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Density functional theory (DFT) calculations reliably aid in understanding the relative stability of different
crystal phases as functions of pressure and temperature. Our purpose here is to employ DFT to analyze the
character of the melting process, with an emphasis on comparing normal and anomalous melting. The normal-
anomalous distinction is the absence or presence, respectively, of a significant electronic structure change between
crystal and liquid. We study the normal melters Na and Cu, which are metallic in both phases, and the anomalous
melter Ga, which has a partially covalent crystal and a nearly free-electron liquid. We calculate free energies from
lattice dynamics for the crystal and from vibration-transit (V-T) theory for the liquid, where the liquid formulation
is similar to that of the crystal but has an additional term representing the diffusive transits. Internal energies U

and entropies S calculated for both phases of Na and Cu were previously shown to be in good agreement with
experiment; here we find the same agreement for Ga. The dominant theoretical terms in the melting �U and �S

are the structural potential energy, the vibrational entropy, and the purely liquid transit terms in both U and S.
The melting changes in structural energy and vibrational entropy are much larger in Ga than in Na and Cu. This
behavior arises from the change in electronic structure in Ga, and is the identifying characteristic of anomalous
melting. We interpret our DFT results in terms of the physical effects of the relatively few covalent bonds in the
otherwise metallic Ga crystal.
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I. INTRODUCTION

Density functional theory (DFT) calculations offer a reli-
able means to explore phase diagrams of condensed-matter
systems across large regions of pressure and temperature.
The calculations deliver reasonably sound phase boundaries
and an improved understanding of changes in both crystal
structure and electronic structure—as well as how the two
relate (see for example Ref. [1]). The exploration relies on
examining relevant portions of the potential-energy surface
�, given by the electronic ground state as a function of
the nuclear configuration. The subset of configurations given
by local equilibria suffices to study pressure-induced phase
changes for systems at zero temperature (neglecting zero-point
energy). As a result, advances have been more forthcoming
along the pressure axis than on the temperature axis. The
inclusion of phonons, given by the local curvature of �,
converts the local equilibria description into the quasiharmonic
approximation and enables the study of temperature-induced
phase transitions.1 To date, this approach has focused on
solid-solid transitions; here we apply it to the solid-liquid
transition, melting, for which DFT studies heretofore have
relied on molecular dynamics (MD).

Important advances along the pressure axis at low tempera-
ture have been made in recent years, in particular for light ele-
ment systems, revealing new structures with unusual electronic
properties. DFT calculations by Neaton and Ashcroft found Li
to undergo a symmetry breaking distortion to a paired ground
state that contrasts with the intuitive expectation of nearly

1Lattice vibration contributions to the entropy generally dominate
over those from electronic excitation or spin fluctuations, though the
latter cannot be neglected in cases such as the α-γ transition of cerium
(see e.g., Ref. [2]).

free-electron behavior [3]. X-ray-diffraction measurements
by Hanfland et al. confirm that Li undergoes pronounced
structural changes under pressure [4]. DFT calculations
by Feng et al. found that the electronic DOS of LiBe
alloy shows a remarkable quasi-two-dimensional electronic
structure that arises from a planar arrangement of valence
electrons promoted from the Li cores [5]. From a study of the
structural competition as a function of volume in group-IIIA
elements, Simak et al. found that the structure-determining
mechanism originates in the degree of s-p mixing of valence
electrons [6,7]. This mixing governs the stability of B, Al, Ga,
In, and Tl at zero pressure [7], and also qualitatively accounts
for high-pressure phase transitions in B and Ga and predicts
similar behavior for In [6].

Pressure induced electronic structure changes, and the
crystal structure transitions they drive, have consequences at
elevated temperatures. The ultimate reason is that the elec-
tronic structure controls both structural and nuclear-motional
properties of condensed matter. For highly compressed Na,
Neaton and Ashcroft predicted transformations from the
symmetric, metallic phase to low-symmetry crystal structures
that possess semimetallic behavior and tend ultimately to
be semiconducting [8]. Such transformations were confirmed
by x-ray measurements to 120 GPa by Hanfland et al. and
by Syassen [9,10]. The melting curve Tm(P ), measured by
Gregoryanz et al. [11], shows a normal increase from 371 K
at P = 0 to 1000 K at around 30 GPa, then a downturn and
subsequent decrease of Tm all the way to 300 K at around
120 GPa. This remarkable behavior was accounted for by MD
calculations by Raty et al. [12], which also showed that the
liquid undergoes electronic structure changes analogous to
those in the solid.

