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Solute-defect interactions in Al-Mg alloys from diffusive variational Gaussian calculations
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Resolving atomic-scale defect topologies and energetics with accurate atomistic interaction models provides
access to the nonlinear phenomena inherent at atomic length and time scales. Coarse graining the dynamics
of such simulations to look at the migration of, e.g., solute atoms, while retaining the rich atomic-scale detail
required to properly describe defects, is a particular challenge. In this paper, we present an adaptation of the
recently developed “diffusive molecular dynamics” model to describe the energetics and kinetics of binary alloys
on diffusive time scales. The potential of the technique is illustrated by applying it to the classic problems of
solute segregation to a planar boundary (stacking fault) and edge dislocation in the Al-Mg system. Our approach
provides fully dynamical solutions in situations with an evolving energy landscape in a computationally efficient
way, where atomistic kinetic Monte Carlo simulations are difficult or impractical to perform.
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I. INTRODUCTION

Solute-defect interactions in crystalline materials are used
to manipulate the local chemistry of surfaces and disloca-
tions to achieve desirable functional and mechanical prop-
erties [1,2]. Technologically, solute segregation to surfaces
is used to modify properties as diverse as the catalytic
response of nanoparticles (e.g., [3]), the creep resistance
of ceramics (e.g., [4]) and the strength of structural alloys
(e.g., [5,6]). While phenomenological models for segregation-
based processes exist, attempts at quantitative prediction often
suffer from insufficient knowledge of the many possible
atomic-scale solute-defect interactions. In this case, one would
like to link atomic-scale information to continuum models
thereby improving our predictive capabilities. An example of
how this approach can be successfully applied to enumerate
continuum models and identify new, previously unidentified,
mechanisms is the recent achievement in predicting dynamic
strain aging [7–9] in Al-Mg alloys [10–15].

It remains, however, a significant challenge to capture in
a single, self-consistent model, both the atomistic nature of
solute-defect interaction and the diffusive time scale of solute
redistribution. For problems such as the one described above,
the requirement for diffusive time scales makes simulation
impossible with standard molecular dynamics (MD) methods.
At the same time, purely continuum models are inappropriate
near defects where atomistic details become important. For
the computation of equilibrium solute concentration profiles
at grain boundaries and interfaces, a common strategy is
to obtain binding energies from an atomistic model and
use those in conjunction with adsorption models such as
the Langmuir-McLean model [16]. This approach, however,
neglects interactions between solute atoms and is only accurate
in the dilute limit. These limitations can in principle be lifted
by performing fully atomistic equilibrium Monte Carlo (MC)
simulations [11,12], Foiles’ study of segregation to grain
boundaries being an early example of this approach [17]. Such
MC simulations are much more computationally intensive
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and become particularly difficult when large strain energy
gradients are present. If information about kinetics is needed,
one may resort to a kinetic MC treatment, but this requires
precomputation of activation barriers that is no longer tractable
for most problems when long-ranged interactions are present.

In this work, we introduce an alternative approach that
provides access to diffusive time scales but retains crucial
features at atomic length scales. The method can be viewed
as a dynamical version of the variational Gaussian (VG)
method [18,19] that was recently extended by Li et al. [20]
to include vacancy dynamics. Here, atoms are represented by
continuous density fields whose time evolution is governed
by a Helmholtz free energy in combination with first-order
relaxation kinetics. The approach has been called “diffusive
molecular dynamics” (DMD), but the dynamics evolves the
mass density field and not individual particle trajectories
from equations of motion. As a result, the description is now
“phonon free” in the sense that lattice vibrations are no longer
explicitly followed as in MD. The characteristic dynamical
time scale is therefore τ ∼ a2

0/D, where a0 and D are
the lattice and diffusion constants, respectively. The method
provides a good starting point to investigate vacancy mediated
transport phenomena, for instance, dislocation climb [21].

The DMD approach shares with classic phase field models
the representation of matter as a continuous density field
evolving on diffusive time scales. However, it goes beyond a
phase field description by including distinct atomistic features
such as discrete representation of interfaces and defects with
long-ranged elastic fields driving mass transport. This level of
description is akin to a kinetic MC simulation, but the latter
has the potential for a more accurate description of migration
barriers.

