ≡ ∞. At criticality, the system does not change
during renormalization, thus it must be statistically the same
on all length scales showing scale independence, which means
self-similarity. Therefore, wave functions are multifractals, in
other words generalized fractals [16]; see Fig. 3.

In our case, there is a d-dimensional hypercubic lattice
with linear size L, and a normalized wave function whose
support is this lattice,

∑Ld

i=1 |	i |2 = 1, defining a probability
distribution. Let us divide this lattice into smaller hypercubes
(boxes) with linear size 
, and introduce the ratio λ = 


L
. Then

coarse graining |ψ |2, in other words summing all its values in
the kth box, we obtain

μk =
∑

i∈boxk

|	i |2, (4)

where μk is the weight associated with the kth box, termed
the box probability. Let us define the qth moment of the mass,
frequently called the generalized inverse participation ratio
(GIPR), and its derivative as

Rq =
λ−d∑
k=1

μ
q

k = λτ̃q , Sq = dRq

dq
=

λ−d∑
k=1

μ
q

k ln μk, (5)

where τ̃q is the finite system mass exponent. τ̃q and its
derivative read

τ̃q = ln Rq

ln λ
, α̃q = dτ̃q

dq
= Sq

Rq ln λ
. (6)

Taking the L → ∞ limit, which is equivalent to taking the
λ → 0 limit, the mass exponent and its derivative are

τq = lim
λ→0

ln Rq

ln λ
, αq = dτq

dq
= lim

λ→0

Sq

Rq ln λ
. (7)

τq can be written in the form

τq = Dq(q − 1) = d(q − 1) + �q, (8)

where Dq is the generalized fractal dimension. In this
expression, �q is the anomalous scaling exponent:

Dq = 1

q − 1
lim
λ→0

ln Rq

ln λ
, �q = (Dq − d)(q − 1). (9)

The quantities τq , αq , Dq , and �q are often referred to as
MFEs, while the finite system version of these exponents,
τ̃q , α̃q , D̃q, and �̃q , are called generalized multifractal expo-
nents (GMFEs). Dq is directly related to the so-called Rényi
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FIG. 3. (Color online) First row: Eigenvectors of the Anderson model at E = 0 (a) on the metallic side at W = 14, (b) close to criticality
W = 16.5, and (c) on the insulating side at W = 20. Second row: eigenvectors of the quantum percolation model at energy E = 0.1, (d) on
the metallic side at p = 0.5, (e) close to criticality, p = 0.4535, and (f) on the insulating side at p = 0.4. Box sizes correspond to (a),(d)
400 ×

√
|	|2; (b),(e) 70 ×

√
|	|2; and (c),(f) 20 ×

√
|	|2. Multiplying factors were tuned to best sight but without overlapping cubes. System

size, L = 120, for all subfigures. Coloring is due to the x coordinate.

entropy, Hq = (q − 1)−1 ln Rq , which in the limit q → 1
yields the well-known Shannon entropy, i.e., −∑

k μk ln μk .
This is the reason why D1 is also referred to as information
dimension:

D1 = lim
q→1

1

q − 1
lim
λ→0

ln Rq

ln λ

L′H= α1 = lim
λ→0

1

ln λ

λ−d∑
k=1

μk ln μk, (10)

while another frequently used dimension is the correla-
tion dimension, D2. The latter dimension appeared often
in recent studies of the physical relevance of multifractal
eigenstates [17].

There is another way to characterize the multifractal nature
of the wave functions. For that purpose, the box probability
μ can be transformed into another variable, α = ln μ/ ln λ,
assuming the fractal scaling

μ ∼ λα. (11)

Let us denote the probability density function of the number
of boxes having a value α with P(α). The scaling of P(α) is
described through the singularity spectrum f (α), which is the
fractal dimension of the number of boxes having a value α:

P(α) ∼ λf (α). (12)

Function f (α) is merely the Legendre transform of τq :

f (αq) = qαq − τq. (13)

According to recent results, a symmetry relation exists for
αq and �q given in the form [18]

�q − �1−q = 0, αq + α1−q = 2d. (14)

This relation was first obtained for some random matrix en-
semble numerically, and using the supersymmetric nonlinear
sigma model analytically [18] it was later confirmed for several
two-dimensional [19,20] and three-dimensional systems [21].
However, deviations have been detected in other cases [23,24].
The robustness of this relation has been investigated also for
many-body localization [25].
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C. Finite-size scaling laws for GMFEs

