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Phenomenology of fully many-body-localized systems
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We consider fully many-body-localized systems, i.e., isolated quantum systems where all the many-body
eigenstates of the Hamiltonian are localized. We define a sense in which such systems are integrable, with
localized conserved operators. These localized operators are interacting pseudospins, and the Hamiltonian is
such that unitary time evolution produces dephasing but not “flips” of these pseudospins. As a result, an initial
quantum state of a pseudospin can in principle be recovered via (pseudospin) echo procedures. We discuss how the
exponentially decaying interactions between pseudospins lead to logarithmic-in-time spreading of entanglement
starting from nonentangled initial states. These systems exhibit multiple different length scales that can be defined
from exponential functions of distance; we suggest that some of these decay lengths diverge at the phase transition
out of the fully many-body-localized phase while others remain finite.
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Isolated quantum many-body systems with short-range
interactions and static randomness may be in a many-body-
localized phase where they do not thermally equilibrate under
their own dynamics. While this possibility was pointed out
long ago by Anderson [1], such localization of highly excited
states in systems with interactions did not receive a lot of
attention until more recent work [2–7] brought the subject into
focus. Although the original idea of many-body localization
came from considering spins in solids [1], more recent interest
in the unitary quantum dynamics of many-body systems fully
isolated from their environment is also due to developments
in atomic physics that allow good approximations to such
systems to be assembled in the laboratory, e.g., using systems
of cold neutral atoms [8] or ions [9]. Interest in many-body
localization also accrues from the fact that localization can
protect types of order that are forbidden in equilibrium
[10–20], which may have implications for quantum devices
and quantum computation.

Isolated systems in the localized phase have strictly
zero thermal conductivity [2], so if energy is added to the
system locally, it does not diffuse, even when the system’s
energy density corresponds to a nonzero (even infinite [5])
temperature. Many-body-localized energy eigenstates violate
the eigenstate thermalization hypothesis (ETH) [21–23] and
exhibit only area-law entanglement, unlike the volume-law
entanglement of excited eigenstates at nonzero temperature
in thermalizing systems. It is also known [6,24–27] that for
generic initial area-law-entangled states in the many-body-
localized phase, the entanglement spreads logarithmically
with time, unlike thermalizing systems (where entanglement
can spread ballistically [6,28]) and single-particle localized
systems (where the entanglement remains area law).

In this paper, which is an extended version of Ref. [29],
we further explore the phenomenology of fully many-body-
localized (FMBL) systems [14,29–33] (systems where all the
many-body eigenstates of the Hamiltonian display localiza-
tion). We argue that there must exist localized pseudospin
operators in terms of which the many-body eigenstates within

the localized phase are indeed precisely product states with
zero entanglement. The existence of such a construction has
recently been proven for a certain class of spin chains [34].
Writing the Hamiltonian in terms of these localized pseudospin
operators reveals that fully many-body-localized Hamiltonians
are a type of integrable system, which contain an even larger
number of local conserved quantities than do traditional inte-
grable systems. Additionally, this structure is robust to small
but otherwise arbitrary local perturbations of the Hamiltonian,
which only lead to a redefinition of the local constants of
motion. We note that when the Hamiltonian is expressed in
terms of these localized pseudospins, it has exponentially
decaying long-range interactions which produce dephasing
but do not produce spin flips. It is these interactions that
cause the logarithmic spreading of entanglement observed
when the system is initialized in a nonentangled product state
of the bare spins [6,24–27]. We note also that the effective
interaction between distant pseudospins depends sensitively
on the configurations of all intervening pseudospins, and thus
changes from one many-body eigenstate to the next—a form
of “chaos” reminiscent of spin glasses [35].

