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Tensor renormalization group (TRG) method is a real space renormalization group approach. It has been
successfully applied to both classical and quantum systems. In this paper, we study a disordered and frustrated
system, the two-dimensional Edwards-Anderson model, by a new topological invariant TRG scheme. We propose
an approach to calculate the local magnetizations and nearest pair correlations simultaneously. The Nishimori
multicritical point predicted by the topological invariant TRG agrees well with the recent Monte Carlo results.
The TRG schemes outperform the mean-field methods on the calculation of the partition function. We notice that
it might obtain a negative partition function at sufficiently low temperatures. However, the negative contribution
can be neglected if the system is large enough. This topological invariant TRG can also be used to study
three-dimensional spin glass systems.
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I. INTRODUCTION

Exploring the Edwards-Anderson (EA) model [1] is sig-
nificant but extremely difficult. The nature of spin glasses in
three dimensions—between the mean-field picture and droplet
picture [2–7]—has been much debated over the past 30 y. The
two-dimensional (2D) model, besides attractiveness in statis-
tical physics, has wild applications on image processing [8]
and computer vision [9,10], which is usually referred to as the
Markov random field [11] in the computer science community.
In this paper, we propose a coarse-graining method for the
EA model on a 2D square lattice and calculate local physical
quantities simultaneously by the tensor renormalization group
(TRG) method.

TRG is a real space renormalization group approach
initially introduced by Levin and Nave [12] for classical
ferromagnetic Ising spin systems on 2D regular lattices. This
method is an extension of the density matrix renormalization
group method for 1D quantum systems [13]. The basic idea
is to perform a coarse-graining process on a tensor network.
Matrix low rank approximation is used to cut the degree of
freedom of tensor indices to a maximum value D through the
singular value decomposition.

Shortly after the introduction of the initial TRG method,
an improvement was made by Xie and coauthors [14], who
proposed a backward iteration to calculate the environment
tensor and improved the results by considering the effect of
the environment. The TRG method has excellent performance
on the classical ferromagnetic Ising model, the Potts model
[15], the diluted ferromagnetic model [16,17], etc. It also
becomes a crucial tool to handle 2D quantum systems [18–20].
Very recently a further improvement, namely the topological
invariant TRG method, was proposed in the papers [21,22] to
extend the TRG to 3D ferromagnetic Ising cases.

Unlike the ferromagnetic Ising model, the EA spin glass
model [1] is heterogeneous, disordered, and frustrated. It is
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intrinsically hard. The problems of finding a ground state
of the 2D EA model with external field and the general
3D EA model are proved to belong to non-deterministic-
polynomial-hard (NP-hard) class [23]; it is commonly believed
that no algorithm can solve them within polynomial time.
In the previous study, the mean-field approximation [24–28]
and Monte Carlo sampling [29], transfer matrix method
[30], and numerical exact algorithm for 2D without the
external field [23,31] are used to calculate local properties for
individual finite size instances. These methods are combined
with finite size scaling to investigate the thermodynamic limit
properties. The duality relationship [32–34] and real space
renormalization methods [35] are also employed to study
the phase diagram and universality. TRG can be exploited
in both of two roles. It can be served as an approximate
calculator of physics quantities for a single instance, and it
may also be used as a new renormalization method to directly
investigate critical phenomenon. We here focus on the former
role.

In this paper, we propose two main approaches. First,
we show a new topological invariant coarse-graining scheme
based on the work [21]. It avoids two problems when
the method [21] is directly applied on EA model: cutting
extra freedom of indices and inversing singular matrices. In
the ferromagnetic Ising model, these two problems do not
exist. Second, we propose an approach to compute local
physical quantities simultaneously. For example, all single-
spin magnetizations can be calculated by a single sweep of
coarse-graining procedure and backward procedure. These two
approaches are also useful for other heterogeneous systems.
In the numerical calculation, TRG may get a negative value
of the partition function at very low temperature, which is
the major difference between the spin glass model and other
heterogeneous systems [16,17]. We show that the contribution
of the negative part is comparable to the error fluctuation for
a large enough system and, therefore, it can be neglected. In
the high-temperature region, TRG outperforms the mean-field
method, belief propagation, and generalized belief propagation
[24–28], while the mean-field methods are failed in the
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lower temperature because of the convergence problems. The
Nishimori multicritical point [32,36,37] is calculated by our
TRG scheme. The results agree well with the recent Monte
Carlo results [29]. We emphasize that the original TRG method
[12] can also be directly applied to any heterogeneous systems,
including the EA model, similar to the works on the diluted
ferromagnetic model [16,17]. The advantage of topological
invariant scheme is that it can be extended to 3D cases [21,22].