Here, we present a generalization of the DMD method to
binary alloys, using the well-characterized Al-Mg system to
illustrate some of the strengths of this approach. We first
show that static finite-temperature properties such as free
energies and elastic constants can be very efficiently computed
using the variational Gaussian approach. We then apply the
dynamical formulation to simulate segregation of Mg towards
two different types of defects in fcc Al. First, results are
presented for the segregation to a stacking fault, where the
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driving force for solute redistribution is purely chemical.
Following this, segregation to a split edge dislocation is
used to illustrate the case where both short-range chemical
and long-range elastic interactions determine the kinetics and
equilibrium segregation. In both cases, we find qualitative
agreement with, but quantitative deviations from, continuum
segregation models. At higher concentrations, our calculations
predict the formation of an ordered intermetallic precipitate at
the core of the dislocation, an intrinsically atomistic effect
beyond the reach of continuum models.

II. METHODOLOGY

Widely used to model materials at the atomic scale, MD
can not be applied to most diffusional problems because
the integration time step is constrained by the vibrational
frequencies. However, most of the time atoms in solids
at finite temperature vibrate around their mean positions.
Generally, such fluctuations occur in a narrow region, and
hence in a harmonic approximation, the atomic positions can
be represented by Gaussian density clouds (see Fig. 1). In
other words, the finite-temperature effects can be captured
by associating an atom with its mean position Xi and the
width of a Gaussian that reflects the magnitude of thermal
vibrations. The Gaussian width σ = 1/

√
2αi can be related

to αi = miω
2
i /(2kBT ), where mi is an atomic mass, ωi is a

vibrational frequency, kB is the Boltzmann constant, and T

is the absolute temperature. Optimization of these parameters
{Xi ,αi} for i = 1,2, . . . ,N , where N is the number of atoms,
by minimizing the Helmholtz free energy provides the basis of
the VG method originally introduced by LeSar et al. [18].
Therefore, VG calculations can be viewed as an efficient
way to predict an equilibrium structure at finite temperature.
However, as a purely minimization technique it cannot provide
any information about the kinetics of a process.

For this reason, the VG method was extended in the
DMD method [20] to capture the time evolution of a pure
metal containing mobile vacancies. Aside from the mean
position and Gaussian width, each site is now also assigned
an occupation probability that reflects the probability of being
occupied by an atom rather than a vacancy. Time evolution of
the vacancy field is achieved in two steps. First, the Gaussian
mean positions and widths are optimized by minimizing the
Helmholtz free energy. Second, the occupation probabilities
are computed by solving a system of rate equations. This

xi(t)

pi(t)

Xi

ci

Xi Xi

1 − ci +

atomic site solvent component solute component

FIG. 1. (Color online) Schematics of the main approximations
used in the DMD approach for binary alloys. Solvent and solute
atoms (shown in different colors) undergoing thermal vibrations
around the same position Xi in MD (left) are represented in DMD
by superposition of Gaussians (right) for each atomic species at this
atomic site.

assumes that atomic positions relax much faster than any
chemical potential gradients arising from the vacancies. These
steps are iterated, this amounting to the solution of a diffusion
problem on an irregular lattice where local fluxes are resolved
at the atomic scale.

In this model, the flux of vacancies is determined by the
local spatial variation in the vacancy concentration field. In
many problems of interest (see, e.g., [20,21]) the energetics
of the system drive vacancies to localize. Such localization
leads to very steep gradients in energy between neighboring
atomic sites and a necessarily slowing down of the DMD
dynamics. Indeed, in the worst case when a realistic (low)
average vacancy concentration is used in a simulation where
strong vacancy localization occurs, the integration time step
required approaches that used in MD simulations and the
kinetic advantages of the technique disappear.

In our generalization to binary alloys, this difficulty is
averted by the fact that (i) real systems of interest have
much larger solute concentrations than vacancy concentrations
and (ii) solution thermodynamics tends to predict phases
that have mutual solubility. In developing this alloy DMD
model each atomic site is assigned an occupation probability
denoted by ci , this indicating the relative site concentration
of each atomic species. By convention, a site with ci = 1
is considered to be occupied purely by a solute Mg atom,
while ci = 0 corresponds to a solvent Al atom. The main
approximations behind the DMD approach for binary alloys
are shown schematically in Fig. 1.