The model: To be concrete, assume we have a system
of N spin-1/2’s on some lattice (say, in one, two, or three
dimensions), labeled by Pauli operators {σ i}. We call these
spins “p-bits” (p = physical). Our system has a specific random
Hamiltonian H that contains only short-range interactions
and strong enough static random fields on each spin so
that, with probability one in the limit of large N , all 2N

many-body eigenstates of this H are localized. For an example,
see [7]. The discussion should be readily generalizable to
local operators with more than two states, to Floquet systems
where the Hamiltonian is a periodic function of time, and
to systems where the dominant strong randomness is instead
the spin-spin interactions rather than random fields. In the
latter, the pseudospins may instead be localized domain wall
operators [13] or spin-exchange operators [25] and the lowest-
energy mode may be either a global symmetry mode [13] or
bilocalized between distant sites [25].
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We expect that in this fully localized regime, we can define
another set of localized Pauli operators {τ i}, that we refer
to as “l-bits” (l = localized) or pseudospins, such that the
Hamiltonian when written in terms of these τ operators takes
the form

H =
∑

i

hiτ
z
i +

∑

i,j

Jij τ
z
i τ z

j +
∞∑

n=1

∑

i,j,{k}
K

(n)
i{k}j τ

z
i τ z

k1
· · · τ z

kn
τ z
j ,

(1)

with the K (n) terms representing (n + 2)-l-bit interactions. The
sums in Eq. (1) are restricted so that each interaction term is
counted only once. Also we have added a constant to shift the
zero of energy (if necessary) so that the trace of H vanishes.
Note that the τ z

i all commute with the Hamiltonian and with
each other, so the eigenstates of H are simultaneous eigenstates
of all the τ z

i , with zero entanglement of these l-bits.
The intuition underlying the Hamiltonian (1) is that since

there is no transport in the localized regime, there should
be a set of localized conserved “charges” (the {τ z

i }), which
are constants of motion of the system. For example, for a
system of noninteracting fermions all localized in a disordered
potential, the {τ z

i } would just be the occupation numbers of
the localized single-particle orbitals. Since these l-bits are
localized, when written in terms of the p-bits they consist
of a sum of terms that are products of p-bit operators on
nearby sites, as we discuss below. These terms have weights
that typically fall off exponentially with the distance to the
farthest p-bit operator involved in the operator product. These
exponential tails mediate the long-range interactions between
l-bits, which thus also fall off exponentially with distance.
The l-bits are thus “dressed” versions of the p-bits, with local
“dressing” that makes each τ z

i conserved; this dressing also
produces the l-bit interactions in H .

We will shortly explain how the l-bit operators τ may be
constructed. However, first we discuss how (1) may be used to
understand the quantum dynamics in the FMBL regime, as has
been explored in Refs. [6,24–27]. These works studied real-
time dynamics of FMBL systems, starting from simple initial
product states of the bare (p-bit) degrees of freedom. When
written in terms of the l-bits, such p-bit product states have
area-law entanglement and thus contain exponentially many
eigenstates of H . Importantly, the presence of interactions
between the l-bits means that such initial states will dephase,
so there will be no local observables that show long-time
persistent oscillations. The dynamics of the l-bits in the
many-body-localized phase is in some sense simple: their z

components are frozen, while their transverse xy components
precess about the z axes of their Bloch spheres. However, the
precession rate depends on the states of all the other τ z’s, due to
the interactions between l-bits. As a result, the xy components
of each l-bit become entangled with the z components of all
the other l-bits, resulting in dephasing and decoherence. But
all the τ z

i ’s are conserved, so there is no “dissipation,” and this
dephasing can be reversed by spin echo procedures [36,37].

Next let us consider the spreading of entanglement within
the FMBL phase. As in Refs. [6,24,25], start with an
initial state that is a pure product state of the p-bits. It
follows from our discussion above that such initial states of
zero p-bit entanglement generically have extensive diagonal

entropy when expressed in terms of the many-body-localized
eigenstates of H and the l-bits. However, this state initially has
no entanglement between p-bits, and is thus a very particular
linear combination of the eigenstates of the Hamiltonian.
The eigenstates of the Hamiltonian each have short-range
“area-law” entanglement between the p-bits, while they are
product states of the l-bits. On a microscopic time scale, this
initial linear combination of the eigenstates of H will dephase,
producing an area-law entanglement between the p-bits with a
magnitude set by the typical entanglement in an eigenstate of
H , as was seen in the early time regime in Refs. [24,25].

