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Dynamics of optically injected currents in carbon nanotubes
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We consider theoretically the dynamics of electric currents optically injected in carbon nanotubes. Although
the plasma oscillations are not seen in these systems, the main effect on the carrier’s motion is due to strongly
nonuniform space-charge Coulomb forces produced by time-dependent separation of injected electron and hole
densities. We calculate the evolution of the dipole moment characterizing the time- and coordinate-dependent
charge-density distributions and analyze different regimes of the dynamics. The developed time-dependent dipole
moment leads to a dipole radiation in the THz frequency range for typical parameters of injected currents.
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I. INTRODUCTION

Optical manipulation of carriers in bulk solids and artificial
structures is an interesting problem for fundamental and
applied physics. By interference of single- and two-photon
optical transitions induced by highly coherent laser beams,
which can be controlled by the beams’ phases, one can
optically inject currents in semiconductors [1,2] and semi-
conductor nanostructures [3,4]. Recently, current injection
using the same principle of interference was reported for a
different class of systems such as graphene [5] and carbon
nanotubes [6]. The understanding of the following dynamics
of the injected currents can provide valuable information about
both the injection process and the interactions in the system.

For two-dimensional semiconductor quantum wells [7], it
was shown that the space-charge effects due to nonuniform
charge density play a crucial role in the electron motion while
relatively heavy holes can be taken at rest. If the space-charge
effects dominate in the charge dynamics, the time scale of
the evolution is given by the characteristic expected plasma
frequency corresponding to the injected charge density and
the laser spot size. However, the plasma oscillations should
not be seen there since a highly nonuniform charge density is
formed on the time scale of the order of the expected inverse
plasma frequency.

In this respect, carbon nanotubes are very different from
conventional semiconductors. Semiconducting nanotubes,
where carriers have finite effective masses, were investigated
intensively using optical techniques. Near the absorption
threshold, they demonstrate excitonic effects in the optical
absorption spectra [8] and in the subsequent dynamics [9].
Here electrons and holes give the same contribution to the
optical properties. Another type of nanotubes is metallic
systems, where the dispersion relation of carriers is linear
in the momentum, making the plasma frequency a poorly
defined quantity. As a result, even when the carrier momentum
changes due to the relaxation and external forces, the velocity,
and therefore the current, can remain constant. To change
the carrier velocity, the momentum has to change sign. In
general, for these “relativistic” spectra, even relatively strong
Coulomb forces do not lead to the formation of excitons (for
an exception, see Ref. [10]). This new type of dynamics, which

will be our focus here, can experimentally be seen in bunches
of nanotubes containing metallic and semiconducting species.
As we are interested in the optical response in the relatively low
frequency infrared domain, semiconducting nanotubes will not
contribute to the properties of our interest. Moreover, metallic
nanotubes can be separated from the semiconducting ones
[11] to provide a system for experimental study of the effects
considered here.

A microscopic theory of current injection in semiconduct-
ing nanotubes has been developed [12] by using the analysis of
the transition matrix elements on an atomic scale. However, the
stage of the subsequent dynamics with a strongly nonuniform
density has not yet been studied and understood. Here we
study this process. The time-dependent injected current is
accompanied by emission of radiation in the THz frequency
domain. As we will show, the spectrum of this radiation
provides information about the dynamics and properties of
the system.

II. MODEL DYNAMICS EQUATIONS

We begin with model equations for a single-wall carbon
nanotube characterized by a dispersion relation (see Fig. 1):

ε(k) = �|k|v0, ε(k) = −�|k|v0 (1)

for electrons and holes, respectively, and velocities v(k) =
±sgn(k) v0, where v0 = 108 cm/s.