The change in the melting curve of Na from positive to
negative slope signals a change in the melting process from

1098-0121/2014/90(17)/174109(7) 174109-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.174109


SVEN P. RUDIN, NICOLAS BOCK, AND DUANE C. WALLACE PHYSICAL REVIEW B 90, 174109 (2014)

normal to anomalous. This melting classification goes back
to a study of the melting of elements, where experimental
data for the entropy difference between liquid and crystal at
a common volume were found to lie in two well-separated
distributions [13]. The constant volume specification is im-
portant because it separates out thermal-expansion effects
and puts the focus on the intrinsic liquid-crystal disordering
effect. The resulting physical interpretation is that normal
melting elements have qualitatively the same electronic struc-
ture in the liquid and crystal at a common volume, while
anomalous melting elements have a significant liquid-crystal
electronic structure difference [13]. We shall employ DFT
calculations to examine both of these melting processes in this
work.

The advance that allows us to apply DFT calculations to
solid-liquid phase transitions on the same footing as solid-
solid phase transitions is a description of liquids that closely
resembles that of solids: vibration-transit (V-T) theory. In
V-T theory the liquid has a representative structure, and has
nuclear motion in the form of vibrations about the structure
plus transits that carry the system rapidly among structures. At
present the structural and vibrational parameters are accessible
to DFT calculations, while the small transit contribution is
treated by a statistical mechanical model. For Na and Cu at melt
this procedure shows excellent agreement with experiment
for the equilibrium volume, the bulk modulus, the entropy,
and internal energy, for crystal and liquid alike [14]. Our
purpose here is to formulate the melting transition in terms
of characteristic structural and nuclear-motional properties
of the two phases in a single theory for both normal and
anomalous melting. We shall carry out this program for Na
and Cu (normal) and Ga (anomalous) at zero pressure where
highly accurate experimental data are available.

Ga has long been known for its electronic structure
difference between the α-Ga crystal and the liquid phase
(l-Ga). That l-Ga is unlike α-Ga, but similar to the slightly
more dense β-Ga, was suggested by measured pair distribution
functions [15], by diffuse neutron scattering [16], and by
measured elastic constants and bulk modulus [17,18]. The
presence of a pseudogap in the electronic DOS of α-Ga was
attributed by Heine to a partial covalence [19,20]; that the
pseudogap is missing in l-Ga was observed by Hafner and
Jank [21]; and Gong et al. concluded from electronic structure
calculations that α-Ga contains covalent dimers held together
by metallic forces [22]. A picture sufficient for discussion
here is that l-Ga is a nearly free-electron (NFE) metal, while
each atom in α-Ga is one member of a covalent pair bond,
with these bonds connecting parallel metallic sheets (see
Sec. IV of Voloshina et al. [23]; Fig. 1 in Lyapin et al. [18];
Fig. 31-2 in Donohue [24]). DFT calculations on Ga, outlined
at the beginning of Sec. IV, agree with these observations and
provide additional insight.

Our needed statistical mechanical equations, along with
a sketch of the V-T formalism, is provided in Sec. II. In
order to relate theory more directly to experiment, the original
melting-of-elements study (Ref. [13]) is transformed from a
constant-volume to a constant-pressure formulation in Sec. III.
Section IV compares theory and experiment for the entropy
S(V,T ) and the internal energy U (V,T ) (where V is volume
and T is temperature) of α-Ga and l-Ga at melt, and analyzes

the melting process for Na, Cu, and Ga. Section V provides
a summary of conclusions and a description of melting in
terms of the structural potentials and nuclear motions of the
equilibrium phases at melt.