Finite-size scaling techniques are very well described by
Rodriguez et al. [15] for the Anderson model. We are going
to use their notation, therefore we denote disorder by W . In
this subsection, we extend the formalism of Ref. [15]. From
the eigenfunction, the Rq and Sq values can be computed for
every state at different q values. At fixed disorder, W , system
size, L, and box size, 
, every GMFE is computable from these
two quantities in the following way [15]:

τ̃ ens
q (W,L,
) = ln〈Rq〉

ln λ
, τ̃ typ

q (W,L,
) = 〈ln Rq〉
ln λ

, (15a)

α̃ens
q (W,L,
) = 〈Sq〉

〈Rq〉 ln λ
,

(15b)

α̃typ
q (W,L,
) =

〈
Sq

Rq

〉
1

ln λ
,

D̃ens
q (W,L,
) = 1

q − 1

ln〈Rq〉
ln λ

,

(15c)

D̃typ
q (W,L,
) = 1

q − 1

〈ln Rq〉
ln λ

,

�̃ens
q (W,L,
) = ln〈Rq〉

ln λ
− d(q − 1),

(15d)

�̃typ
q (W,L,
) = 〈ln Rq〉

ln λ
− d(q − 1),

where 〈 〉 stands for averaging: “ens” and “typ” denote the
ensemble and typical averaging. Every GMFE approaches the
value of the corresponding MFE at the critical point only in
the limit λ → 0. Close to the critical point due to standard
finite-size scaling arguments, we can suppose that Rq and Sq

show scaling behavior determined only by the ratio of two
length scales, L and 
, and the localization/correlation length,
ξ , in the insulating/metallic phase:

Rq(W,L,
) = λτqRq

(
L

ξ
,



ξ

)
. (16)

According to (15a)–(15d), for all GMFEs the scaling-law holds
independently of the type of averaging [15]:

τ̃q(W,L,
) = τq + q(q − 1)

ln λ
Tq

(
L

ξ
,



ξ

)
, (17a)

α̃q(W,L,
) = αq + 1

ln λ
Aq

(
L

ξ
,



ξ

)
, (17b)

D̃q(W,L,
) = Dq + q

ln λ
Tq

(
L

ξ
,



ξ

)
, (17c)

�̃q(W,L,
) = �q + q(q − 1)

ln λ
Tq

(
L

ξ
,



ξ

)
. (17d)

Equations (17a)–(17d) can be summarized in one equation:

G̃q(W,L,
) = Gq + 1

ln λ
Gq

(
L

ξ
,



ξ

)
. (18)

(L,
) on the left and (L
ξ
, 

ξ
) on the right can be changed to

(L,λ) and (L
ξ
,λ):

G̃q(W,L,λ) = Gq + 1

ln λ
Gq

(
L

ξ
,λ

)
. (19)

1. Finite-size scaling at fixed λ

At fixed λ, Gq in Eq. (19) can be considered as the constant
term of Gq , therefore

G̃q(W,L) = Gq

(
L

ξ

)
, (20)

where the constant λ has been dropped. Gq can be expanded
with one relevant, �(w), and one irrelevant operator, η(w), in
the following way using w = W − Wc:

Gq(�L
1
ν ,ηL−y) = Grel

q (�L
1
ν ) + ηL−yG irrel

q (�L
1
ν ). (21)

All the disorder-dependent quantities in the above formula can
be expanded in Taylor series:

Grel
q (�L

1
ν ) =

nrel∑
i=0

ai(�L
1
ν )i , (22)

G irrel
q (�L

1
ν ) =

nirrel∑
i=0

bi(�L
1
ν )i , (23)

�(w) = w +
n�∑
i=2

ciw
i, η(w) = 1 +

nη∑
i=1

diw
i. (24)

The number of parameters is nrel + nirrel + nρ + nη + 1.

2. Finite-size scaling at fixed � = 1

For fixed 
, the scaling law given in Eq. (18) has to be
considered. The expansion of G in (18) is

Gq(�L
1
ν ,�


1
ν ,ηL−y,η′
−y ′

)

= Grel
q (�L

1
ν ,�


1
ν ) + ηL−yG irrel

q (�L
1
ν ,�


1
ν )

+ η′
−y ′G ′irrel
q (�L

1
ν ,�


1
ν ).

Choosing 
 = 1, and considering that in most cases η and η′
are constant, i.e., nη = 0, the last term can be merged with the
relevant part. Equation (18) has the following form for fixed

 = 1:

G̃q(W,L) = Gq + 1

ln L

[
Grel

q (�L
1
ν ,�) + ηL−yG irrel

q (�L
1
ν ,�)

]
.

