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Comment on “Ideal strength and phonon instability in single-layer MoS2”
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Li’s paper [Phys. Rev. B 85, 235407 (2012)] presents density functional theory (DFT) results of stress as a
function of different strain states. The work of Cooper et al. [Phys. Rev. B 87, 035423 (2013)] performs the
same DFT calculations as part of an investigation into the nonlinear elastic properties of MoS2. Some of the
DFT results of Li are substantially different from our recently published paper, Cooper et al. [Phys. Rev. B 87,
035423 (2013)]. Although both papers agree on states of equibiaxial stress, there is substantial disagreement on
states of uniaxial tensile stress. In this Comment we show that our DFT computations are properly executed and
consistent across three different DFT codes, including the one used by Li.
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Two recent papers by Li [1] and by Cooper et al. [2]
investigate the mechanical properties of two-dimensional (2D)
MoS2 under conditions of finite strain based upon density
functional theory (DFT) calculations. The predicted uniaxial
stress at finite strains is different in the two papers. In particular,
the uniaxial stress results in Fig. 2 of Li [1] do not agree with
the uniaxial stress results in Fig. 5 of Cooper et al. [2]. Herein
we show that the results of Cooper et al. [2] are correct.
First, a brief introduction will be given to define precisely
all quantities. Subsequently, we present results from three
mainstream DFT packages, including the one used by Li [1].
We demonstrate that the results of Cooper et al. [2] are robust
and that results from all three packages are consistent.

A uniaxial stress state is characterized by the application
of stress in one direction while allowing the material to
remain stress free in the other two principal directions. In
a two-dimensional material, such as MoS2, only two principal
directions are considered, here assigned to be parallel to the
zigzag direction (i.e., x1 axis) and the armchair direction (i.e.,
x2 axis). This same convention is used both in Fig. 1 of
Li [1] and in Figs. 1 and 2 of Cooper et al. [2]. A state
of uniaxial tensile stress for 2D MoS2 in the x1 direction is
defined by stress tensor components σ11 > 0 and σ22 = 0 with
corresponding strain tensor components of ε11 > 0 and ε22 < 0
given a positive Poisson ratio. The uniaxial tensile stress state
in the x2 direction is defined analogously. An equibiaxial stress
state is defined as σ11 = σ22 and ε11 = ε22. The stress measure
in a 2D material is defined as force normalized on a per
unit length basis. Herein we express the stress as a derived
three-dimensional (3D) quantity by normalizing the 2D stress
by an effective thickness of the 2D material. We report stress
as a 3D quantity to facilitate comparison with Li’s [1] results.
Thus, engineering stress is defined as σeng = F/Ao, where F

is the current force and Ao is the reference cross-sectional area.
The corresponding engineering strain is defined as εeng = (L −
Lo)/Lo, where L is the current length and Lo is the original
length. True stress is defined as σtrue = F/A, where A is the
current area and is typically plotted against true strain defined
as εtrue = log(L/Lo).

Li [1] uses the QUANTUM ESPRESSO DFT computational
package to calculate two uniaxial stress states for 2D MoS2 (in

the zigzag and armchair directions) as well as the equibiaxial
stress state, taking the MoS2 thickness to be 0.6145 nm.
The stress measure is erroneously reported to be engineering
stress, but the results are in true stress [3], whereas the strain
measure is engineering strain. Here we use three different DFT
packages (Vienna ab initio simulation package (VASP [4–7],
QUANTUM ESPRESSO [8], and ABINIT [9]) to calculate the
mechanical response of 2D MoS2 under the same stress states,
taking the thickness to be 0.615 nm (the difference in stress
arising from assuming a thickness which is 0.0005 nm greater
is not perceptible on our plots).

The results of the DFT simulation are expected to be
very similar, although there may be small discrepancies due
to differences in the nature and degree of discretization of
the Kohn-Sham equation (e.g., k points, plane-wave cutoff,
etc.), treatment of the core electrons (i.e., psuedopotential
choice), and convergence criteria. In this Comment, all three
codes utilize the generalized gradient approximation of Perdew
et al. [10,11] for the exchange-correlation functional.