DFT calculations of electronic and vibrational properties of
α-Ga and l-Ga are presented in the Supplemental Material [25],
and the technique for finding and testing the liquid structure is
demonstrated.

II. STATISTICAL MECHANICS OF V-T THEORY

V-T theory begins with the hypothesis that among the
many-body potential-energy valleys those with a random
structure dominate the liquid statistical mechanics, and that
every such valley has the same statistical mechanics properties
in the thermodynamic limit [26–28]. The nuclear motion
consists of many-body vibrational motion in one (any) random
valley, interspersed with transits, which are collective motions
of small nuclear clusters that carry the system between
random valleys. The vibrational Hamiltonian represents a
single random valley harmonically extended to infinity, so that
all vibrational statistical mechanics can be expressed in closed
form. Thermodynamic functions are roughly 90% vibrational
and 10% transit.

In V-T theory for the liquid (quantities for liquid are
denoted with a superscript l), vibrations (vib), transits (tr),
and electronic excitations (el) contribute to the entropy,

Sl(V,T ) = Sl
vib(V,T ) + Str (V,T ) + Sl

el(V,T ), (1)

and the internal energy

Ul(V,T ) = �l
0 + Ul

vib(V,T ) + Utr (V,T ) + Ul
el(V,T ). (2)

�l
0 is the random structure potential energy. For all ele-

ments heavier than He, the nuclear motion is approximately
classical at T � Tm, so the high-temperature expansions are
appropriate:

Sl
vib(V,T ) = 3kB

{
ln

[
T/θ l

0(V )
]

+ 1 + 1
40

[
θ l

2(V )/T
]2 + · · · }, (3)

Ul
vib(V,T ) = 3kBT

{
1 + 1

20

[
θ l

2(V )/T
]2 + · · · }. (4)

θ l
0(V ) and θ l

2(V ) are simply related to the logarithmic moment
and second moment, respectively, of the normal-mode fre-
quency distribution (see pp. 149–152 of Ref. [26]). The leading
terms express classical statistical mechanics, while the series
in powers of T −2 provide the (small) quantum corrections.

The transit contributions in Eqs. (1) and (2) are Str (V,T )
and Utr (V,T ), respectively. The superscript l is omitted
because these terms are present only in the liquid state. Our
transit model has been substantially improved in recent years.
An analysis of experimental entropy data for elemental liquids
revealed the scaling property [27],

Str (V,T ) = Str [T/θtr (V )], (5)

where θtr (V ) is a transit characteristic temperature for each
element. The theory was completed with a statistical mechan-
ics model for the transit free energy Ftr (V,T ) [28]. Because
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Ftr (V,T ) belongs entirely to the liquid, it is insensitive to the
crystal and to the melting process.

The electronic excitation contributions express the thermal
excitation of electrons from their ground state. These are
calculated from the electronic density of states (DOS) n(ε),
and for the present study we need only the leading Sommerfeld
approximation,

Sl
el(V,T ) = 	l(V )T , (6)

Ul
el(V,T ) = 1

2	l(V )T 2, (7)

where

	l(V ) = 1
3π2k2

Bnl(εF ), (8)

with εF the Fermi energy. In comparison, for transition metals
with partially filled d bands accurate calculations of the
electronic excitation contributions at Tm require an integration
over n(ε) [29].

For the crystal (quantities for crystal are denoted with
a superscript c), we use quasiharmonic lattice dynamics
theory [26,30]. The thermodynamic functions are formally
the same as in Eqs. (1) and (2), with the transit contributions
omitted:

Sc(V,T ) = Sc
vib(V,T ) + Sc

el(V,T ), (9)

Uc(V,T ) = �c
0 + Uc

vib(V,T ) + Uc
el(V,T ). (10)

The vibrational formulas are again Eqs. (3) and (4), with
the crystal parameters θc

0 (V ) and θc
2 (V ) in the place of the

liquid parameters. The crystal electronic excitation formulas
are Eqs. (6)–(8) based on the crystal DOS, nc(ε).