(25)

The Taylor expansions of the above functions are

Grel
q (�L

1
ν ,�) =

nrel∑
i=0

i∑
j=0

aij�
iL

j

ν , (26)

G irrel
q (�L

1
ν ,�) =

nrel∑
i=0

i∑
j=0

bij�
iL

j

ν , (27)

�(w) = w +
n�∑
i=2

ciw
i, η(w) = 1 +

nη∑
i=1

diw
i. (28)

174203-5
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The number of parameters is 3nrel(nrel + 1)/2 + 3nirrel(nirrel +
1)/2 + nρ + nη − 1. We can see that the number of parameters
grows as ∼n2

rel/irrel for fixed 
 = 1, instead of ∼ nrel/irrel as for
fixed λ. This makes the fitting procedure definitely much more
difficult.

III. FINITE-SIZE SCALING FOR THE 3D QUANTUM
PERCOLATION MODEL USING GMFEs

Before turning to the analysis of our simulations on the 3D
quantum percolation model, we briefly review the details of
the finite-size scaling using GMFEs but first based on the 3D
Anderson model. The aim of this section is twofold. First of
all, we present the advantages and disadvantages of the various
methods used and their applicability for our purposes. Second,
we show the precision of these techniques for the case of a
well-studied case, namely the Anderson transition.

A. Finite-size scaling for the 3D Anderson model using GMFEs

Our first goal was to test our numerical algorithm on
the well-known Anderson problem. Based on Ref. [15], we
formulate two cases: first fixing λ and then fixing 
.

1. Finite-size scaling at fixed λ

Since the metal-insulator transition occurs at the band
center [2] (E = 0) at disorder, Wc ≈ 16.5, most works study
the vicinity of this point. To have the best comparison,
we analyzed this regime also, therefore about 20 disorder
values were taken for the range 15 � W � 18. System sizes
were taken from the range L = 20–100, and the number of
samples was N = 4000 at least. We considered only one wave
function per realization, the one with energy closest to zero
in order to avoid correlations between wave functions of the
same system [15]. From the wave function, the Rq and Sq

multifractal moments were calculated in the range −1 � q �
2 at fixed λ = 0.1. In Eqs. (17a)–(17d), only two scaling
functions are present, Tq and Aq , therefore we investigated
D̃q(W,L,λ = 0.1) and α̃q(W,L,λ = 0.1) only using ensemble
and typical averaging (see Sec. II C).

To fit the scaling law (20), we used MINUIT. To find the best
fit to the data obtained numerically, the order of expansion
of Grel/irrel

q , �, and η must be decided by choosing the values
of nrel,nirrel,n�, and nη. Since the relevant operator is more
important than the irrelevant one, we always used nrel � nirrel

and n� � nη. To choose the order of the expansion, we used
basically three criteria. The first criterion we took into account
was how close the ratio χ2/(NDF − 1) approached 1. χ2 is the
sum of the squared differences between the data points and the
best fit weighted by the inverse variance of the data points, and
NDF is the number of degrees of freedom, namely the number
of data points minus the number of fit parameters. A ratio
χ2/(NDF − 1) ≈ 1 means that the deviations from the best fit
are in the order of the standard deviation. The second criterion
was that the fit has to be stable against changing the expansion
orders, i.e., adding a few new expansion terms. From the fits
that fulfilled the first two criteria, we chose the simplest model
with the lowest expansion orders. Sometimes we also took
into account the error bars, and we chose the model with the

lowest error bar for the most important quantities (Wc,ν, etc.)
if similar models fulfilled the first two criteria.

The error bars of the best-fit parameters were obtained
by a Monte Carlo simulation. The data points are results
of averaging, so due to the central limit theorem, they have
a Gaussian distribution. Therefore, we generated Gaussian
random numbers with parameters corresponding to the mean
and standard deviation of the raw data points, and then we
found the best fit. Repeating this procedure NMC = 100 times
provided us with the distribution of the fit parameters. We
chose a 95% confidence level to obtain the error bars. We
performed FSS for D̃ens

q ,D̃
typ
q ,α̃ens

q , and α̃
typ
q .

The results were very similar to the ones obtained by
Rodriguez et al. [15]. In the investigated range of q the results
were q-independent for D̃ens

q ,D̃
typ
q ,α̃ens

q , and α̃
typ
q within a 95%

confidence interval. The numerical values of Wc, ν, and y

have been obtained in excellent agreement with the results
of Ref. [15]. Hence we concluded that our method has been
confirmed. The disadvantage of this method is that the constant
term of Gq is not equal to the corresponding MFE, since λ is
fixed instead of tending to zero. It would be possible to perform
multifractal finite-size scaling (MFSS) at different λs, and then
obtain the MFEs for λ → 0.