In analogy with Eq. (3) in [20], we write the variational
Gaussian Helmholtz energy for an A-B binary alloy described
by an embedded-atom method (EAM) potential as

F = 1

2

N∑
i=1

∑
j �=i

{cicjwAA(Xij ,αij ) + [ci(1 − cj ) + (1 − ci)cj ]wAB(Xij ,αij ) + (1 − ci)(1 − cj )wBB(Xij ,αij )}

+
N∑

i=1

[ciEA(ψ̄i) + (1 − ci)EB(ψ̄i)] + 3

2
kBT

N∑
i=1

[
ln

(
αi�

2
T

π

)
− 1

]
+ kBT

N∑
i=1

[ci ln ci + (1 − ci) ln (1 − ci)] . (1)

The first terms correspond to the energetic contributions
arising from the EAM potential, while the last two terms reflect
the vibrational and configurational entropy. In the present de-
scription, the configurational alloy thermodynamics is treated
at the pairwise level as in the underlying EAM potential, the

vibrational contribution of free energy is harmonic approxima-
tion of an Einstein solid with a single frequency for each atom,
and configurational entropy is the standard entropy of mix-
ing. Here, ψ̄i = ∑

j �=i[cjψA(Xij ,αij ) + (1 − cj )ψB(Xij ,αij )],
the functions wIJ and ψI are the Gaussian averaged pair
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potential and electronic density, EI is the EAM embedding
function, αij = (α−1

i + α−1
j )−1, Xij = |Xi − Xj |, and �T =

�
√

2π/(mikBT ) is the thermal de Broglie wavelength. The
Gaussian averaging can be viewed as “thermalizing” the EAM
potential by integrating pair potential and electronic density
with two interacting Gaussians within the cutoff region, as
described in [20]. It is important to note that the Helmholtz
free energy given by Eq. (1) is an upper bound estimate of the
true Helmholtz free energy based on the Gibbs-Bogoliubov
inequality [18,19]. The accuracy of Eq. (1) was confirmed by
comparing free energies and volume per atom for Cu with
nominally exact MC simulations over a wide temperature
range in [18] and with direct molecular dynamics in [20].
While these two quantities show excellent agreement with
truly atomistic calculations, the rms vibrational amplitudes
tend to be underestimated by VG.

In this work, we have used the EAM potential for the Al-Mg
system developed by Liu et al. [22], although in principle any
binary alloy EAM potential can be used with the technique
described above. The Liu Al-Mg potential has been used
extensively in the past, particularly for studying solute-defect
interactions in dilute (�10 at.% Mg) Al-Mg alloys [10–12,14],
this being the composition range of technologically important,
solid solution strengthened 5XXX alloys.

Diffusion of solute in this model does not explicitly
involve vacancies. Rather, the time evolution of the solute
concentration field ci is assumed to be governed by the
following system of rate equations:

dci

dt
= 1

8πτ

∑
j

′
[
cj (1 − ci) exp

(
− fij

2kBT

)

− ci(1 − cj ) exp

(
fij

2kBT

)]
, (2)

where the primed summation is made over diffusing neighbors.
The formation energy at an atomic site fi is given by the
derivative of the free energy with respect to ci minus the
configurational entropy. The local effect of atomic structure
on solute redistribution in Eq. (2) is then incorporated through
fij = fi − fj , the difference in formation energy between
two adjacent sites. The characteristic diffusion time scale
is τ = a2

0/(8πD), where a0 is the fcc lattice constant, D =
D0 exp (−Qd/kBT ) is the diffusivity of Mg in Al with a pre-
exponential factor D0 = 1.2 × 10−4 m2/s, and the activation
energy for diffusion Qd = 1.35 eV/atom [23]. With these
values, τ = 12 μs at T = 600 K. Equation (2) is motivated
from an atomistic treatment of jump processes and consistent
with continuum diffusion in the long-time limit. Local jump
rates depend on local composition via the formation energy
difference between the adjacent sites.

The DMD method is developed in the grand canonical
(μVT) ensemble, allowing exchange of mass between the
simulation domain and an infinitely large reservoir of solute.
The grand potential for the binary alloy system

	 = F − 
μ

N∑
i=1

ci, (3)

with 
μ = μMg − μAl being the chemical potential difference
between atomic species in the reservoir, is minimized at each

step. In practice, this reservoir is connected to the simulation
domain by introducing a fixed composition to a layer of atoms
at the boundary of the simulation domain. Solving the diffusion
equation (2) then allows solute to flow in or out of the system
through this boundary. Alternatively, if the boundary atom
compositions are not fixed, then the number of solute atoms in
the system is fixed and the simulation can be considered to be
in a canonical (NVT) ensemble.