The paper is arranged as follows. In the remainder of this
section, we introduce the EA model and show how to convert it
to a tensor network. In Sec. II, we demonstrate our topological
invariant TRG procedure. In Sec. III, we show how to calculate
local physical quantities by backward iteration. In Sec. IV, we
list some numerical results to test the validation of this method.
In Sec. V, we discuss further improvement and applications.

II. THE MODELS

A. The Edward-Anderson model

We consider the classical 2D EA model on a periodic square
lattice with discrete coupling constants. The system consists of
N spins {σi}, M coupling constants {Jij }, and N local external
fields {hi}. Each spin σi takes value from {+1,−1}. The overall
spin state σ = (σ1,σ2, . . . ,σN ) is referred to as a configuration.
The energy function is defined as

H (σ ) = −
∑

(ij )∈E

Jijσiσj −
∑
i∈V

hiσi, (1)

where E and V denote the edge set and vertex set of the system,
respectively.

For a single instance of the EA model, the coupling
constants and local external fields are fixed according to
predefined distributions. In this paper, the value of Jij is
randomly chosen from the binomial distribution P (Jij ) =
pδ(Jij ,1) + (1 − p)δ(Jij ,−1), where δ(x,y) is the Kronecker
δ symbol, which is 1 if x = y; otherwise it is 0. The model
parameter 0.5 � p � 1 alters the system ranging from the spin
glass (p = 0.5) to the pure ferromagnetic system (p = 1). The
configuration σ is supposed to follow the Gibbs-Boltzmann
distribution,

p(σ ) = 1

Z
exp[−βH (σ )],

where Z = ∑
σ exp[−βH (σ )] is the partition function. It is

useful to rewrite the distribution as a production of a set of
non-negative weight factors,

p(σ ) = 1

Z

∏
(ij )∈E

ψij (σi,σj )
∏
i∈V

ψi(σi), (2)

where the weight factors have the form ψij (σi,σj ) =
exp[βJijσiσj ], ψi(σi) = exp[βhiσi]. If all the external random
fields are zero, the partition function and the pair-spin correla-
tions can be calculated exactly in polynomial time [23,31,38].
However, for general external fields {hi}, the problem is proved
to be in the NP-hard class [23].

B. Tensor networks

Any two-body interaction system can be transformed into
a tensor network, in which the partition function of the system
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FIG. 1. Construction of a tensor network. (a) The neighborhood
of a vertex i. (b) Each matrix �(ij ) is split into two matrices by the
singular value decomposition, so that each vertex i is now surrounded
by four matrices which share the common index si . (c) Summing over
the index si , the four neighboring matrices contract to be a tensor T i .

is equal to the trace of all the tensors. The transformation
is not unique. Here we show a symmetric method. The
transformation of the EA model on 2D square lattice at a
site i is illustrated in Fig. 1. First each Ising spin σi is
mapped to a Boolean variable si = (1 − σi)/2 ∈ {0,1}, so that
each weight factor ψij (σi,σj ) can be expressed as a matrix
�(ij ), where the element in si th row and sj th column is
�

(ij )
si sj

= ψij (1 − 2si,1 − 2sj ). Note that the C-programming-
language convention is used, in which the index starts from
0. Meanwhile, each external weight factor ψi(σi) of field
hi is mapped to a vector �(i), of which the si th element
is �(i)

si
= ψi(1 − 2si). Next we perform the singular value

decomposition on the matrix �(ij ), such that

�(ij )
si sj

=
∑
sij

U (ij )
si sij

dsij
V (ij )

sj sij
, (3)

where the matrices U (ij ), V (ij ) are real orthogonal matrices and
the vector d = (d0,d1) stores singular values in descending
order. Each element in the vector d is non-negative. The new
variable sij ∈ {0,1} is the index of the singular vector d . Let

Ũ
(ij )
si sij

= U
(ij )
si sij

d
1
2
sij

, Ṽ
(ij )
sj sij

= V
(ij )
sj sij

d
1
2
sij

. Then we have

�(ij )
si sj

=
∑
sij

Ũ (ij )
si sij

Ṽ (ij )
sj sij

.

Now, each variable i is surrounded by four matrices, Ũ
(ij )
si sij

,
Ũ (ik)

si sik
, Ṽ (il)

si sil
, Ṽ (i,m)

si sim
, where j , k, l, m are labels of the neighbor

spins of spin i. Finally, we sum over si and get a tensor
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T i
sij siksil sim

:

T i
sij siksil sim

=
∑
si

Ũ (ij )
si sij

Ũ (ik)
si sik

Ṽ (il)
si sil

Ṽ (i,m)
si sim

�(i)
si

. (4)

The partition function of the original system is equal to the
result obtained by tracing over all the indices of the tensors
defined on lattice sites:

Z =
∑
{s}

∏
i

T i
sij siksil sim

. (5)

We refer to the network of tensors constructed by the above
procedure as a tensor network. On the original lattice, each
vertex i is associated with a tensor T i , and each edge (ij )
is associated with a tensor index sij . In graphical language,
the tensor network is similar to a factor graph model with
weight factors defined on vertices and state variables defined
on edges, but a key difference is that the elements of tensors
are not necessarily non-negative. In the following discussions,
we rewrite the tensor indices as i0,i1,i2,i3, i.e., T i

i0i1i2i3
for

notational simplicity.