Optical injection produces electron and hole densities n±,
p±, respectively, in the coordinate (x) and momentum (k)
space with corresponding velocities v:

n+ = n+(x,k,t), p− = p−(x,k,t), v = v0; (2)

n− = n−(x,k,t), p+ = p+(x,k,t), v = −v0. (3)

The local densities are defined as

n̄± = n̄±(x,t) =
∫ +∞

−∞
n±(x,k,t) dk, n̄ = n̄+ + n̄−; (4)

p̄± = p̄±(x,t) =
∫ +∞

−∞
p±(x,k,t) dk, p̄ = p̄+ + p̄−. (5)

In what follows, we omit the explicit (x,t,k) dependence for
brevity. The Boltzmann equations for the distribution functions
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FIG. 1. (Color online) (a) Dispersion relation and density distri-
bution in the momentum space. The peak in the optical radiation
intensity corresponds to transitions at frequency 2v0k0. (b) Elec-
tron/hole density induced by the laser spot vs x, where 2� is the
total spot width.

have the form

∂n±

∂t
+ v(k)

∂n±

∂x
+ eE

�

∂n±

∂k
= −n± − n±

eq

τn

, (6)

∂p±

∂t
− v(k)

∂p±

∂x
− eE

�

∂p±

∂k
= −p± − p±

eq

τp

, (7)

where e < 0 is the electron charge and E ≡ E(x,t) is the
coordinate- and time-dependent electric field produced by
space-charge effects, that is, by nonuniform charge density.
The local Fermi-Dirac equilibrium densities for electrons in
Eqs. (6) and (7) are defined as

n±
eq = 2

1

exp{[ε(k) − μ±
n ]/T } + 1

, (8)

where the factor 2 is due to spin degeneracy and T is the
temperature measured in units of energy. In a similar way, we
define the equilibrium distributions of holes. The coordinate-
and time-dependent chemical potentials μ±

n and μ±
p guarantee

the balance of the densities in the form n̄±
eq = n̄±, p̄±

eq = p̄±.
For example, the condition

∫ ∞

0
n+

eqdk = n̄+ (9)

yields

μ+
n = T ln[exp(�v0n̄

+/2T ) − 1]. (10)

The electric field in Eqs. (6) and (7) can be expressed in
terms of the integral of the charge density p̄(x − s,t) − n̄(x −
s,t) as

E(x,t) =
∫ ∞

−∞
[p̄(x − s,t) − n̄(x − s,t)]K(s)ds, (11)

where K(s) is the Coulomb kernel for the nanotube. The
expression for K(s) is presented in the Appendix. As we
will see, the important and unusual feature of Eq. (11)
is that in the limit of a small-radius nanotube, the field
E(x,t) is proportional to the local derivative of the density:
∂ [p̄(x,t) − n̄(x,t)] /∂x.

The initial distributions of electrons and holes are optically
produced as

n(x,k,0) = p(x,k,0) = N

π�K
exp

[
− x2

�2
− (k − k0)2

K2

]
, (12)

where k0 is the injection point in momentum space, 2� is
the characteristic laser spot size, and N is the total number
of injected electron/holes. We use k0 = K = 200 μm−1 [see
Fig. 1(a)]. This is reasonable since the wave vector is limited
by the requirement that the carrier energy should not exceed
that of the optical phonon, otherwise a fast momentum and
energy relaxation occur. A typical optical phonon energy
is ��ph = 0.18 eV [14], which gives the estimate k0 <

�ph/v0 = 275 μm−1. Integrating Eq. (12) over k, we obtain
[see Fig. 1(b)]

n̄(x,0) = p̄(x,0) = N√
π�

exp(−x2/�2). (13)

We define the one-dimensional (1D) electron/hole density

N1D = N

2�
, (14)

and Eq. (13) becomes

n̄(x,0) = p̄(x,0) = 2N1D√
π

exp(−x2/�2). (15)

Integrating Eqs. (6) and (7) over k, we get the charge
continuity equation:

∂

∂t
[(p̄+ + p̄−) − (n̄+ + n̄−)]

+v0
∂

∂x
[(p̄− − p̄+) + (n̄− − n̄+)] = 0, (16)

from which we define the local current:

I = I (x,t) = −e v0 [(p̄− − p̄+) + (n̄− − n̄+)]. (17)