III. ANALYSIS OF THE EXPERIMENTAL, P = 0
MELTING ENTROPY

The entropy of melting at P = 0 is denoted �S(P = 0),
and is the quantity measured in the laboratory. The relative
volume change on melting is η,

η = V l
m − V c

m

V l
m

. (11)

�S(P = 0) is decomposed into two terms: �S(V l
m) is the

liquid-crystal entropy difference at the common volume V l
m,

and the volume change contribution is calculated to first order
in η, to give (see Ref. [13])

�S(P = 0) = �S
(
V l

m

) + ∂S

∂ ln V

∣∣∣∣
Tm

η. (12)

(∂S/∂ ln V )Tm
is obtained from experimental data for the

crystal at melt, because accurate data are more readily available
for crystal than liquid. Equation (12) is used to extract the
intrinsic �S(V l

m) from the experimental �S(P = 0).
Highly accurate experimental data for �S(V l

m) for 18
normal melting and 6 anomalous melting elements are listed
in Table 22.1 of Ref. [26]. Compared to this tabulation of
data, a strong enhancement of the distinction between normal
and anomalous distributions is obtained by graphing �S(V l

m)
against the experimental η in Fig. 1. The normal distribution
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FIG. 1. (Color online) Experimental data for the liquid-crystal
entropy difference at the common volume V l

m, against the relative
volume change on melting, η. The lines are independent least-squares
fits to the two distributions.

has mean 0.80kB , and has no significant η dependence.
Following the discussion in Sec. II, the mean is now encoded
in the transit free energy, and much of the scatter in the
normal distribution points is now accounted for by the transit
scaling temperature θtr (V ) for each element [see Eq. (5)].
Hence the normal distribution in Fig. 1 is entirely a liquid
property.

In contrast to the character of the distribution for normal
melters, the distribution for anomalous melters in Fig. 1 spans a
very large range and has strong η dependence. These properties
are due primarily to the electronic structure change between
crystal and liquid, and cannot be assigned to the liquid alone.
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FIG. 2. (Color online) Experimental data for the entropy of melt-
ing at P = 0 for the elements shown in Fig. 1. Data for normal melters
Li, Na, K, Rb, Cs, Ba, Cu, Ag, Au, Cd, Hg, In, Pb, Fe, Ni and for
the anomalous melters (Sn, Ga, Sb, Bi, Si, Ge) are from Hultgren
et al. [31]; data for Mg, Zn, and Al are from Chase et al. [32].
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An analysis at P = 0, in terms of the actual crystal and
liquid states in the two-phase region, would be preferable in
discussing experimental data. Figure 2 graphs the experimental
�S(P = 0) against η for the same 24 elements shown in
Fig. 1 and retains the same two distributions. Here, the normal
melting distribution is the sum of two contributions, the
�S(V l

m) distribution from Fig. 1, representing transits, and
the volume change contribution expressing the second term
in Eq. (12), which imparts upon the normal distribution a
slope.

The volume change contribution also provides a small
change of slope between Figs. 1 and 2 for the anomalous
melting elements. Because of the electronic structure change,
it makes a difference whether the volume change term in
Eq. (12) is assigned to crystal or liquid. Since that term is
relatively small in anomalous melting, we shall leave this issue
unresolved.

The character of the data in Fig. 2 will serve as a pattern
for our analysis in the next section.

IV. ANALYSIS OF MELTING

Our analysis of melting relies on data calculated with DFT
previously for Na and Cu [14] and here for Ga. Details of the
calculations for Ga appear in the Supplemental Material [25],
and the results for α-Ga show good agreement with previous
work by others (see, e.g., Ref. [23]). Since this work reports
the application of DFT to V-T theory for an anomalous melter,
we begin this section by reporting selected results from our
calculations on Ga.

Figure 3 summarizes the significantly different character
of Ga’s liquid and solid phases. The partial covalence in
α-Ga induces a pseudogap in the electronic DOS, and the
high-frequency vibrations of the covalent dimers appear in
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FIG. 3. (Color online) Calculated electronic and vibrational den-
sities of states (DOS) for Ga in solid and liquid phases at their
respective measured melting volumes. The vibrational DOSs stem
from evaluating the frequencies for all wave vectors commensurate
with supercells containing N = 144 atoms for α-Ga and N = 150
atoms for liquid Ga.