III. RESULTS AND DISCUSSION

A. Finite-temperature properties

The above framework provides a fast and efficient way to
compute the Helmholtz energy compared with more compu-
tationally intense methods such as quasiharmonic theory (VG
belongs to a classical limit of this model) and thermodynamic
integration. Calculations were performed to compute the VG
Helmholtz free energy starting from a uniform solid solution
(each site having the same value of ci) in a perfect fcc crystal
containing 16 atoms. The Helmholtz free energy given in
Eq. (1) was minimized with respect to atomic position and
Gaussian widths while the site concentrations were kept con-
stant. The calculations were performed in the NVT ensemble
with a volume that corresponded to a negligible hydrostatic
pressure (<1 MPa). Figure 2 shows the VG result for the
mixing enthalpy 
Hmix = H − [(1 − c0)HAl + c0HMg] and
free energy 
Fmix = 
Hmix − T 
Smix of the Al-Mg solid
solution as a function of the average solute concentration,
denoted by c0, for different temperatures. All mixing quantities
are calculated in a similar manner. The mixing enthalpy varies
only weakly with temperature, while 
Fmix varies strongly
and predicts demixing at low temperatures. Comparison of
the VG predictions with conventional molecular statics (MS)
calculations [also shown in Fig. 2(a)] averaged over 10 differ-
ent configurations of the random solid solution confirms that
the peculiar shape of the enthalpy of mixing is given almost
purely by the EAM potential. We also show a comparison
with experimentally evaluated CALPHAD data [24]. While the
enthalpy of mixing exhibits deviations from the CALPHAD

predictions especially at higher concentrations and does not
preserve the shape over a wide composition range, the EAM
potential still captures the general trend at the lower solute

FIG. 2. (Color online) (a) Enthalpy and (b) free energy of mixing
versus Mg solute concentration c0 given by VG calculations for Al-
Mg solid solution (with fcc Mg) at different temperatures. Here, MS
data correspond to properties at T = 0 and the CALPHAD data at
T = 800 K.
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FIG. 3. (Color online) Temperature dependence of (a) lattice
constant and (b) elastic constants of Al-Mg alloy for different
compositions obtained by DMD method.

concentrations of interest here (the highest concentration in
the segregation calculations is about 30% Mg).

The same set of calculations also provides us with an
estimate of the lattice constant and the elastic constants of
the Al-Mg solid solutions versus temperature T . These results
are shown in Fig. 3 for three different alloy compositions
0%, 5%, and 10% Mg. The lattice constant increases almost
linearly with temperature and Mg concentration in agreement
with expectations [25].

The present EAM potential predicts a softening of C11

and C12 with increasing temperature, while C44 is essentially
constant, in agreement with experiments and first-principles
calculations on pure Al [26]. All elastic constants decrease with
increasing Mg concentrations, which is consistent with the
results obtained by using the MC method and the same EAM
potential and presented in [13]. The latter predicts about 10%
higher reduction in C11 and C12 constants and no difference
for C44 with increase in Mg content in comparison with our
data at T = 0.

B. Segregation towards a stacking fault

A stacking fault (SF) was created by removing one {111}
plane in a periodic simulation box having dimensions of 5.8 ×
430 × 10 Å3 along the [11̄0] × [111] × [1̄1̄2] directions, the
simulation box containing 1456 atoms. Next, an average solute
concentration c0 was assigned to every atomic site, meaning
that solute was evenly distributed in the matrix. The simulation
box dimensions were adjusted so that all stress components on
the box were near zero (<1 MPa). Finally, this structure was
used as the initial condition for a DMD calculation in the
NVT ensemble at T = 600 K. Simulations performed at other
temperatures showed all of the same physics as those shown
here.

Figure 4 shows the solute distribution in the vicinity of
the SF for three different solute concentrations c0 = 1%, 5%,
and 10% after a time sufficient to reach equilibrium. The
segregation of Mg towards the stacking fault is not surprising
given that the hcp structure is energetically more favorable
than the fcc structure for pure Mg. This is consistent with
VG calculations that showed the stacking fault energy (SFE)
decreasing by 20% between pure Al and Al-20 at.% Mg. As
can be seen from Fig. 4, the two atomic planes straddling the
SF have the highest Mg concentration, the profile being limited
to the three atomic planes on either side of the SF.

FIG. 4. (Color online) (a) Plot of solute concentration normal-
ized by the initial concentration c0 versus the distance to SF, dSF, at
T = 600 K. (b) Atomistic representation of solute distribution near
the SF defect depicted by highest solute concentration.