III. NUMERICAL SOLUTIONS

Before solving numerically the model equations, we intro-
duce parameters describing the electron-electron interaction
and the injection process. First we introduce a parameter
characterizing the strength of the Coulomb forces. For this
purpose, we use the following scaling argument. The Coulomb
force acting at a carrier, F ∼ Ne2/

√
ε⊥ε‖�2, where ε⊥ and

ε‖ are the nanotube transversal and longitudinal permittivity,
respectively (see the Appendix for details). In the absence
of the plasma frequency and on the relevant time scale t� ∼
�/vF , this force produces a change in momentum comparable
to �K if F t� ∼ �K . This estimate yields the corresponding
critical number of injected carriers per nanotube, Nc ≡√

ε⊥ε‖�v0K�/e2 ≈ 1600 (for K = 200 μm−1, ε⊥ = 10, and
ε‖ = 30, in agreement with the experiment [13]), and the
interaction effects are described by a dimensionless parameter
N/Nc. If N/Nc 	 1, then n̄± and p̄± are conserved and the
initial density distributions move and separate, being only
weakly deformed. Otherwise, the effect of Coulomb forces is
strong. In this case, if E < 0 (E > 0), then n̄+ and p̄− increase
(decrease), and p̄+ and n̄− decrease (increase). Since initially
carriers are injected with positive momentum k0 > 0, most of
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the electrons/holes have k > 0. Thus n(x,0,t) increases and
p(x,0,t) decreases when E > 0, and, therefore, the effect of
the electric field is larger on the electrons than on the holes.
Conversely, when E < 0 the effect of the electric field is larger
on the holes than on the electrons. However, when the number
of electrons/holes having k < 0 is larger, the sign of the electric
field has the opposite effect for those electrons/holes.

An important limit on the number of injected particles is
posed by the Pauli blocking condition, where the injection
stops since all available electron/hole states became occupied
by the previously excited carriers. The condition that the tran-
sition does not experience Pauli blocking limits the number of
injected particles to the available phase volume 2�	K , where
2 is the spin factor. Therefore, the maximum ratio N/Nc should
be considerably less than (	K/K)α(c/vF )(2/

√
ε⊥ε‖), where

α ≡ e2/�c = 1/137 is the fine-structure constant. Provided
	K ∼ K = 275 μm−1, we obtain that N should be less than
400, restricting N/Nc to values considerably less than 0.3.

We consider current injection by tightly focused beams
with � = 1 μm and a nanotube of radius a = 1.25, and we
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FIG. 2. (Color online) Profiles of (a) density of electrons/holes,
and (b) electric field at different snapshots for case (a): � = 1 μm,
N1D ≈ 12.5 μm−1, τp = τn = 2 ps, N = 25 electrons/holes. Here
[p̄] = [n̄] = N/� = 2.5 × 105 cm−1, and the unit of electric field
[E] ≡ |e|N/ε⊥�2 = 36 V/cm.

solve numerically Eqs. (6)–(11) in the following two cases
(see Figs. 2–5): (a) N1D ≈ 1.25 × 105 cm−1, injected N =
25, N/Nc ≈ 0.016, and Imax ≈ 4 μA; and (b) N1D ≈ 1.25 ×
106 cm−1, N = 250, N/Nc ≈ 0.16, and Imax ≈ 40 μA. In both
cases, we assume carriers scattering times τn = τp = 2 ps at
300 K, as suggested by the estimates [15,16].