III. TENSOR COARSE-GRAINING PROCEDURE

There are several ways to implement the tensor coarse-
graining procedure [12,21,22]. Generally, each coarse-
graining iteration consists of two steps. First is contracting
two neighbor tensors into a new tensor with bigger degrees-
of-freedom indices. It is an exact procedure. If there is no
computation limitation, the exact partition function could be
gotten by the iteration of these contractions. Second is cutting
the degrees-of-freedom indices approximately, so that the
computation is tractable.

We introduce our method for the tensor network defined
on a 2D square lattice with the periodic boundary condition
expressed as Eq. (5). At the first step, each two vertical
neighbor-tensor pairs T , T ′ are contracted as shown in
Fig. 2(a). We sum over the common index k, and the pair
T ,T ′ is unified into one tensor R:

R(i0,j0),j1,(i2,j2),i3 =
∑

k

Ti0,k,i2,i3T
′
j0,j1,j2,k

. (6)

The new tensor R has six indices i0, i2, i3, j0, j1, j2. We
combine two indices in the same direction i0, j0 as a union
index î0 and i2, j2 as another union index î2, so that the
number of indices of R is still four, i.e., î0, j1, î2, i3. After the
contraction, the topological structure of the square lattice is
preserved, and the y direction length shrinks to half, while the
degrees-of- freedoms indices associated with the edges along
the x direction increases to the square of the previous one.

At the second step, the union indices î0 and î2 will be
truncated alternatively along the x direction if their degrees
of freedom are greater then a given cutoff parameter D.
Specifically, let us consider the two horizontal neighbor tensors
Rk̂,j1,î2,i3

and R′
î ′0,j

′
1,k̂,i ′3

in Fig. 2(b), which share an index k̂. We

think of R and R′ as a subsystem in the tensor network with
the internal variable k̂ and the boundary variables {j1,î2,i3}
and {î ′0,j ′

1,i
′
3}. The boundary variables interact with other

tensors, which can be considered as the environment of the
subsystem. We are going to approximate the subsystem with

another one with a lower degree of freedom of internal variable
such that the interaction with environment is as similar as
possible. Mathematically, it is done by the lower rank matrix
approximation. We rearrange the indices order of the tensor R

as j1,î2,i3,k̂ and group the first three indices as an unique
index i = (j1,î2,i3). Then tensor R becomes a matrix Ri,k̂ . In
the same way, we get the matrix R′

k̂,i ′
from the tensor R′, where

i ′ = (î ′0,j
′
1,i

′
3). We sum over the common index k̂ to get a new

matrix A:

Ai,i ′ =
∑

k̂

Ri,k̂R
′
k̂,i ′ . (7)

The subsystem is now expressed by the matrix A. To exactly
represent the boundary interaction, the minimum degree of
freedom of the internal variable is of rank A. A lower rank
approximation is made by the singular value decomposition.
The matrix A is decomposed in the reduced form by

Ai,i ′ =
rank(A)−1∑

k′=0

Ui,k′dk′Vi ′,k′ . (8)

The reduced singular value decomposition discards the
zero elements of the singular vector d, which has no
contribution to the subsystem. In the numerical compu-
tation, singular values less than the criterion di < ε =
10−12 are considered to be zero. If the rank of A

is greater than the cutoff parameter D, we only keep
the largest D singular values. Let a′ = min{rank(A),D}.
The approximation of A is expressed as

Ai,i ′ ≈ Ãi,i ′ =
a′−1∑
k′=0

T̃i,k′ T̃ ′
i ′,k′ , (9)

j2

i2

j1

i3i3

j0

j1

i0

T

Tk

j0

i1 i0

(a)

R̂

k̂

R

i3

j1 j1
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î0

i3i3

(c)

FIG. 2. (Color online) Demonstration of TRG. The top figure is
the microscope of the circled region in the bottom figure. The two
vertical tensors T and T ′ in (a) are contracted into one tensor R in
(b), and the associated two indices i0 and j0 of (a) are combined into
one index î0. If the degree of freedom of the index î0 is larger than
the cutoff parameter D, we use the singular value decomposition to
truncate this index and obtain the approximate tensors T̃ and T̃ ′ in (c).
Bold lines indicate that the freedom of associated indices is greater
than the others when the freedom exceeds the cutoff parameter D.
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where T̃i,k′ = Ui ′,k′d
1
2
k′ and T̃ ′

i ′,k′ = Vi ′,k′d
1
2
k . The matrices T̃ and

T̃ ′ are nonsingular, and therefore their inverse matrices always
exists. This property will be used in the next section. Next, we
expand the grouped indices i and i ′ and rearrange the order of
indices to recover the tensor T̃k̂,j1,î2,i3

and T̃ ′
î ′0,j

′
1,k̂,i ′3

.