If one assumes thermodynamic equilibrium and neglects
interactions between solute atoms, the concentration of solute
in the vicinity of a defect can be predicted by the following
expression:

c(r) = 1

1 + 1−c0
c0

exp
(

U (r)
kBT

) , (4)

where U (r) is a spatially varying binding energy between the
solute atom and defect. In the case of the SF the binding
energy can be easily calculated with static VG minimization.
A comparison between the full DMD solute segregation profile
and the prediction of Eq. (4) is given in Fig. 4(a) for the present
system at 600 K. The agreement is better for smaller solute
concentration, while for higher concentrations solute-solute
interactions become important. In particular, in the case of
c0 = 10% the effect of Mg-Mg repulsion is more pronounced
near the SF, i.e., oscillatory behavior of solute concentration
can be observed for a few planes close to the SF. Previous
atomistic MC calculations on the same Al-Mg system with
the same EAM potential [12] also suggest that above c0 =
6%, solute-solute interactions become more important and the
accuracy of Eq. (4) diminishes near the defect.

Figure 5(a) shows the time evolution of a normalized
solute concentration at the SF. For interfacial segregation,
the continuum diffusion model by McLean [16] provides the
following analytical prediction:

cMg(t) − c0

cMg(∞) − c0
= 1 − exp(s2)erfc(s), (5)
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FIG. 5. (Color online) Time evolution of (a) the solute concentra-
tion of atoms located in the SF planes and (b) free-energy difference
between the current and initial states per SF area for c0 = 1%, 5%,
and 10% at T = 600 K from NVT DMD calculations.

where s = √
Dt/(βd(111)/2) and β describes the solute en-

richment at the defect relative to the bulk. In general,
this enrichment factor changes dynamically throughout the
segregation process, but in order to use Eq. (5) analytically
β must be assumed constant. Predictions from Eq. (5) using
β = cMg(∞)/c0 can be compared with the full DMD results
in Fig. 5(a). Both theory and simulations exhibit

√
t behavior

at short times, but the analytical model rises almost three
times faster because the equilibrium value of β underestimates
its true value at short times. In the long-time limit [not
shown in Fig. 5(a)], all curves converge to one as they
reach saturation, but quantitative differences remain for all
intermediate times. The increase in solute concentration at the
boundary occurs simultaneously with a decrease in system
free energy due to the relaxational dynamics. Figure 5(b)
shows the free-energy difference per SF area A with respect
to the initial condition 
F/A = F/A − F/A|t=0 over the
entire simulation, including the equilibration regime when
∂(
F/A)/∂t = 0. Together these results illustrate that DMD
captures all basic elements of the diffusional process correctly,
but arrives at quantitatively different predictions by including
effects that are not present in the continuum model.

C. Segregation towards a split edge dislocation

The segregation of substitutional solute to the elastic field
of a split edge dislocation is a classic problem that has been
treated using analytical models (e.g.. [27,28]), Metropolis
MC simulations [11] and energy minimization based on the
VG approximation [29]. Attempts at capturing the kinetics

of segregation, where kinetic MC is the only available
tool, are always hindered by the need to compute barriers
which are necessarily changing during the progress of the
simulation [10]. In this case, it is typical to use precomputed
barriers from the starting simulation cell and to not evolve
these during the simulation. The alloy DMD model described
here avoids these problems.

A single edge dislocation with Burgers vector b = a0
2 [11̄0],

which splits into two partials connected by a stacking fault
according to the reaction a0

6 [12̄1] + a0
6 [21̄1̄], was constructed

by removing two (11̄0) planes from an initially perfect crystal.
To avoid the formation of a dislocation dipole, fixed boundaries
were used in the [111] direction. Next, this structure was
relaxed and the simulation box volume adjusted to minimize
the external stresses. In all calculations presented in the
following, the simulation box contains about 27 000 atoms
with 213 × 213 × 10 Å3 dimensions along [11̄0] × [111] ×
[1̄1̄2] directions. Convergence of the results with respect to
the size of the cell was confirmed, meaning that interaction
with images could be neglected.

In contrast to the SF case, solute segregation in this case
is driven by the long-range stress field produced by the
dislocation. We performed DMD calculations starting from
a uniformly distributed solute field, the simulation continuing
until the solute distribution around the dislocation reached
equilibrium. Figure 6 shows the solute distribution around the
dislocation core for 1% [top row, Fig. 6(a)] and 5% Al-Mg
alloys [middle row, Fig. 6(b)]. The first column shows the
outcome of the full DMD simulation, while the second column
computes the solute distribution using Eq. (4). Here, the
interaction energy is approximated by U (r) = p(r)
v, where
p(r) is the hydrostatic pressure field and 
v = vMg − vAl is
the atomic volume difference between Mg and Al atoms [27].
In order to account for the effect of boundary conditions and
discrete atomistic effects at the core, we obtained the atomistic
virial pressures p(r) numerically from the initial configuration
where the solute was distributed uniformly rather than using
the analytical continuum elasticity solution for the pressure
field around a split edge dislocation. Figure 6(c) shows the
difference between these two (elasticity and DMD) predicted
concentration fields. As expected, differences in the predicted
concentration are most pronounced near the core region, and
quantitatively much more significant in the 5% case. These
results parallel our findings for the SF, reflecting the increasing
importance of the interactions between solute atoms with
increasing concentration. The similarity to the SF case extends
to the fact that the concentration field below the dislocation
is not uniform in case of c0 = 5% [Fig. 6(d)]. One sees an
oscillation in the Mg concentration in the tensile region just
below the dislocation, this being a consequence of the repulsive
nature of the Mg-Mg interaction at close separation.