2. Finite-size scaling at fixed �

The main goal of the present work is to investigate the
quantum percolation problem, where a fraction of lattice points
is missing. In this case, when performing the coarse-graining
technique defined above, immediate difficulties arise. It is
not clear how the 
-sized boxes have to be made, or how
the boxes containing different numbers of filled sites should
be compared. One way to resolve this problem is to choose

 = 1, meaning that a box contains only one site. Even though
this choice eventually opens the possibility to extend the
MFSS method for irregular lattices or even for graphs and
networks in the future, there is also a huge price to be paid: the
smoothing effect of the coarse graining is lost, and only the
more complicated method of the fixed-
 technique described
in Sec. II C 2 remains.

There is always some numerical noise on the data, which
becomes even more relevant for the smallest wave-function
components. In the case of negative q, these uncertain small
values are dominating the sums in Rq and Sq [see Eqs. (5)].
Coarse graining clearly suppresses this effect, because for

 > 1 in an 
 × 
 × 
 sized box, positive and negative errors
can cancel each other. Another effect is that in a box large
and small wave-function amplitudes appear together with
high probability. In this way, the relative error of a μk box
probability is reduced with coarse graining, in other words
coarse graining has a nice smoothing effect. At fixed 
 = 1
this effect is missing, thus for q < 0 the numerically obtained
D̃ens

q ,D̃
typ
q ,α̃ens

q , and α̃
typ
q [see, e.g., Eqs. (15a)–(15d)] values

are very noisy. This makes every attempt to get results for
negative q very hard if not impossible.

The other problem is that the scaling law becomes more
complicated as the leading number of fit parameters is growing
as ∼ n2

rel/irrel for fixed 
 = 1 instead of ∼ nrel/irrel as for fixed λ.
Performing the MFSS, another problem appeared with

Eq. (25). During the fit, the irrelevant exponent, y, converged to
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very small (10−3–10−5) or very large (102–103) values. In the
first case, the irrelevant term can be merged with the relevant
one, since η is in most cases constant. In the second case, L−y

suppresses the irrelevant part. This caused really large errors in
the bij , and it rendered the whole irrelevant part meaningless.

To find out whether this is just a numerical problem or
if there is also some systematic physical reason behind this
behavior, we modeled the above problem: First a dataset was
made by evaluating the expression (25) at system sizes and
disorder we used before, with some expansion parameter
values similar to the ones provided by previous MFSS
procedures. Of course fitting Eq. (25) to this dataset gave a
perfect fit. Now adding some small random noise to the initial
dataset started to shift the resulting fit parameters a little. By
increasing the noise to the order of the standard deviation of
the original dataset for the Anderson model, the fit showed the
expected phenomenon: The irrelevant exponent, y, converged
to either large or small values. This shows that this is just a
numerical artifact. There is a shift on the D̃q(W,L) curves
for different system sizes; see Fig. 4. This shift comes mainly
from the 1/ ln L term in Eq. (25), and if noise is present it is
numerically hard to determine the effect of the L−y irrelevant
part. All in all, however, in a finite system irrelevant operators
are always present, but considering them would only increase
the error of the fit parameters. Therefore, it seems to be useful
to drop the irrelevant part and to keep only the relevant one. In
this way, the fitting function reads

G̃q(W,L) = Gq + 1

ln L

⎛
⎝ nrel∑

i=0

i∑
j=0

aij�
iL

j

ν

⎞
⎠ . (29)

We performed MFSS in the range 0 � q � 2 with this
formula at fixed 
 = 1 for the Anderson model. Similarly to
the case of fixed λ at fixed energy E and q, one has to decide
the order of the Taylor expansion of the G scaling function.
To do this, we used similar criteria to those used before. The
only difference was that unfortunately the fits were not as
stable against changing the expansion orders, nrel and nρ , as
the ones for fixed λ, because at fixed 
 = 1 we had to fit many
more parameters to the same amount of data. The value of
the critical point must be q-independent, which—contrary to
the case of fixed λ—we had to keep also as a criterion. We
had to compare fits at different q values and choose the lowest
expansion orders that led to a q-independent critical point, and
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FIG. 4. (Color online) The generalized multifractal exponents
(a) α̃ens

1 (p,L,
 = 1) at E = 0.7 and (b) D̃ens
0.5 (p,L,
 = 1) at E = 0.1

for the 3D quantum percolation model. Points with error bars are the
raw data, and red solid lines are the best fits of the function Eq. (29)
as a function of disorder, p, at different system sizes, L.

we still had a χ2/(NDF − 1) ratio close to 1. In some cases, we
also had to leave out the smallest system size(s), i.e., choose
Lmin = 30 or 40 instead of 20 to fulfill the criteria above.