In case (a) there are few carriers, and electrons and holes
go their separate ways without much interaction, as shown
in Fig. 2. The effect of the nonequilibrium electric field is
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FIG. 3. (Color online) (a) Profiles of the electron/hole densities,
and (b) electric field profile, at different snapshots, for N =
250 electrons/holes. Here [p̄] = [n̄] = N/� = 2.5 × 106 cm−1, and
the unit of electric field [E] ≡ |e|N/ε⊥�2 = 360 V/cm.
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FIG. 4. (Color online) Hole density (p+(x,k) + p−(x,k))[p] at
different snapshots for N = 250 electrons/holes: (a) with scattering,
(b) without scattering. Here [p] = N/�K = 1.25.

much greater in case (b), when there are ten times more
carriers. Figure 3 shows that the interaction between carriers
builds up a peak in the hole density. The extrema of the
electric field are reached at the inflection points of the charge
density, p̄(x,t) − n̄(x,t), in agreement with the approximate
formulas presented in the Appendix. The displacement and
separation of the electron and hole peaks are of the order
of the initial width �, that is, much larger than can be

FIG. 5. (Color online) p̄(x,t)/[p̄] for N = 250 electrons/holes.
Here [p̄] = N/� = 2.5 × 106 cm−1.

observed in semiconductor quantum wells [3,7]. The reduction
of separation by space-charge effects due to the finite mass
of the carriers, similar to that in the quantum wells, can be
expected in semiconductor nanotubes as well. As one can
see in the figures for carrier densities and electric fields, the
scattering sharpens the peaks in the carrier densities and the
electric field and depresses the smooth regions thereof, but
it does not change this qualitative picture. The reason is that
the scattering tries to keep the carrier densities close to their
local equilibrium values (Fermi functions), which have large
gradients near k = 0. This enhances the effect of the electric
field on the densities and sharpens their peaks.

Figure 3(b) shows the development of electric fields and,
thus, details the way the carrier peaks are built. Since we inject
current with positive momentum, the larger peaks of electron
and hole densities correspond to k > 0. However, the hole
population with k < 0 splits in two parts and one part moves
together with the hole population with k > 0, which helps to
build up the hole population at the peak that moves to the
left. Meanwhile, the electron population with k > 0 also splits
into two parts, and the one that moves to the left helps to
reinforce the electron population with k < 0. The location of
the electron peak that moves to the left is quite close to that of
the left-moving hole peak. Then electrons and holes interact
so that their left-moving peaks slow down almost to a halt at
the same location.

This picture is confirmed in Fig. 4, which shows snapshots
of the overall hole density p+(x,k,t) + p−(x,k,t) for N = 250
electrons/holes. Note that the Coulomb forces stop the motion
of carriers to the left and build up hole and electron peaks at
x ≈ 2.3�. Similarly, increasing the number of carriers narrows
the peaks of their spatial density distributions, as shown
in Fig. 5.
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FIG. 6. (Color online) (a) Second time derivative of the dipole
moment vs time and (b) power spectrum for N = 250 electrons/holes.
Scattering times are 2 ps for both types of carriers.

IV. DIPOLE RADIATION: INTENSITY AND SPECTRUM

To connect our results with possible experimental obser-
vations of the space-charge effects in the current evolution,
here we study the radiation of a single nanotube after current
injection to see how the system parameters can be found from
the radiation intensity and the spectrum. For this purpose, we
introduce the dipole moment as

D(t) = −e

∫ +∞

−∞
[p̄(x,t) − n̄(x,t)]x dx, (18)

where the corresponding radiation intensity is proportional
to (d2D/dt2)2. The maximum value of D can be estimated
as N |e|�. Taking into account that the time scale of the
process is �/v0, we obtain the typical value of d2D/dt2 of the
order of |e|v2

0 × N/�. Taking into account the Pauli blocking
limitations, N/� � K0, we obtain the fundamental limit
for the derivative d2D/dt2 � ev0ε(k0)/�. The corresponding
spectral density for current injected at t = 0 is given by

I (ω) ∼
∣∣∣∣
∫ +∞

0

d2D

dt2
eiωtdt

∣∣∣∣
2

. (19)

Figure 6 shows d2D/dt2 for N = 250 with and without scat-
tering effects. The system parameters demonstrate themselves
in the spectrum of the radiation. Increasing the number of
carriers produces a sharp peak that is somewhat augmented and
sharpened by scattering. Although the scattering sharpens the
distributions, it only weakly modifies the integral parameters
such as the dipole moment, as can be seen in Fig. 6. The Fourier
transform of d2D/dt2 provides the spectrum of the radiation
peaked at the frequency of 200 GHz for a time window of 5 ps.