Another feature captured by the alloy DMD simulation that
is not accessible to continuum simulations is the segregation-
induced change in partial dislocation separation. As noted
above, both the SF energy and the shear modulus (approxi-
mately C44 in nearly isotropic Al) decrease with increasing
Mg concentration, as does the ratio of C44b

2/γSF. Given that
this ratio is proportional to the spacing between the partial
dislocations, it is expected that the separation should decrease
with increasing solute segregation. Indeed, careful inspection
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FIG. 6. (Color online) Contour plots of solute concentration near
the split edge dislocation from DMD calculation (left) and from the
hydrostatic pressure field existing prior to segregation (right) for
(a) c0 = 1% and (b) 5% at T = 600 K. (c) Contour plots of the
difference between these results and (d) magnified snapshots of the
concentration field illustrating the details of the solute distribution for
1% Mg (left) and 5% Mg (right).

of the left-hand panels of Figs. 6(a) and 6(b) shows a closer
separation for the simulation with c0 = 5% Mg where the
magnitude of segregation is higher. Analysis of the disregistry
along the slip plane for c0 = 5% Mg shows that in this case
the spacing between partials has decreased from 1.8 to 0.9 nm
after segregation has completed.

In order to gain more insight into the cause of the differences
in solute distributions shown in Fig. 6, we study the hydrostatic
pressure field p(r) created by the two partial dislocations
in more detail. To this end, the pressure field in the initial
uniform 5% alloy is shown in Fig. 7(a), while the results after
equilibration with DMD in the NVT and μVT ensembles are
shown in Figs. 7(b) and 7(c), respectively. For the present
geometry and Burgers vector, the area above the stacking fault
is under compression, while the area below is under tension.
Stress relaxation in the tensile region can be observed in the
equilibrated structures, which is expected due to segregation
of larger Mg solute atoms in the region under tension. In the
μVT ensemble, a larger Mg concentration (�5% larger at the

FIG. 7. (Color online) Contour plots of hydrostatic pressure
fields measured in GPa near the split edge dislocation in (a) initially
disordered Al-Mg solid solution, DMD relaxed structures in the
(b) NVT and (c) μVT ensembles for c0 = 5% at T = 600 K.

core than in the NVT ensemble) is reached at the very cores of
partial dislocations which leads to even larger stress relaxation
in the dilated region in comparison with NVT simulations. It
is important to note that while our calculations are performed
under constant volume the increase in pressure on the box
during the solute segregation process is practically negligible
(rising from 1 MPa for initial structure to 10 MPa for final
structure). Besides, hydrostatic pressure is found to have no
significant influence on Mg clustering and segregation [12].

A unique strength of the alloy DMD simulations is that they
provide insight into how atomistic effects influence the kinetics
of segregation. Although there is a net influx of Mg atoms
towards the dislocation cores, it is useful to consider tensile
and compressive regions separately. Figures 8(a) and 8(b) show
the time evolution of the excess concentration S(t)/c0, where

S(t) = 1

Nshell

Nshell∑
k=1

[ck(t) − c0], (6)

and the sum is carried out over concentric cylindrical shells
[see legend of Fig. 8(b)] that contain Nshell atoms. For all
shells, there is an outflow of Mg atoms in the compressive
region and an influx in the tensile region, their magnitudes
decreasing with distance from the dislocation core. In the case
of the NVT ensemble shown in Fig. 8(a), a small overshoot
in solute concentration is observed, which is a consequence of
the fixed solute content and the finite size of the simulation
box used. For the μVT ensemble shown in Fig. 8(b) the
solute concentration monotonically approaches its saturation
level, this level being higher than that obtained in the NVT
case. Figure 8(c) shows the total change in the tensile core
region (r < Rc) normalized by the saturation value S(∞)
for the two ensembles. In this representation it is possible
to compare the simulations with continuum prediction of
segregation kinetics towards dislocations considering bulk
diffusion rather than pipe diffusion. The Cottrell-Bilby [27]
equation for segregation kinetics, modified by Louat [28] to
account for saturation, is