The results were acceptable only approximately in the range
0 � q � 1. If q � 1, fit parameters started to shift, sometimes
out of the confidence band of those obtained for smaller q

values, and error bars were growing extremely large. Similar
effects of growing error bars for q � 1 have been seen earlier
on a moderate level at fixed λ = 0.1, where the help of the
smoothing effect of coarse graining is present. The reason
behind this is that increasing q increases the numerical and
statistical errors through the μ

q

k expression. As mentioned
above, increasing error on the data makes it really difficult
to get acceptable results from the MFSS.

As a result, in the range 0 � q � 1 the critical point, Wc,
and the critical exponent, ν, were found to be consistent with
our results at fixed λ = 0.1 and based on the Dq and αq

exponents also with the high-precision result of Rodriguez
et al. [15]. We observe the expected symmetry (14) for �q

and αq , and our resulting MFEs fulfill these conditions in the
range 0 � q � 1.

Summarizing the results, it is possible to perform an MFSS
at fixed 
 = 1 and achieve good agreement with previous
high-precision results [15]. There are certainly numerical
difficulties, however, that lead us to resort to the limited range
of 0 � q � 1 only, but with further averaging, the widening
of this q range seems to be possible.

B. Numerical calculations for the 3D quantum
percolation model using GMFEs

The main goal in the present study was to find the mobility
edge and the critical exponent of the 3D quantum percolation
model, and to investigate the multifractal properties of the criti-
cal wave functions. Since the Hamiltonian Eq. (2) is symmetric
for E ↔ −E exchange, the E � 0 interval is investigated only.
We used the same numerics as in Sec III A 2. To avoid the
frequent molecular states (see Sec. II A), and to cover the most
interesting regions of the band, we chose the following ener-
gies: E = 0.001, 0.01, 0.1, 0.3, 0.7, 1.1, 1.5, 2.1, 3.1, 4.1.
For averaging, we considered only one wave function per
realization with the eigenvalue closest to the chosen energy
E to avoid correlations. We only used an eigenfunction if its
energy was in a �E = 0.01 wide interval around E, except
for E = 0.001 and 0.01, where �E = 0.00001 and 0.001 were
used.

Our �E energy intervals are so small that they completely
exclude the effect of molecular states. We ran a test after
the finite-size scaling was performed: Molecular states have a
strict energy value, therefore at fixed system size L, disorder
p, and energy E, we left out from our raw dataset all the
wave functions with the same energy value (at most 2% of the
original raw dataset). Note that these states are not necessarily
molecular states; they can be regular ones too, having the same
energy within numerical precision. We redid our whole finite-
size scaling procedure (as described below), but this additional
refinement had no effect on the results. This test ensures that
we filtered out the molecular states very effectively, and if they
were present in our raw dataset their effect would be negligible.
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TABLE I. System sizes and number of samples of the simulation
for the 3D quantum percolation model.

Number of samples

System size (L) pQ
c < 0.41 pQ

c > 0.41

20 50000 50000
30 50000 50000
40 50000 50000
60 50000 25000
80 20000 10000
100 10000 5000
120 5000
140 4000

At every energy we searched for the critical point pQ
c . From

the approximately �p = 0.01 wide neighborhood around pQ
c

we picked about 20 values of p. For higher pQ
c values at fixed

system size, L, there are more sites in the giant cluster, thus
the Hamiltonian matrix is larger, and it takes more time to find
the closest eigenvalue to the given energy. On the other hand,
Rq and Sq are calculated from more data, thus they are more
precise. Considering these arguments, we investigated system
sizes and the number of samples listed in Table I. Altogether,
45 045 000 wave functions were calculated.

The method we used here has been described in Sec III A 2.
We experienced that for typical averaging, finite-size scaling
sometimes had difficulty converging, therefore we used the
ensemble-averaged exponents Dens

q and αens
q only. The typical

behavior of these exponents is presented in Fig. 4; note that
curves do not have a common crossing point due to the 1/ ln L

term in Eq. (29).
The MFSS at fixed 
 = 1 for the range 0 � q � 1 provided

critical points, critical exponents, and MFEs for every q value
at every chosen energy, E. For fixed energy the critical points
and critical exponents should be q-independent, which can be
fulfilled within the 95% confidence level; see Fig. 5.

The critical point, pQ
c , shifts in most cases, but the shift

is within the 95% confidence band. An interesting feature is
that pQ

c obtained from αq for q � 0.5 and q � 0.5 shifts in
the opposite direction. For α0.4 and α0.6, the MFSS mostly did
not converge since α0.5 = d, and close to the q = 0.5 point,
α̃ curves have similar steepness close to the critical point,
therefore it is numerically hard to determine a well-defined
crossing point after scaling out the ln L shift. Therefore, these
data are not presented in Fig. 5.