After this early time transient, we can discuss what happens
at later times in terms of the l-bits. It is instructive to contrast
with what happens in nonlocalized, thermalizing many-body
systems (see, e.g., [28]). In thermalizing systems, the interac-
tion of spins (p-bits) A and B generates entanglement between
spins A and B. The subsequent interaction of spins B and C

causes C to get entangled not only with B, but also with A.
As a result, entanglement spreads ballistically, at a speed akin
to the Lieb-Robinson speed. However, this ballistic spreading
is absent in the FMBL phase because the interaction between
two spins (now l-bits) B and C depends only on their τ z

values, and the τ z value of the spin B is unaffected by its
interaction with the spin A (since τ z is a constant of motion).
As a result, l-bits can get entangled only through their direct
interaction. An interaction J has an influence on the phase
of a precessing l-bit which becomes significant once J t is of
order one (� = 1). Thus, if J (L) is the effective interaction
at a range L, then l-bits separated by a distance L will grow
entangled with each other (and with all intervening l-bits) after
a time t ∼ 1/J (L). Since the effective l-bit interactions in the
localized phase fall off exponentially with distance, after a
time t , a given l-bit is entangled with all other l-bits within a
volume ∼logd t for a d-dimensional system.

More quantitatively, let us define the effective two l-bit
interaction J eff in a particular many-body eigenstate as

J eff
ij = Jij +

∑

n,{k}
K

(n)
i{k}j τ

z
k1

τ z
k2

· · · τ z
kn

. (2)

We expect this effective interaction to decay with distance r

as J eff(r) ∼ J0 exp(−r/ξ̃ ). This defines an interaction decay
length ξ̃ , which will vary over the eigenstates, as is discussed
below. Note that this effective interaction at distance r is a sum
of ∼2r interaction terms, so clearly the typical individual term
in this sum falls off exponentially in r with a shorter decay
length than ξ̃ . This illustrates that for these systems there are
multiple exponential decay lengths that may behave differently
from one another. The localization length ξ that is expected
to diverge at the phase transition out of the FMBL phase may
differ from this interaction length ξ̃ , as is also discussed below.

Let us consider a generic FMBL spin chain with a nonentan-
gled initial pure product state. If we then consider the long-time
growth of the bipartite entanglement entropy between two
semi-infinite half-chains, the distance x that the entanglement
spreads in time t is set by J eff(x) ∼ 1/t , or x ∼ ξ̃ log (J0t)
for the eigenstates with interaction length ξ̃ . At long time this
initial state dephases to produce diagonal entropy per spin
s(ξ̃ ) from the eigenstates with ξ̃ . The resulting entanglement
entropy thus grows as S ∼ s(ξ̃ )ξ̃ log (J0t), which is dominated
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at long time not by the eigenstates within the initial state that
maximize its diagonal entropy, but by those that maximize the
product s(ξ̃ )ξ̃ .

The p-bits are composed of local l-bits, so their entangle-
ment will also grow this way at long time. This scenario seems
consistent with the results reported in Refs. [6,24]. Note that
Ref. [25] considered a special model at a random-singlet-type
critical point within the localized phase [13], where the
interactions instead fall off with distance as a “stretched
exponential,” allowing the entanglement to grow as a larger
power of log t .

This logarithmic-in-time growth of entanglement can con-
tinue without limit in an infinite system, due to the weak
long-range interactions between the l-bits. Note that the
long-time entanglement entropy per spin will depend on the
choice of initial states. Reference [24] chose initial states with
the p-bits randomly oriented along their z axes, which produces
a rather small entropy, allowing their DMRG calculation to
access fairly long times. A larger entropy in the same model
at the same energy can be produced by orienting the p-bits
initially perpendicular to their z axes [38].

We now discuss how to obtain (1) starting from a generic
p-bit Hamiltonian with strictly short range interactions. In
any system of N p-bits, a construction of N operators
τ which commute with the Hamiltonian can always be
made [39]. In fact, there are (2N )! discretely different ways
to do it, since there are that many one-to-one assignments
between the 2N many-body eigenstates of H and the 2N

simultaneous eigenstates of all of the τ z
i ’s. To fully specify

such an assignment there are (2N − 1) relative phases between
eigenstates that also need to be set. However, almost all such
assignments will fail to produce localized l-bits. Nevertheless,
in the localized phase there should be assignments that do
produce localized l-bits. We now discuss how one may define
the “best” such assignment.