TABLE I. For crystal and liquid Ga at Tm = 302.9 K and P = 0:
The experimental volumes, the calculated Hamiltonian parameters,
and the separate theoretical contributions to the total entropy and
energy. The thermodynamic functions rely on quantities entirely
calculated with DFT except for the measured volumes at melt, Vm,
and the transit characteristic temperature, θtr, which is determined by
statistical mechanics and experimental data.

Quantity α-Ga l-Ga

Vm (Å3) (expt) 19.59 19.00
E(V ) (structure) meV −3591.88 −3550.54
(El − Ec) (meV) 41.34
θ0 (K) 154.2 106.3
θ1 (K) 233. 0 171.8
θ2 (K) 249.5 189.0
θtr (K) 360a

n(εF ) (eV−1) 0.191 0.330
	el (10−5 meV/K2) 0.467 0.806

Svib (kB ) 5.07 6.17
Str (kB ) 0.80
Sel (kB ) 0.02 0.04

�0 (meV) −21.9 19.4
Uvib (meV) 81.0 79.8
Utr (meV) 10.0
Uel (meV) 0.2 0.4

aReference [27].

the vibrational DOS separated by a gap from the remaining
vibrations. Both gaps disappear in the liquid phase; for the
electronic DOS this occurs by a smoothing out of the DOS
toward a more free-electron-like character, for the vibrational
DOS the high-frequency vibrations disappear along with
the covalent dimers and their weight is subsumed into the
lower spectrum of frequencies (which are also more evenly
distributed).

From the markedly different DOS follow appreciably
different Hamiltonian parameters, as reported in Table I. The
calculated entropy and energy of the Ga phases at melt compare
well with experiment, as shown in Table II, by way of �, the
relative error of theory,

� = theory − experiment

experiment
. (13)

The � values are only a few times the estimated experimental
errors [31,32], and are extremely small even for DFT, except
for the liquid internal energy, where the 6% error is still very
good.

We now consider our complete list of test elements, Na,
Cu, and Ga. The Hamiltonian parameters for Na and Cu,

TABLE II. For crystal and liquid Ga at Tm = 302.9 K and P = 0:
comparison of theory with experiment for entropy and internal energy.

Phase Quantity Theory Experiment �

α-Ga Sc(kB ) 5.09 4.96 0.026
Uc (meV) 59.3 59.1 0.003

l-Ga Sl(kB ) 7.01 7.18 −0.024
Ul (meV) 109.6 117.1 −0.064
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TABLE III. Na and Cu data collection [14].

Quantity bcc-Na l-Na fcc-Cu l-Cu

Tm (K) 370.87 370.87 1358 1358
Vm (Å3) 39.79 40.93 13.05 13.54

θ0 (K) 105.20 99.34 182.23 161.36
θ1 (K) 152.34 144.42 252.02 238.82
θ2 (K) 155.85 149.23 251.81 250.05
θtr (K) 570 1358
�0 (meV) −12.22 4.62 3.14 96.46

calculated from DFT, are listed in Table III; the corresponding
entropy and energy data can be found in Ref. [14].2 While
we use the experimental P = 0 volume for Ga, the Na and
Cu data are evaluated at the theoretical P = 0 volumes, the
difference being insignificant for this analysis. We carry out
our melting study in terms of theoretical results for energy and
entropy contributions. In making comparisons among different
elemental liquids, terms in �S/kB can be compared directly,
as in Figs. 1 and 2. Then, because of the P = 0 free-energy
constraint, �U = Tm�S, the �U terms are compared in the
scaled form �U/kBTm.

Table IV compares theory and experiment for the melting
quantities at P = 0 to show the high level of theoretical
accuracy in this analysis. The near zero value of the theo-
retical �F/kBTm is encouraging. Table IV also shows the
stabilization of the liquid phase by the transit free energy.