For E = 0.001 and 0.01, the MFSS showed severe con-
vergence troubles, and even if it did converge, it provided
fit parameters with very large error. The reason behind this
behavior is presumably the close vicinity of the pseudogap at
E = 0 in the DOS, and it is very hard even to find eigenvalues
close enough to the desired energies E = 0.001 or 0.01.
Another difficulty in this case is that the mobility edge becomes
anomalous approaching E = 0; see Fig. 6(a). Therefore, only
a narrow energy band is permitted for averaging around
E = 0.001 or 0.01, which decreases further the possible
number of eigenstates. For these reasons, parameters coming
from MFSS at E = 0.001 and 0.01 were only used to plot
the mobility edge; these two points are denoted with empty
squares in Fig. 6(a).
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FIG. 5. Critical point (left column) and critical exponent (right
column) of the 3D quantum percolation model at (a) and (b) E = 0.1,
(c) and (d) E = 0.7, and (e) and (f) E = 3.1. Error bars represent 95%
confidence levels.

At fixed energy we picked one q point that represents
well the results for that energy; see Table II. The pQ

c values
are leading to a mobility edge; see Fig. 6(a). The values
of ν are independent and should not depend on the energy.
Thus they can be averaged, providing a more precise critical
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FIG. 6. (a) Mobility edge for the 3D quantum percolation
model; the dotted line denotes the classical percolation threshold,
pC

c = 0.3116 ± 0.0002 [3]. Circles are approximate values of the
bandwidth; beyond them only the Lifshitz tail is present. Squares
are results from MFSS, and the line is a spline to guide the eye.
Empty squares and dashed lines are for approximate data obtained
from MFSS at E = 0.001 and 0.01. (b) Critical exponent for the 3D
quantum percolation model. Error bars are for the 95% confidence
band. The dashed line is the average, and dotted lines note the 95%
confidence band around the average. The resulting critical exponent
is ν = 1.622 (1.587, . . . ,1.658).
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TABLE II. Resulting data along the mobility edge. These q values were chosen to compute ν and obtain the mobility edge.

E MFE pQ
c ν NDF χ 2 Lmin nrel nρ

0.1 D0.5 = 2.421 (2.416, . . . ,2.426) 0.45384 (0.45365, . . . ,0.45402) 1.591 1.508, . . . ,1.682 136 113 20 3 1
0.3 D0.5 = 2.397 (2.393, . . . ,2.402) 0.40241 (0.40228, . . . ,0.40257) 1.705 1.578, . . . ,1.879 157 123 20 3 1
0.7 D0.6 = 2.271 (2.265, . . . ,2.278) 0.38402 (0.38387, . . . ,0.38418) 1.645 1.572, . . . ,1.741 181 150 20 4 1
1.1 D0.6 = 2.262 (2.257, . . . ,2.268) 0.38518 (0.38504, . . . ,0.38531) 1.609 1.542, . . . ,1.688 243 155 20 3 1
1.5 D0.8 = 2.027 (2.020, . . . ,2.035) 0.38459 (0.38443, . . . ,0.38476) 1.688 1.589, . . . ,1.789 144 154 20 3 2
2.1 D0.5 = 2.439 (2.431, . . . ,2.448) 0.40466 (0.40443, . . . ,0.40492) 1.606 1.530, . . . ,1.692 127 116 40 2 2
3.1 D0.4 = 2.542 (2.538, . . . ,2.546) 0.50628 (0.50606, . . . ,0.50647) 1.603 1.515, . . . ,1.695 138 113 20 3 1
4.1 α0.9 = 2.108 (2.101, . . . ,2.114) 0.63827 (0.63806, . . . ,0.63845) 1.584 1.486, . . . ,1.699 128 113 20 3 1

exponent ν = 1.622 (1.587, . . . ,1.658); see Fig. 6(b). To
derive the average, the data points were weighted by their
inverse variance; the error bar is twice the standard deviation
of the mean, which is about the 95% confidence band for a
Gaussian.

In the literature, there are previous works showing a
mobility edge [3,6,8,9,22]; see Fig. 7. The shapes of these
curves are very similar: a steep decrease around E = 0, then a
plateau resulting in a global quantum percolation threshold for
the system, and finally an increasing behavior with growing
energy. The curves are in good qualitative agreement with
each other, and beyond E = 3 quantitative agreement is also
present. Curves of Soukoulis [9] and Schubert [6] have jumps
at E = 1 and E = √

2 (only Ref. [6]) due most likely to the
most frequent molecular states. Our curve is in very good
agreement with the recent result of Travenec [22] obtained by
transfer-matrix methods; the curves are almost covering each
other. His critical exponent is also in good agreement with
ours; see Table III.