For a weakly interacting p-bit Hamiltonian, one can attempt
to construct l-bits iteratively, by dressing the p-bit operators so
as to ensure commutation with the Hamiltonian order by order
in perturbation theory in the p-bit interactions. At nth order in
perturbation theory the l-bit τ i will be a linear combination of
p-bit product operators containing p-bits within a distance n

of site i. Equivalently, to involve a p-bit a distance n from site
i in the definition of τ i , one must go to order n in perturbation
theory. Thus, in the perturbative construction, the l-bits are
simply dressed p-bits, where the weight of the dressing falls off
exponentially with the distance. Nevertheless, this perturbative
construction will ultimately fail because of degeneracies,
which make the definition of l-bits ambiguous [34]. We thus
need a more formal (and nonperturbative) definition of l-bits,
which we now provide. See also Ref. [40] for an alternative
approach to finding l-bit operators.

First, let us look at one specific location i. Each of the
many-body eigenstates of H is specified to be a simultaneous
eigenstate of all of the {τ z

j }’s, with one particular one-to-one
assignment, with phases, now assumed. Of these eigenstates,
half have τ z

i = +1; let us call those states {|α〉}. For each of
these 2(N−1) states |α〉 we can flip l-bit i to make the state |ᾱ〉 =
τ x
i |α〉, which is, by construction, also a many-body eigenstate

of H and has τ z
i = −1, while all the other τ z

j ’s have the same
value in |α〉 and |ᾱ〉. Thus we can define the l-bit Pauli operators

(with the proper commutation relations) at location i as

τ z
i =

∑

α

(|α〉〈α| − |ᾱ〉〈ᾱ|), (3)

τ x
i =

∑

α

(|α〉〈ᾱ| + |ᾱ〉〈α|), (4)

τ
y

i = −i
∑

α

(|α〉〈ᾱ| − |ᾱ〉〈α|). (5)

Note that each τ z
i consists of a sum of projectors on to many-

body eigenstates of H and thus commutes with H and with
τ z
j for all other sites j . To define the l-bit operators at all other

locations, just repeat the above.
Next we want to express each such l-bit operator in terms

of the bare p-bit operators. The full set of all linear operators
on our 2N -dimensional state space is 4N linearly independent
operators. One way to list these operators is all 4N composite
operators that can made as (outer) products of one p-bit Pauli
operator {σa

i } from each site, where a = 0, x, y, or z, and
0 denotes the identity operator for that p-bit. Of these 4N

p-bit product operators, only of order N of them are “local”
operators that consist of the identity operator at every site
except at one or a few sites that are all near each other. The
vast majority are, on the other hand, “global” operators that
operate nontrivially and simultaneously on of order N of the
p-bits. For a given Hamiltonian H , and a given assignment of
all its many-body eigenstates to eigenstates of the l-bits, the
l-bit operators as defined above can each be expanded in terms
of these p-bit product operators.

Each p-bit product operator has a “range” �, which can
be defined as the distance between the two farthest-apart
nonidentity local p-bit operators that it contains. Thus we can
define the mean range �̄i for l-bit i, from the weighted (by
the norm of the operator) average of the range of all of its
constituent p-bit product operators. And we can define the
average range for a given choice of l-bit operators as the
average of the range over all the l-bits. Of course, other
definitions of the average range that are different in their
details can be formulated and might be more useful under
some circumstances.

We expect that for a generic Hamiltonian in the FMBL
regime there do exist definitions of the l-bits that give a finite
average range in the thermodynamic limit. We want to choose
the assignment that minimizes the average range, and this
minimum range will be one measure of the localization length
ξ of the l-bits. We expect that if we use this optimal assignment,
the typical l-bit will consist of an infinite sum of p-bit product
operators, but that the terms with long range will have a total
weight that typically falls off exponentially with the range.
Also there will be rare l-bits that have much longer than typical
mean range, due to rare “resonances,” but these will occur
with a probability that falls off exponentially with the range.
Similarly, even though the p-bit Hamiltonian contains only
short range interactions, the p-bits when expanded in terms of
l-bits consist of an infinite sum of l-bit product operators, with
long range terms falling off exponentially with range. Thus, the
l-bit Hamiltonian (1) will contain interactions between all l-
bits, but with the interaction strengths falling off exponentially
with the range.
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Thus, we have argued that systems in the FMBL regime can
be viewed as a type of “integrable” system, with Hamiltonian
(1), which can be used to understand their dynamics. Tra-
ditional, translationally invariant integrable one-dimensional
models of N spins have N conserved local densities. It
appears that if you try to make other conserved quantities
as composites (operator products) of these basic conserved
densities, these are necessarily nonlocal operators of range
∼N . For a FMBL system, on the other hand, if we consider
n l-bits near site i, out of products of these l-bits we can
make 2n independent conserved quantities that are all localized
near i. In this sense, fully many-body-localized systems have
many more conservation laws that can affect local observables
than do traditional translationally invariant integrable systems.
In addition, this structure is robust to arbitrary small local
perturbations of the Hamiltonian, which will only make small
changes in the definitions of the localized constants of motion.
This again contrasts with traditional integrable systems, which
presumably lose their exact integrability under almost all small
local perturbations.