In this way, the tensors R and R′ in Fig. 2(b) are replaced
by T̃ and T̃ ′ in Fig. 2(c), and the common index k̂ is replaced
with k′, whose degree of freedom is no greater than D. The
above procedure of cutting off variable k̂ by the singular
value decomposition guarantees that the matrix Ã is a best
approximation of A among all matrices with a rank no greater
than D, if the measure of the error is the Frobenius norm
‖A − Ã‖F . Note that A is a D6 × D6 matrix. The complexity
of directly decomposition of A is O(D18). Considering that
the rank of A is at most D2, we could reduce the complexity
into O(D8). Details are illustrated in the Appendix.

We now rotate the present tensor network 90◦ in Fig. 2(c),
and then it has the same local structure of the tensor network
as the one at the first step in Fig. 2(a), while the length along
the x direction is reduced by half. We repeat steps 1 and 2 once
more. The size of the tensor network shrinks by half in both
the x and the y directions.

This is the complete step of a coarse-graining procedure.
We repeat it until the tensor network is reduced enough to
be tractable by brute-force summation to get the partition
function. In this paper, the final size is 2 × 2.

In practice, the value of elements of the tensors increase
exponentially during the TRG procedure. So we need to scale
the tensor after each step. The scaling is forcing the maximum
singular value of each Ã(i) in Eq. (9) in the present layer of
the tensor network to be a fixed value Sm, and we save the
logarithm of the scale factor for the ith matrix at the lth step
as

φ
(i)
l = ln

(
d

(i)
0

) − ln(Sm), (10)

where d
(i)
0 is the maximum singular value of matrix Ã(i). The

total free energy density is

f (β) = − 1

Nβ

(∑
l

∑
i

φ
(i)
l + ln Zr

)
, (11)

where Zr is the remaining scaled partition function calculated
by contracting the final 2 × 2 tensor network.

The cutoff parameter D controls the space of approximate
tensors when performing the coarse-graining procedure. If
D is infinitely large, the coarse-graining process is exact.
Generally, larger D will get more accurate results. In terms
of computational complexity, our topological invariant TRG
scheme is of order O(D8), while the original method [12]
and the higher order TRG [21] are O(D6) and O(D7),
respectively. Practically, the precision in calculating the free
energy is better than the original one [12] for the same cutoff
parameter D. Our tensor coarse-graining method is based on
the higher order TRG [21], where the exact contraction step
is the same, but the approximate truncation is different. The
higher order TRG method truncates all the indices associated
with x-direction edges by the higher order singular value
decomposition. However, we found that such a truncation
scheme cannot report a sufficiently precise free energy density

value for the EA spin glass model. We only truncate the
x-direction indices alternatively, while the remaining half of
the x-direction indices will be contracted in the next step, so
they are not necessary to be truncated.

IV. MARGINAL PROBABILITY AND
BACKWARD PROCEDURE

The EA model has no translational symmetry, and therefore
the local magnetization depends on vertex position. The
marginal probability distribution of a vertex i is given by

Pi(si) = 1

Z

∑
all indices

T i(si)
∏

j∈V \{i}
T j , (12)

where si is related to the spin σi by σi = 1 − 2si and the term
“all indices” under the summation represents all the indices of
every tensor in the tensor network {T i |i ∈ V }, and T i(si) is a
tensor at vertex i when its spin σi is fixed to 1 − 2si :

T i
i0i1i2i3

(si) = Ũsi i0Ũ
′
si i2

Ṽsi i3 Ṽ
′
si i1

�(i)
si

. (13)

As shown in Eq. (12), Pi(si) can be computed by ordinary TRG
method for any i in the tensor network with a special tensor
T i(si). However, it is impractical to calculate the marginal
probabilities for all the vertices in this way. In this work
we use the backward iteration method [14] to compute the
marginal spin probability distribution functions for all the
vertices simultaneously.