At low p values the bandwidth is small, but increasing p

results in a wider band. In the Lifshitz tail, only localized states
are present, therefore the mobility edge curve should be above
the curve of the bandwidth. As a result, the mobility edge curve
increases at high energies in Fig. 6(a). Reaching the edge of the
band, E → 6, the mobility edges drawn from the data points
of different authors seem to converge to 1. Therefore, we put
a point in the top-right corner of Fig. 7; however, at p = 1 the
sample is a perfect crystal, and wave functions are completely
extended Bloch functions over the complete band.
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FIG. 7. (Color online) Mobility edge of the 3D quantum perco-
lation model in the literature [3,6,8,9,22].

Exactly at the center of the band, E = 0, on the other
hand, extremely localized molecular states disturb the picture.
In addition, close to the band center a pseudogap forms in
the DOS (see Fig. 1), therefore this regime is quite hard to
investigate numerically. Even though the localized molecular
states at E = 0 belong to the point spectrum, it is still not clear
what the E → 0 limit of the mobility edge is describing the
continuous spectrum. The following question arises: Does the
very steep increase of the mobility edge approaching E = 0
result in a pQ

c (E → 0) → 1, or is the limit lower than 1? Based
on the arguments in Sec. II A, our guess is that at any finite
disorder, p < 1, there are localized states near E = 0, resulting
in a limit of unity for the mobility edge, pQ

c (E → 0) = 1.
Some values of the critical exponent can also be found in

the literature. In Table III, we collected these values ranging
from 1.2 to 1.95. Because of the more limited computational
efforts, previous works used much smaller system sizes
compared to our possibilities, leading to much bigger finite-
size effects, affecting their FSS. Conductivity or transfer
matrix methods are used to overestimate, while level statistics
and Green-function techniques are used to underestimate the
critical exponent, ν. Our critical exponent is practically in the
center of the interval of the previous results 1.2 � ν � 1.95.
Our exponent, ν = 1.622 (1.587, . . . ,1.658), is in very good
agreement with the most recent study of Travenec [22],
similarly to the mobility edge. Furthermore, the critical
exponent is within the confidence band with our previous result
for the Anderson model at fixed 
 = 1 obtained from Dens

0.6
[ν = 1.617 (1.485, . . . ,1.783)] or at fixed λ = 0.1 obtained
from αens

0.6 [ν = 1.598 (1.576, . . . ,1.616)] even further with
the high-precision value [ν = 1.590 (1.579, . . . ,1.602)] of
Rodriguez et al. [15], however our result seems to be a
bit higher. Based on these facts, our work provides further
evidence for previous conjectures and statements saying that
the Anderson model and the 3D quantum percolation model
belong to the same universality class.

IV. ANALYSIS OF MFEs OF THE 3D QUANTUM
PERCOLATION METHOD

MFSS provided us the points of the Dq(E) and αq(E)
surface at the investigated energies and q values. By inversion
of the mobility edge curve, pQ

c (E), one can derive the MFEs as
a function of pQ

c and of q; see Fig. 8. Since D0 = d, at small q

values, i.e., q → 0, the results for Dq are pQ
c -independent, but

for larger values of q the Dq starts to shift down with decreas-
ing pQ

c , which shows up in the lower right corner of Fig. 8(a).
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TABLE III. Critical exponent of the 3D quantum percolation model in the literature.

Author Year ν Method System size

Root-Bauer-Skinner [26] 1988 1.8 ± 0.11 conductivity L = 3–9
Koslowski–von Niessen [27] 1991 1.95 ± 0.12 conductivity L = 6–9
Berkovits-Avishai [28] 1996 1.35 ± 0.1 level statistics L = 7–15
Kusy et al. [8] 1997 1.2 ± 0.2 Green function L = 4–8
Kaneko-Ohtsuki [29] 1999 1.46 ± 0.09 level statistics L = 12–21
Travenec [22] 2008 1.6 ± 0.1 conductivity L = 14–20
Present work 2014 1.622 ± 0.035 multifractality L = 20–140

In the lower regime of Fig. 8(c) this shift is visibly significant.
The same phenomenon can be detected for αq . This suggests
that Dq and αq seem not to behave as universal quantities.