S(t)

S(∞)
= 1 − exp[−(t/t�)2/3], (7)

where

t� =
√

2b2

D

kBT

U

(
c(∞)

3c0

)3/2

. (8)
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FIG. 8. (Color online) Time evolution of the solute concentration in the vicinity of the dislocation from (a) NVT and (b) μVT DMD
calculations for c0 = 5% at T = 600 K. (c) Comparison of the solute segregation kinetics in the tensile part of the core region [denoted by white
circle with radius Rc in (d)] between different ensembles and continuum model predictions. (d) Atomic representation of solute distribution
near the split edge dislocation core. The circle of radius Rc = 13 Å (∼distance between partials) indicates the core region.

This expression was derived under the assumption of a
perfect edge dislocation and linear elasticity. In this case,
U = p
v is the product of the pressure induced by the
dislocation at a given location and the difference in atomic
volume of Mg and Al, 
v = vMg − vAl. Applying the above
expression analytically therefore requires the determination
of U just outside of the core of the dislocation where linear
elasticity applies (e.g., at a distance between b and 1/2b from
the center of the dislocation as assumed in [10,28]). The
present atomistic simulations account for a range of binding
energies making a direct comparison to Eq. (7) complicated.
Rather than following the concentration evolution at a single
atomic site, we have therefore followed Xu and Picu [11] and
compared this expression to the value of S(t) [Eq. (6)] in
the tensile region contained within a half cylinder of radius Rc

centered on the dislocation. Choosing to look at only the tensile
region is consistent with the fact that Eq. (7) can describe
only monotonic change in the solute concentration near the
dislocation due to bulk diffusion, i.e., either inflow or outflow
of solute atoms depending on initial conditions.

A second complication that is not naturally captured in
the above model is the fact that the diffusivity is strongly
modified by the stress field surrounding the dislocation. The
DMD model explicitly captures this effect through the spatial
variation in the formation energies [Eq. (2)]. To remain
consistent with the classical application of Eq. (8) [10,28],
we have used the bulk diffusivity to predict D in t�.

At short times, this analytical expression predicts
S(t)/S(∞) ≈ (t/t�)2/3. In this case, t� can be determined from
the initial slope of a plot of S(t)/S(∞) versus t2/3. Figure 8
indeed shows that the initial rise of S(t)/S(∞) with time is
consistent with Eq. (7), while deviations become apparent at

intermediate times. It is interesting to compare the numerical
values of the crossover time t� extracted from the simulations
to those predicted by Eq. (8). For this comparison one must
choose a value for U . Despite the fact that at the core of
the dislocation linear elasticity will not be satisfied, a first
estimate was made using p = pmax, the pressure obtained
from an atomic site at the very core of the partial dislocation.
Also, c(∞) was calculated from Eq. (4). From this we find the
crossover time t� = 25τ which is roughly four times smaller
than the value obtained from the initial behavior of the DMD
data (Table I, labeled by NVT and μVT). Using this value of
U represents an absolute upper bound to the binding energy
between Mg and the dislocation. Using a value of U obtained
from a site further from the dislocation core leads to an even
lower predicted value for t�. For example, by using a value
of U obtained from a value of p calculated as an average
over sites located within r < R of a tensile region centered
at the dislocation leads to the values given in Table I. Thus,

TABLE I. Crossover time t � given by Eq. (8) where an average
value of the binding energy U in the tensile region of radius R has
been used. Also given are the NVT and μVT DMD predicted t �;
these have been found from a log-log plot of Eq. (7) where linear
regression with a slope fixed at 2

3 was performed. In these cases, the
average composition in the region of size R has been used.

R/Rc 1.0 1.5 2.0 2.5 3.0

t �/τ [Eq. (8)] 13.2 13.6 14.3 15.1 16.0
t �/τ (NVT) 95 118 148 168 182
t �/τ (μVT) 134 180 249 317 386
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while the continuum model appears to do a reasonably good
job of predicting the time evolution of the segregation profile
below the dislocation, the value of t� is not well described by
Eq. (8). On the other hand, atomistic simulations such as the
ones shown here provide a way to gauge the variation of t�

for a particular system without the restrictive approximations
inherent in Eq. (8).