We define the environment tensor, which we simply call the
environment, of a local tensor T i as

Mi
i0i1i2i3

=
∑

all indices
except i0,i1,i2,i3

∏
j∈V \i

T j , (14)

where the summation is taken over all the indices of the tensor
network except the indices of the tensor T i . An environment
Mi has the same indices as its correspondent tensor T i . The
partition function can be rewritten as

Z =
∑

i0i1i2i3

T i
i0i1i2i3

Mi
i0i1i2i3

. (15)

The marginal probability distribution is expressed as

Pi(si) = 1

Z

∑
i0i1i2i3

T i
i0i1i2i3

(si)M
i
i0i1i2i3

. (16)

Similarly, the nearest-neighbor pairwise marginal distribution
Pij (si,sj ) can be also expressed as a summation between a pair
of neighbor tensors and the corresponding environment,

Pij (si,sj ) = 1

Z

∑
i0j0j1i2j2i3k

T i
i0,k,i2,i3

(si)T
j

j0,j1,j2,k
(sj )

× M̂
ij

(i0,j0),j1,(i2,j2),i3
, (17)

where M̂
ij

(i0,j0),j1,(i2,j2),i3
is the environment of the tensor

R(i0,j0),j1,(i2,j2),i3 = ∑
k T i

i0,k,i2,i3
T

j

j0,j1,j2,k
.

We calculate environments of a tensor network at a more
detailed level based on knowing the environments at a coarse-
grained level, which we called the backward iteration. We
start from the final coarse-grained 2 × 2 tensor network after
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finishing the forward TRG procedure. The corresponding
environment Mi of a tensor T i at this level can be calculated
directly by tracing the other three tensors.

Given the environments MT̃ , MT̃ ′
of the tensors T̃ , T̃ ′ in

Fig. 2(c), we now show how to calculate the environments MT ,
MT ′

of the tensors T , T ′ at the detailed level in Fig. 2(a) . The
definition of indices is the same as described in the previous
section and shown in Fig. 2. We start from the relation equation
of the tensor T̃ and its environment MT̃ in Eq. (15),

Z =
∑

k′,j1,î2,i3

T̃k′,j1,î2,i3
Mk′,j1,î2,i3

(18)

=
∑

k′,k′′,i

T̃k′,iδ
k′
k′′Mk′′,i , (19)

where in the second line we group the indices (j1,î2,i3) as i

and insert a Kronecker δ function δk′
k′′ .

The tensor T̃ ′
î ′0,j

′
1,k

′,i ′3
can be viewed as a matrix T̃ ′

k′,i ′ if

we exchange the order of indices to k′,î ′0,j
′
1,i

′
3 and group

the indices î ′0,j
′
1,i

′
3 as i ′. As mentioned in previous section,

the matrix T̃ ′
k′,i ′ is always nonsingular, and we replace the

Kronecker δ function in Eq. (19) with

δk′
k′′ =

∑
i ′

T̃ ′
k′,i ′(T̃

′−1)i ′k′′ , (20)

where T̃ ′−1 is the inverse of the matrix T̃ ′. The partition
function is then expressed by

Z =
∑
i,i ′

Ãi,i ′M
Ã
i,i ′ , (21)

where Ãi,i ′ = ∑
k′ T̃k′,i T̃

′
k′,i ′ is defined in Eq. (9), and MÃ is

the environment of Ã:

MÃ
i,i ′ =

∑
k′′

(
T̃ ′−1

)
i ′,k′′ Mk′′,i . (22)

Since Ã is the lower rank approximation of A, where
Ai,i ′ = ∑

k̂ Rk̂,iR
′
k̂,i ′

defined in Eq. (7), the environment MÃ

is approximately the environment of MA,

MA ≈ MÃ. (23)

The physical explanation of the above approximation is that,
for a subsystem expressed by Ã and its environment, if we
replace this subsystem with another subsystem A, which
interacts with the environment in a very similar way with
more internal variable states, the environment will not change
too much. From the relationship of A and its environment, we
get

Z =
∑
i,i ′,k̂

Rk̂,iR
′
k̂,i ′M

A
i,i ′ .

The environments of R and R′ are obtained as

MR

k̂,i
=

∑
i ′

R′
k̂,i ′M

A
i,i ′ , (24)

MR′
k̂,i ′ =

∑
i

Rk̂,iM
A
i,i ′ . (25)

We expand the grouped indices i, i ′ of matrices MR and MR′

and exchange the indices to get the environments MR

k̂,j1,î2,i3
and

MR′
î ′0,j

′
1,k̂,i ′3

of tensors R and R′. This is the backward iteration

of the cutoff step.
The backward iteration of the contraction step is

more straightforward. We unpack the indices k̂ and î2

of R in the view before contraction; hence, Rk̂,j1,î2,i3
→

R(i0,j0),j1,(i2,j2),i3 = ∑
k Ti0,k,i2,i3T

′
j0,j1,j2,k

as shown in Eq. (6),

in which the first index î0 is the index k̂ here. From the relation
of the tensor R and its environment,

Z =
∑

i0j0j1i2j2i3k

Ti0,k,i2,i3T
′
j0,j1,j2,k

MR
(i0,j0),j1,(i2,j2),i3

,

we can get the environments of T and T ′ as

MT
i0,k,i2,i3

=
∑
j1j2j3

T ′
j0,j1,j2,k

MR
(i0,j0),j1,(i2,j2),i3

, (26)

MT ′
j0,j1,j2,k

=
∑
i0i1i2

Ti0,k,i2,i3M
R
(i0,j0),j1,(i2,j2),i3

. (27)

After the above two steps, the environment matrix MT̂ is
calculated by knowing the environment matrix M of higher
coarse-grained level tensor network. We repeat this process
until the environment tensors of the original tensor network
are obtained. Then the marginal probability distributions
can be calculated from Eq. (16). In practice, we reduce
the computational complexity by utilizing the fact that the
matrix A is at most rank D2.