At relatively larger values of pQ
c , Dq and αq fulfill the

symmetry relation (14); see Fig. 9(a), 9(b), 9(e), and 9(f).
However, at the bottom of the mobility edge, where pQ

c is
smaller, meaning that the lattice is more diluted or more
irregular, deviations from the symmetry law seem to be
prominent. The Dq and αq values remain the same at small
q, i.e., when q → 0, but they drop down as q increases.
This leads to the conclusion that the symmetry relation,
Eq. (14), is violated in this regime; see, for example, Figs. 9(c)
and 9(d).

The nonuniversality of Dq and αq would automatically
imply the nonuniversality of τq as well. On the other hand, with
a Legendre transform for τq , f (α) can be obtained, describing
the scaling of the probability distribution of the wave-function
amplitudes. This distribution should be universal, therefore
f (α) should be universal, too. Using Eqs. (13) and (8), it
immediately follows that

f (αq) = qαq − Dq(q − 1). (30)

From the αq and Dq exponents presented in Figs. 8(a) and 8(b),
we computed the f (α) curve, which is depicted in Fig. 10.
The values from different regimes of the mobility edge seem
to form a unique curve, but this is mostly due to the scale
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on the axis. The upper inset of Fig. 10 shows significant
differences between data points at different energies. The
approximate shape of the curve is a parabola, however a
quartic curve fits the data points slightly better. According
to Eq. (30), q = 1 corresponds to the fixed point of the
f (α) function, f (α1) = α1. For different values of pQ

c ,
the exponent α1 is not unique, leading to a linear regime
of the f (α) function; see the lower inset of Fig. 10. This
makes the whole Legendre transformation difficult, since it
needs strict convexity. Conversely, an f (α) that is not strictly
convex would lead to ill-defined τq , Dq , and αq , as in our case,
which contradicts universality again. A possible resolution for
this contradiction could be that our result for the MFEs is just
simply not complete; perhaps a p-dependent phenomenon has
not been taken into account affecting the results. Since the
problem appeared at the bottom of the mobility edge, closest
to the classical percolation threshold, one possible candidate
for such a phenomenon is the existence of an additional
length scale, namely the correlation length of the classical
percolation. To test it, we added this length scale to the fitting
function leading to a three-variable function with the number of
fit parameters ∼n3

rel, but we could not fit so many parameters in
our dataset. There is only a small difference between the values
of the MFEs for the quantum percolation model and those for
the Anderson model, see Fig. 8, and the symmetry relation (14)
is almost valid within the error bar at the bottom of the mobility
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FIG. 10. f (α) obtained from Dq and αq computed at different
energies, meaning different pQ

c . Pentagons are the results for the
Anderson model, the solid line is a fourth-order polynomial, and the
dashed line is a second-order polynomial. Insets are magnified parts
of the curve.

edge, too; see Fig. 9. Therefore, another explanation would be
that somehow we underestimated the error bars of the MFEs.
In the p → 1 limit, our exponents seem to be close to their
value for the Anderson model, which, together with our former
claim in Sec. III B about their matching universality class,
corroborates this possibility further. We believe that there
is a unique and universal Dq , αq , and f (α) curve for the
quantum percolation method, and it is identical to the one for
the Anderson model, which fulfills the symmetry relation (14).

In conclusion, the present coherent set of data with a
coherent technology in deriving critical exponents fulfills our
expectations for larger values of pQ

c � 0.5, but unfortunately
unexpected deviations occur for lower values, i.e., pQ

c � 0.5.

V. SUMMARY

In the present work, we have numerically investigated the
quantum percolation model in three dimensions. We developed
the MFSS method by Rodriguez et al. [15] in order to use it
for irregular lattices, or even for graphs in the future. First
we tested our method on the well-known Anderson model,
however certain numerical issues forced us to restrict our
analysis to the interval 0 � q � 1. We found q-independent
results in good agreement with the previous high-precision
values of Ref. [15]. Then we used our method for the quantum
percolation model, where we found q-independent results
again. We numerically determined the mobility edge of the
system, confirming previous calculations. We also gave an
explanation for the behavior of the mobility edge near E = 0
and at high energy. For the critical exponent, we got energy-
independent values within a 95% confidence level. The average
of these values is the same as the one for the critical exponent
for the Anderson model, implying that these models belong to
the same universality class. We also determined the MFEs Dq

and αq along the mobility edge, and for larger values of pQ

c

we found no significant difference from the Anderson model,
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confirming the statement of the same universality class further.
In this regime, the symmetry relation (14) is fulfilled. On the
other hand, in the case of lower pQ

c regime the exponents
started to deviate violating universality and (14), probably
caused by some unexpected p-dependent phenomenon. This
behavior deserves further attention.
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