While the continuum diffusion model does seem to contain
much of the relevant physics of solute redistribution around
dislocations, it misses an important aspect that becomes
relevant at very short times. Due to the strong driving force
for cross-core diffusion, the concentration change is initially
dominated by direct atomic jumps from the compressive to
the tensile region. As discussed by Curtin et al. [10], this
mechanism implies a linear rise of the concentration with time
rather than the t2/3 behavior of Eq. (7) for times shorter than a
crossover time t0 = 2b2kBT /6DU after which bulk diffusion
dominates. The inset of Fig. 8(c) shows a magnification of
this early time regime in a log-log plot. Consistent with these
arguments, we find deviations from the t2/3 dependence and
a faster rise below the crossover time t0. Our numerical value
of t0 ≈ τ is about half the value predicted from the above
estimate. It is impressive that our DMD alloy approach does
capture this subtle but important effect, which has been argued
to lie at the origin of dynamic strain aging [10].

As a final demonstration of the capabilities of the alloy
DMD technique, we illustrate in Fig. 9 results obtained for
an Al-Mg alloy at a higher concentration of c0 = 10% Mg.

FIG. 9. (Color online) (a) Two snapshots from DMD simulations
(times indicated above the figures) for solute segregation near the
split edge dislocation for c0 = 10% at T = 600 K. The unit cell of a
fully ordered precipitate obtained from cooling this system to a lower
temperature is shown at the bottom right. (b) Time evolution of the
normalized excess solute concentration (blue symbols) in the region
indicated by the white circle in (a) and the free-energy difference
(green symbols) between the current and initial states.

As for the simulations with lower solute content, solute first
accumulates near the dislocation in the form of an enriched
solute field [see Fig. 9(a) left]. A sudden change occurs after
a certain level of segregation, this being marked by a rapid
increase in the flux of Mg [see Fig. 9(b)]. After this point, the
smoothly varying concentration field rapidly transformations
into an ordered phase [see Fig. 9(a) right], this transformation
being accompanied by a precipitous drop in free energy
[Fig. 9(b)].

Experimentally, binary Al-Mg alloys are known to form
ordered L12 precipitates for c0 � 10% Mg and long aging
times at temperatures below 100 ◦C [30–32]. The EAM
potential used here has been employed previously to examine
the precipitation of L12 via kinetic MC [33], the potential
having originally been fit to the formation energy of L12

Al3Mg, along with other known ordered phases [22]. While
the precipitation of ordered phases on dislocations in Al-Mg
alloys has not, to our knowledge, been previously reported
from experimental studies, the heterogeneous precipitation of
L12 precipitates is known in other binary alloys. For example,
the heterogeneous precipitation of L12 Al3Li is well known in
Al-Li alloys [34,35]. In the present case, the ordering occurs
only in a small volume under the dislocation, but by lowering
the temperature and allowing the ordering to go to completion
it was found that the stoichiometric phase corresponds to D7
(Al7Mg) [36]. This phase shares some similarities with an
ordered L12 phase but has half the solute content. In particular,
the Mg atoms alternate along [11̄0] and [1̄1̄2] directions as
indicated by the unit cell in Fig. 9. A hint of such a tendency for
ordering of Mg beneath an edge dislocation was pointed out in
an earlier MC study using the same Al-Mg potential [12], but in
that case the heavy computational cost of the MC simulations
precluded full equilibration of the structure.

IV. CONCLUSION

Given the importance of solute-defect interactions, new
techniques are required which allow us to bridge the gap
between the atomic-scale energy landscape that determines the
spatially varying equilibrium solute field and the diffusive time
scales over which solute redistribution occurs. Traditionally,
kinetic Monte Carlo simulations have allowed for coarse
graining of time in atomistic simulations but such simulations
become unreasonably burdened by the need to know all
barriers for simulations involving solute-defect interactions,
particularly in nondilute alloys where long-range interactions
exist. In this paper, we have presented a version of the diffusive
molecular dynamics (DMD) model parametrized to study
binary alloys with previously developed, well-characterized
EAM potentials. This technique is numerically stable and
avoids issues related to vacancy condensation in the original
version of the model.

To illustrate the potential of this technique, we examined
segregation of solute atoms to two different defects in binary
Al-Mg alloys. First, Mg segregation to an intrinsic stacking
fault in fcc Al was simulated and the results compared to
classical continuum models. In a second example, segregation
of Mg driven by the long-range elastic strain field of a split
edge dislocation was studied. As a further illustration of
the potential of this technique, it was used to predict the
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nucleation of an ordered phase below an edge dislocation,
an effect only hinted at in previous MC simulations of the
same system. This points to promising new avenues for
studying atomic-scale phenomena over time scales relevant
to practical problems where solute redistribution plays a
fundamental role in determining properties of technological
importance.
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