The backward iteration is initially introduced to design a
better way to do tensor coarse-graining by minimizing the
change of the whole system with the environments [14] on
the ferromagnetic Ising model. This improvement can also be
applied to the EA model in the same way. We here exploit
the backward iteration to calculate local physical quantities
simultaneously.

V. NUMERICAL RESULTS

We compared the partition function calculated by our
topological invariant TRG with those obtained by the original
TRG [12] and mean-field approach, belief propagation and
generalized belief propagation (GBP) [24,27,28], on the pure
spin glass model without external fields, i.e., p = 0.5 and
hi = 0. The exact partition function is calculated by the
algorithm [23]. The paramagnetic solutions of BP and GBP
[27,28] is included, which is the mean-field method under the
Bethe-Peierls approximation [39] and Kikuchi approximation
[40], respectively. We measure the average error of the
logarithm partition function as

εφ = 1

N
〈| ln(Zexact) − ln(Z)|〉 (28)

over 64 instances with L = 64 in Fig. 3 in the region β =
1/T ∈ [0,1.1]. The results show that tensor renormalization
approaches outperform BP and GBP by several orders. For
the same cutoff parameter D = 8, our topological invariant
TRG is more accurate than the original TRG. If one use a
larger cutoff parameter D, the results will be better, while the
computation time will increase dramatically.
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FIG. 3. (Color online) Comparison of the error of 1
N

ln Z, cal-
culated by our topological invariant TRG (pTRG) with D = 8,
the original TRG method (TRG) [12] with D = 8,16, and the
mean-field approaches BP and GBP [27,28]. The results are obtained
by averaging over 64 instances on a periodic square lattice with side
length L = 64.

At low temperatures T , i.e., high inverse temperature
β = 1/T , we found that the TRG procedures may result in
a negative partition function. This phenomenon happens in
both the original TRG [12] and our topological invariant TRG.
We tested 128 instances with the inverse temperature β ranging
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FIG. 4. (Color online) (a) The probability to obtain a negative Zr

and (b) the ratio r of ln |Zr | to the leading part at β = 1.5.

from 0 to 4.0. The probability of the negative partition function
is shown in Fig. 4(a) . A brief explanation is that the elements in
the tensors are not constrained to be non-negative and the lower
rank matrix approximation makes the final result fluctuate
around the exact partition function. At low temperatures, the
error is so large that the scaled partition function Zr of the
finial 2 × 2 tensor network turned out to be compatible with
a negative value. It seems like a general limitation of TRG
methods applying for the models with frustrations. One could
use larger cutoff parameter D to reduce the probability of
negative results. If one only cares about the asymptotic result
for a large system, one could simply neglect the negative
part, since for an infinite system the log partition function is
dominated by the scaling factors �

(i)
l in each forward iteration

step rather than the remaining contribution Zr . To clarify this
point, we define the ratio of the remaining log partition function
and the leading part of the scaling factors as r ,

r =
〈

ln |Zr |∑
l

∑
i �

(i)
l

〉
, (29)

where 〈·〉 means averaging over disorders. Numerically, we
averaged 128 instances. As shown in Fig. 4, the contribution
of the remaining free entropy decreases as the system size
increase almost linearly in the log-log scale. For a large system,
it will be even lower than the error, so that we can safely
discard this term. This phenomenon also indicates that we can
investigate the EA model in the thermodynamic limit, similar
to the work on ferromagnetic Ising model [15]. Because of
the heterogeneity, the properties of the system are captured by
infinite iterations of populations of tensors rather than a single
tensor iteration. We leave the analysis of infinite systems in
our future work.

We plot all the nearest-pair-spin correlations of a typical
single instance compared by the numerical exact values which
are calculated by numerical differential of the free energy at
β = 1.0. The error is defined by

εc = (|〈σiσj 〉pTRG − 〈σiσj 〉exact|). (30)

A larger cutoff parameter D will lead to better results, as shown
in Fig. 5. We do not show the local magnetizations since they

-10
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-6

-4

-2

 0

-1 -0.5  0  0.5  1

lo
g 1

0(
ε c

)

<σiσj>exact

D=8
D=16

FIG. 5. (Color online) Comparing the nearest-neighbor correla-
tions of a single instance L = 64 with exact results at β = 1. The
cutoff parameter is set to D = 8 and 16.
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FIG. 6. (Color online) Estimation MNP point by finite size
scaling. Lines are got by fitting Eq. (33).

are always zero because of the spin symmetry in the absence
of no external fields.