Our first step is to identify the dominant contributions to
�S(P = 0) and �U (P = 0) from the equations in Sec. II.
In general, both the electronic excitations and the vibrational
quantum corrections are insignificant in melting, being ∼0.01
in �S/kB and �U/kBTm. In what follows, these terms are
omitted from the analysis.

From Eqs. (1)–(4) for the liquid, and Eqs. (7) and (8) for
the crystal, follows

�S(P = 0) = 3kB� ln θ0 + Str , (14)

�U (P = 0) = ��0 + Utr . (15)

The first term in �S is the leading (classical) term in Sl
vib −

Sc
vib,

3kB� ln θ0 = 3kB

[
ln θc

0

(
V c

m

) − ln θ l
0

(
V l

m

)]
; (16)

the first term in �U is the structural potential difference,

��0 = �l
0

(
V l

m

) − �c
0

(
V c

m

)
; (17)

and Str and Utr are evaluated at V l
m,Tm. The essential physical

character of equilibrium melting is contained in the four terms
explicit on the right sides of Eqs. (14) and (15). Our DFT
evaluations of these terms are listed in Table IV.

2The value 353.1 for Uc of fcc Cu in Table V of Ref. [14] should
be replaced by 360.1, the sum of the three terms in Table III. No
conclusions are affected.

TABLE IV. Comparison of theory with experiment for melting
quantities at P = 0, and values of the dominant theoretical melting
contributions [Eqs. (14) and (15)].

Quantity Na Cu Ga

�S/kB (theory) 0.89 1.16 1.92
�S/kB (expt.) 0.85 1.15 2.22
�U/kBTm (theory) 0.94 1.13 1.93
�U/kBTm (expt.) 0.85 1.15 2.22
�F/kBTm (theory) 0.05 −0.03 0.01
�F/kBTm (expt.) 0.00 0.00 0.00
Str/kB 0.72 0.80 0.80
Utr/kBTm 0.42 0.33 0.38
Ftr/kBTm −0.30 −0.47 −0.42
3� ln θ0 0.17 0.36 1.12
��0/kBTm 0.53 0.80 1.58

Let us next examine the physical role of each term in melting
at P = 0. Since the transit terms belong to the liquid alone,
they are independent of the melting process, hence are entirely
normal, with no contribution from the melting volume change.
Moreover, because of the scaling properties of the transit
free energy [28], each quantity Str/kB and Utr/kBTm has a
common magnitude for normal and anomalous elements alike.
The transit contributions are graphed versus η in Figs. 4(a)
and 4(b), where it is seen that each is essentially constant,
the same for normal and anomalous melting and independent
of η.

At this point, the entire anomalous contribution to melting
at P = 0 has been isolated within the first terms on the right of
Eqs. (14) and (15). Consider first the melting entropy, where
the key is θ0. For normal melting elements, the common
electronic structure at a common V implies θc

0 (V ) ≈ θ l
0(V ),

so that 3kB� ln θ0 results entirely from the melting volume
change, and produces the volume change contribution to the
normal melting distribution in Fig. 2. The same behavior
is shown in Fig. 4(a) by the theoretical data for our set of
normal melting elements, Na and Cu. In anomalous melting,
the dominant effect is a significant decrease in θ0 from crystal
to liquid, caused by the electronic structure change, and this
along with a small unresolved volume change contribution
produces the higher-lying anomalous distribution in Fig. 2.
The same behavior is shown in Fig. 4(a) by the theoretical
data for Ga.

The situation with the internal energy is more complicated.
The analysis of experimental energy data has not been done,
because one cannot determine ��0 from experimental data
alone. However, ��0 is subject to a priori calculation
within the framework of V-T theory. For normal melting
elements, ��0 has contributions from both the structural
change and the volume change, as indicated in Eq. (17). For
Na and Cu, these contributions can be read directly from the
calculated �0(V ) graphs [14]. The result is a characteristic
normal-melting magnitude of ��0/kBTm, as exemplified by
Na and Cu in Fig. 4(b). For anomalous melting elements,
��0 is crucially different because it is dominated by the
change in electronic structure. Equation (17) is still correct,
but it is not useful to attempt its decomposition into struc-
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FIG. 4. (Color online) Dominant theoretical contributions to
P = 0 melting vs η: (a) for the entropy and (b) for the energy.
Open squares show transit contributions and filled diamonds show the
total.

tural change and volume change contributions. However, the
anomalous-melting ��0/kBTm is notably larger than the
normal values, as exemplified by Ga in Fig. 4(b).