Our VASP calculations employ the projector augmented-
wave (PAW) method [12,13], and the plane-wave cutoff was
chosen to be 420 eV, which was found to be converged. The
charge self-consistency is terminated when changes in the total
energy are less than 10−4 eV, and structural minimization is
terminated when changes in the energy are less than 10−3 eV.
A k-point grid of 15 × 15 × 2 was used. When computing the
x1 direction uniaxial stress state the x2 components of the two
lattice vectors are varied until |σ22| � 0.01 GPa. The x2 direc-
tion uniaxial stress state is solved analogously. The unstrained
unit cell in VASP is found to have dimensions a1 = a2 =
3.183 Å (unit cell shown in Fig. 1 of Li [1] and Fig. 2 of Cooper
et al. [2]) with an out-of-plane sulfur ion height of 1.564 Å.

In both QUANTUM ESPRESSO and ABINIT, most aspects of
the simulations were equivalent. Trouiller-Martins pseudopo-
tentials were used in both codes [14]. A plane-wave cutoff
of 420 eV was used in ABINIT, whereas 1361 eV was used
in QUANTUM ESPRESSO with both respective values giving
converged solutions. The primitive unit cell is doubled to
create orthogonal lattice vectors that coincide with principal
stress directions to allow systematic variation in the lattice
vectors to achieve |σ22| � 0.01 GPa for uniaxial stress in
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FIG. 1. (Color online) (a) is the biaxial stress state calculated with VASP, QUANTUM ESPRESSO, and ABINIT. (b) and (c) are the uniaxial
stress states in the x1 and x2 directions, respectively, calculated with the same three DFT codes. The results of Li’s [1] uniaxial stress DFT
calculations—indicated by red ◦’s—are shown for comparison. There is a qualitative and quantitative agreement between the calculations of
Li [1] and the calculations of Cooper et al. [2] for a biaxial strain state in (a), but there is qualitative disagreement in the x1 and x2 directions
as seen in (b) and (c). (d) shows the calculated sulfur height as a function of strain for the three DFT codes for the uniaxial stress in the x1 and
x2 directions in the upper and lower axes, respectively.

the x1 direction as required by the minimization algorithms
within these codes. The biaxial stress state is achieved by
applying equal strains in the x1 and x2 directions. A k-point
grid of 10 × 10 × 1 was used. In QUANTUM ESPRESSO, the
self-consistency is terminated when changes in the total energy
are less than 13.6 × 10−8 eV, and the structural minimization
is terminated when the force is less than 2.571 × 10−2 eV

Å
.

In ABINIT, self-consistency was performed such that changes
in the total energy are less than 27.2 × 10−7 eV and the
structural minimization is terminated when both the force is
less than 2.571 × 10−3 eV

Å
and the change in energy is less than

13.6 × 10−4 eV between structural change steps. In QUANTUM

ESPRESSO, the unstrained unit cell is found to be a1 = 3.187
and a2 = 5.521 Å with an out-of-plane sulfur ion height of
1.574 Å. The ABINIT unstrained unit cell is determined to be
a1 = 3.185 and a2 = 5.517 Å with an out-of-plane sulfur ion
height of 1.574 Å.

Our results from the three DFT packages are compared
in Fig. 1. In general, our results are within sufficient agree-
ment. ABINIT and QUANTUM ESPRESSO use the same type of

pseudopotential and are therefore nearly indistinguishable in
most calculations. Our VASP calculations result in a slightly
smaller sulfur height as seen in Fig. 1(d). All codes converge
to the same stress until the point of elastic instability as
seen in Figs. 1(a)–1(c). The only appreciable difference is
an ≈5% difference developing in our VASP results relative
to ABINIT/QUANTUM ESPRESSO in the x2 direction for strains
>20%. We presume that this difference can be attributed to the
differences in the PAW approach versus the Trouiller-Martins
pseudopotential as substantial checks were performed on a
k-point plane-wave cutoff and convergence criteria in this
region. To summarize, there are no major differences among
our calculations with the three different DFT codes.

The uniaxial stress states calculated by Li [1] are not
consistent with that of Cooper et al. [2]. Li uses the QUANTUM

ESPRESSO code with the generalized gradient approxima-
tion of Perdewet al. [10,11] along with Trouiller-Martins
pseudopotentials [1] and a plane-wave cutoff of 100 Ry (i.e.,
1360.57 eV). Therefore, there should not be any substantial
deviation. Figures 1(a)–1(c) show the direct comparison of
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the two calculations. The biaxial stress calculations shown
in Fig. 1(a) agree both qualitatively and quantitatively, but
there is a qualitative disagreement between the two sets of
calculations for the x1 and x2 directions as seen in Figs. 1(b)
and 1(c) uniaxial stress calculations. We have verified our

calculations across three DFT packages and conclude that there
is a discrepancy in the paper of Li [1].
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