The p-T phase diagram of 2D EA model has been
extensively investigated in the papers [29–37,41,42] and the
references therein. There is no spin glass phase at finite
temperature [42], while it undergoes a para-ferro-magnetic
phase transition at low temperature T and large p. The system
is in the paramagnetic phase when 0.5 � p < pc(T ) and in
the ferromagnetic phase when pc(T ) < p � 1. A special line
pNL(T ) = [tanh(1/T ) + 1]/2 is called the Nishimori line [36],
on which some physical quantities can be calculated exactly.
The multicritical Nishimori point (MNP) is the crossing point
of the Nishimori line and the critical line pc(T ). We compute
the MNP by locating the crossing point.

We use the topological invariant TRG as a tool to calculate
magnetizations and compute susceptibility χ by numerical
differential

χ = d
∑

i〈σi〉
dh

, (31)

where h is the external field and 〈·〉 means averaging over the
Boltzmann distribution, which can be quickly calculated by
the marginal distribution Eq. (16) after the backward iteration.
The MNP point is estimated by finite size scaling stated in the
work [29]. We measure the RG invariant quantity U22, along
Nishimori line near MNP, where

U22 = [χ2]

[χ ]2
− 1, (32)

where the square brackets represent the average over the
disorder, i.e., the couplings {Jij }. We use 2 × 105 instances
for each point. Then the MNP point is got by fitting

U22 = U ∗
22 + a1(p − p∗)Ly1 + a2(p − p∗)2L2y1 , (33)

where U ∗
22, an, p∗, y1 are fitting parameters. We fit the data

with the lattice size 16 � L � 128 as shown in Fig. 6 and
estimate the MNP point at p∗ = 0.890 830 ± 0.000 22, the
exponent y1 = 0.642 ± 0.022, and other parameters U22 =
0.0813 ± 0.0003, a1 = −0.85 ± 0.07, and a2 = 6.5 ± 2.6.
The χ2 test reports a small ratio of χ2 to the degree of freedom
χ2/DOF = 7.2/17, which shows that the fit model is good
enough to describe the data. We also test the fit by using
different data groups, for example L � 32 and L � 64. All test

TABLE I. Location of the MNP.

Methods p∗

BP [28] 0.79
GBP [27,28] 0.85
Duality analysis [32] 0.889 972
Duality analysis [33] 0.890 813
pTRG 0.890 830(22)
Monte Carlo [29] 0.890 81(7)
Monte Carlo [43] 0.890 83(3)

are consistent with each other, except the data of L = 8, which
has strong finite size effect so that we discard it in all fits. The
susceptibilities χ are checked by using different differential
steps δh ranging from 10−6 to 10−3. For most of instances, they
are insensitive to δh, and we set δh = 10−5. A tiny fraction
(about 10−4) depends on δh, and for these cases a larger δh is
used. The location of MNP is not dependent on the choices of
δh. Small portions of instances are also verified by averaging
the two-point correlations. The comparison of the estimation
MNP is shown in Table I. The results agree well with the
recent Monte Carlo method with finite size scaling [29] and
the recent duality analysis inspired by hierarchical lattice [33].
We leave the discussion of re-entrance phenomena and strong
disorder universality as the future work. We emphasize that the
role of TRG here is a new tool to calculate physical quantities.
Compared to other methods, the mean-field estimation by BP
and GBP on 2D EA model [27,28] is much better.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we applied the TRG on the 2D EA model
and proposed a topological invariant tensor coarse-graining
procedure, as well as an approach to calculate local physical
quantities simultaneously. Two problems hidden in the trans-
lation symmetric cases are solved. We avoid overcutting the
degrees-of-freedom indices in the coarse-graining procedure
and avoid inversing a singular matrix in backward iterations.
The backward iteration process was used to compute single
spin marginal probability distributions and nearest-neighbor
spin pair correlations.

We found that the TRG scheme is able to compute the free
energy and local correlations accurately if the temperature is
not very low. At low temperatures the TRG scheme might lead
to a negative value of the partition function. We show that, for
large systems, the main contribution of the partition function is
the scaling factors during the coarse-graining iteration, and the
negative remaining scaled partition function of the final 2 × 2
tensor networks can be discarded. The successful estimation
of the MNP location indicates TRG can be used in studying
the critical phenomena in a satisfied precision [15], though
originally TRG is considered only be applied to a gapped phase
[12]. The present TRG scheme cannot be applied to the case
at zero temperature because the singular value decomposition
(SVD) only preserves the local optimal coarse-graining mode,
and they are orthogonal in the further coarse-graining iteration
and finally get zero partition function. It is an open question
whether TRG can be used in a zero-temperature problem. A
further improvement can be made by considering the effect of
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environments, which is illustrated in the paper [14,21] on the
ferromagnetic Ising model. In principle, one can investigate
the fixed point of TRG. However, it may not give the good
precision we got in our paper, because the advantage of TRG
is its excellent performance in computing physical quantities
rather than analyzing the fix point of the renormalization [44].