V. SUMMARY AND CONCLUSIONS

Our calculations of the structural and vibrational Hamil-
tonian parameters of crystal and liquid Ga are done with
DFT. The entropy and internal energy of the crystal at melt,
calculated from lattice dynamics theory, are in excellent
agreement with experiment, as shown in Table II. Given the
known accuracy of lattice dynamics, we take this agreement
as validation of our computational procedures.

To find the liquid structure for a given element, a set of
quenches is made to verify the uniformity of the random
valleys that underly the liquid motion. With that established,
the liquid vibrational properties can be calculated from a single
(harmonically extended) valley. The procedure is illustrated for
l-Ga in the Supplemental Material [25]. For l-Ga at melt, the
theoretical entropy and internal energy are in good agreement
with experiment, Table II, which we take as validation for
using V-T theory for Ga. This conclusion is sustainable
because, while the small transit contributions are determined
by statistical mechanics and experimental data [27,28], the

strongly dominant structural and vibrational contributions
(Table I) are calculated entirely from DFT.

In order to relate the melting analysis directly to the crystal
and liquid phases at melt, the original constant-volume analysis
(Ref. [13]) is reformulated at P = 0 in Sec. III. The normal
and anomalous distributions of �S(P = 0) remain clearly
separated in Fig. 2. From the viewpoint of experiment, the
fitted lines in Fig. 2 provide a template for classifying the
melting of an element as normal or anomalous, and for
measuring the anomalous character on the scale from Sn to
Si. From the theoretical viewpoint, Fig. 2 is to be analyzed
in terms of the atomic motional contributions to �S(P = 0).
This analysis is shown in Fig. 4(a) for Na, Cu, and Ga, for
the total motion (vibrational plus transit), and for the transit
motion separately. The similarity of the entropy and energy
analyses, Figs. 4(a) and 4(b), respectively, results from the
condition P = 0 plus the scaling properties of the transit free
energy. Our ultimate theoretical data in Figs. 4(a) and 4(b)
display the same character seen for experimental data in
Fig. 2.

To summarize the major conclusion of this study, let us
make a qualitative description of the melting process, in
terms of the structural potentials and nuclear motions of the
equilibrium phases at melt. Ga will serve as our representative
material. l-Ga is a NFE metal, and has the scaled transit
free energy common to the elemental liquids we have so
far studied [14,27]. Hence in Fig. 4, values of Str/kB and
Utr/kBTm are common to Ga, Na, and Cu. Let us next consider
a hypothetical NFE Ga crystal, for which crystal and liquid will
have a common electronic structure, hence approximately the
same internuclear forces at a common volume. The melting
will be normal, and the melting parameters will lie near those
graphed for Na and Cu in Fig. 4. Let us now consider the
actual α-Ga crystal. Each atom in α-Ga is a partner in one
covalent pair bond, while the remaining bonds are metallic.
The covalent bonds alter α-Ga in three ways from NFE Ga,
and produce corresponding changes in the melting process.
First, the covalent bonds are stronger than metallic bonds,
giving them higher vibrational frequencies and increasing
θc

0 , so that 3� ln θ0 is much larger than the normal value
as shown in Fig. 4(a). Second, the stronger covalent bonds
lower �c

0 and increase ��0, making ��0/kBTm much larger
than the normal value as shown in Fig. 4(b). Finally, the
covalent bonds are shorter than the metallic bonds, enforcing a
low-coordination low-density crystal and making η negative,
as shown in Figs. 4(a) and 4(b).

We note that the present analysis can be applied to crystal-
crystal transitions, where it will be simpler because crystals
have no transits [see Eqs. (8) and (9)]. The classification
of crystal-crystal transitions as normal or anomalous applies
equally well, according to whether the two phases have the
same or different electronic structures.
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