We note that our l-bit construction has localization lengths
that are present in the Hamiltonian (1), which set the
length scales for the localization of the l-bits and for the
exponential decay of interactions between l-bits. However,
intuition informed by single-particle localization suggests that
the typical localization length should vary with energy, and
in particular that the localization length should be longer in
the middle of the spectrum where the many-body density of
states is maximal, and shorter near the edges of the spectrum
where the density of states is (exponentially) lower. Since
all eigenstates are eigenstates of the same l-bit Hamiltonian
(1), we suggest that the apparent localization lengths in the
Hamiltonian are set by the eigenstates that have the longest
localization lengths, and a type of “screening” can reduce the
localization lengths for other eigenstates.

Next, we discuss how different eigenstates can have
different localization lengths ξ . Consider the process of
perturbatively dressing the p-bits to make the l-bits, and thus
diagonalizing the Hamiltonian. The size of the perturbative
effects, and thus the strength of the dressing and of the long-
range l-bit interactions generated by this dressing depends
on the ratios of matrix elements to energy denominators that
are encountered in the perturbation series. The distribution
of the magnitude of these ratios will vary between many-
body eigenstates, and this allows different eigenstates to
have different localization lengths ξ . At energies near the
center of the many-body spectrum where the density of states
is very large, there can be many other states encountered
perturbatively which are close in energy, thus producing
smaller energy denominators and larger perturbative effects.
Near the many-body ground state energy, on the other hand, the
density of states is exponentially smaller, and as a result there

should be fewer small energy denominators encountered in the
perturbation series. We expect that ξ will depend on more than
just the energy, since even at a given total energy, one can ask
for the eigenstates whose detailed configuration is such that
the dressing is either minimized or maximized. The eigenstates
with the longest localization lengths will presumably be those
where the dressing is maximized as much as is possible. A
FMBL system is one where these eigenstates remains localized
in spite of the resulting strong quantum fluctuations.

The effective interaction between two distant l-bits is a sum
(2) with a number of terms that is exponential in the distance.
Each term has a magnitude that is set by the Hamiltonian and
is the same for each eigenstate. Only the signs of the terms
change between eigenstates. Thus what must happen is that the
degree of cancellation between these terms must vary among
eigenstates, allowing them to have different interaction lengths
ξ̃ . This is a type of screening of the l-bit interactions that may
allow this interaction length ξ̃ to be in some cases much less
than the localization length ξ that sets the size of the l-bit
operators. It seems possible that ξ̃ may even remain finite at the
phase transition out of the FMBL phase where ξ diverges. It
will be of interest to understand this screening process in more
detail.

For some less strongly disordered models, we expect that
there is a mobility edge within the many-body spectrum
of H [2]. In the nonlocalized portion of the spectrum the
many-body eigenstates are expected to obey the ETH [21–23].
For such systems we expect that all of the above possible
definitions of the l-bits will produce average ranges of order
the system size. Such Hamiltonians are not integrable in
any useful sense [39], even though we can still formulate a
definition of an extensive set of (global) conserved quantities
out of the projections on to the eigenstates. Whether our l-bit
construction can be modified to usefully describe the localized
regime of such systems remains an open question. It seems
possible that some definition of l-bits could exist, perhaps
involving operators somehow projected onto the localized
subspace. But there are difficulties with this idea: One is that
typical MBL eigenstates in such systems do have rare regions
where the local energy density approaches arbitrarily close
to the mobility edge (a new type of “Griffiths singularity”).
We note that similar issues have recently been discussed in
Ref. [33]. We leave this challenge for future work.
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