The topic of the nature of spin glass phase on a 3D lattice
is still rather active [2–7]. The main method in most of the
current studies is the Monte Carlo sampling. The topological
invariant coarse-graining iteration can be done in 3D cases
by contracting tensors along one direction and cutting off
the indices associated with the edges along the other two
directions. Local physical quantities, for example, the EA
parameter, can be directly gotten, as shown in this paper.
The sample-to-sample overlap distribution or other nonlocal
quantities would be estimated by TRG guided sampling, in the
way that we fix the spins one by one according to its marginal
probability. So, it presents an alternative way to investigate 3D
spin glass models.

Another application is in investigating combinatorial op-
timization problems on finite-dimensional lattices or loopy
random graphs. TRG can be immediately applied on image
segmentation and denoising [8]. They share the same mathe-
matical structure as the 2D spin glass model. For the random
graph model, the mean-field method provided excellent solu-
tions on mean-field-like systems, such as the local-tree-like
structured graph [45] and fully connected graph [46]. For
the system rich in local loops, the mean-field approximation
may not be quite accurate, for example, small world networks
and many real networks. The extension of TRG on a general
graph provides a new insight and maybe another physics-based
solution to such problems. Similar to the belief propagation,
the decimation [47] and reinforcement approaches [48] can be
combined with TRG to get optimization solutions.
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APPENDIX: SIMPLIFYING SINGULAR VALUE
DECOMPOSITION OF MATRIX A

We started from the definition of the matrix A in Eq. (7),
where R and R′ are tensors with four indices. The simplifying
cutoff step is graphically showed in Fig. 7. We exchange
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Ri,k
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(a)
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k,lV
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FIG. 7. Demonstration of simplifying cutoff step.

and combine the indices so that Rk̂,j1,î2,i3
, R′

î ′0,j
′
1,k̂,i ′3

change

to matrices R̂(j1,î2,i3);k̂ , R̂′
(î ′0,j

′
1,i

′
3);k̂

. For simplicity, we write

i = (j1,î2,i3) and i ′ = (î ′0,j
′
1,i

′
3). Instead of multiplying R

and R′, here we first decompose them by the singular value
decomposition

Ri,k =
∑

l

Ui,ldlVl,k, (A1)

R′
k,i ′ =

∑
l′

U ′
k,l′dlV

′
l′,i ′ . (A2)

Let

Ãl,l′ =
∑

k

dlVl,kU
′
k,l′dl. (A3)

We decompose Ã by the singular value decomposition

Ãl,l′ =
∑
k

′
UA

l,k′d
A
k′ V

A
l′,k′ . (A4)

Then tensors T̃i,k′ ,T̃ ′
j,k′ in Eq. (9) could be calculated by

T̃i,k′ =
∑

l

Ui,lU
A
l,k′d

A 1
2

l , (A5)

T̃ ′
i ′,k′ =

∑
l′

d
A 1

2
l V A

l′,k′V
′
l′,i ′ . (A6)

The numerical SVD routines take O(mn2) flops to decom-
pose a m × n matrix (m � n) by Golub-Reinsch algorithm
[49]. The SVD routine in the GNU Scientific Library is used
in our numerical calculation. The maximum size of matrix
R̂, and R̂′ are D4 × D. The SVD of these two matrices takes
O(D8) flops, which take most computational complexity in the
coarse-graining step, while directly decomposing the D6 × D6

matrix A in Eq. (8) takes O(D18) flops.
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[13] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[14] Z.-Y. Xie, H.-C. Jiang, Q.-N. Chen, Z.-Y. Weng, and T. Xiang,

Phys. Rev. Lett. 103, 160601 (2009).
[15] M. Hinczewski and A. N. Berker, Phys. Rev. E 77, 011104

(2008).
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[17] C. Güven and M. Hinczewski, Phys. A 389, 2915 (2010).
[18] H.-C. Jiang, Z.-Y. Weng, and T. Xiang, Phys. Rev. Lett. 101,

090603 (2008).
[19] Z.-C. Gu, M. Levin, and X.-G. Wen, Phys. Rev. B 78, 205116

(2008).
[20] W. Li, S.-J. Ran, S.-S. Gong, Y. Zhao, B. Xi, F. Ye, and G. Su,

Phys. Rev. Lett. 106, 127202 (2011).
[21] Z.-Y. Xie, J. Chen, M.-P. Qin, J.-W. Zhu, L.-P. Yang, and

T. Xiang, Phys. Rev. B 86, 045139 (2012).
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