V. CONCLUSIONS

We have studied the time evolution of charge density after
optical injection of a charge current in metallic carbon nan-
otubes with a “relativistic” spectrum and identified different
regimes of dynamics. The main impact on the carrier density
evolution is produced by the space-charge effects. However,
due to the zero effective mass of the carriers, these Coulomb
forces cannot prevent the calculated large separation of the
electron and hole densities. This is in contrast to the relatively
small separation expected in semiconductor structures, where
electrons and holes have finite masses. Although the scattering
of carriers by impurities and phonons considerably sharpens
the density distribution, it does not influence strongly its
integral characteristics such as the dipole moment resulting
from the electron-hole separation, thereby rendering difficult
the experimental verification of this effect. The time evolution
of the dipole moment leads to a dipole radiation, which can be
measured experimentally and provide information about the
dynamics of the carriers. The spectral width of the radiation is
mainly determined by the ratio of the “relativistic” velocity to
the spatial width of the initial density distribution, while the
intensity depends on the injected carrier density. Our results
show that, as the intensity of the exciting radiation increases,
there is a fundamental limit for the radiation intensity that is
determined solely by the radiation frequency and related to
Pauli blocking in the injection process. Realistic numerical
parameters correspond to the radiation spectrum peaked at a
fraction of a THz, in the range of experimental observation of
Ref. [6].
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APPENDIX

Here we derive the expression for the electric field and show
the importance of the points where the derivative of the total
charge density vanishes. The electric field is derived from the
Coulomb forces for a single-wall nanotube:

E(x,t) =
∫ ∞

−∞
[p̄(x − s,t) − n̄(x − s,t)]K(s) ds, (A1)

with

K(s) = − 2e

πε⊥

∫ π/2

0

s dθ(
s2 + 4a2 ε‖

ε⊥
sin2 θ

)3/2 . (A2)

We describe the ensemble of nanotubes of the radius a as
an anisotropic medium with the longitudinal and transversal
permittivities ε‖ and ε⊥, respectively [13,17]. The shape of
K(s) in Eq. (A2) follows from the Poisson equation for the
electric potential of a point positive charge −e at the origin,

[
ε‖∂2

x + ε⊥∇2
⊥
]
V = 4πeδ(x)δ(x⊥), x⊥ = (y,z), (A3)
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which can be written as(
∂2

∂x̃2
+ ∂2

∂ỹ2
+ ∂2

∂z̃2

)
V = 4πe

ε⊥
√

ε‖
δ(x̃)δ(ỹ)δ(z̃), (A4)

x̃ = x√
ε‖

, (ỹ,z̃) = 1√
ε⊥

(y,z).

In terms of the original variables, the solution is

V = − e

ε⊥
√

x2 + ε‖
ε⊥

x2
⊥

, (A5)

∂V
∂x

= ex

ε⊥

[
x2 + ε‖

ε⊥
x2

⊥

]−3/2

. (A6)

The electric field (A1) is found straightforwardly by con-
volution of −∂V/∂x with the charge density [p̄(x,t) −
n̄(x,t)] δ(|x⊥| − a)/2π a. After integrating by parts, changing
variables, and using that the electron and hole densities rapidly
decrease at large |x| � �, (A1) becomes

E(x,t) = e

π
√

ε‖ε⊥

∂

∂x

∫ +∞

−∞
ds

[
p̄

(
x − 2as

√
ε‖
ε⊥

,t

)

−n̄

(
x − 2as

√
ε‖
ε⊥

,t

)] ∫ π/2

0

dθ

(s2 + sin2 θ )1/2

(A7)

= e

π
√

ε‖ε⊥

∂

∂x

∫ +∞

−∞

[
p̄

(
x − 2as

√
ε‖
ε⊥

,t

)

−n̄

(
x − 2as

√
ε‖
ε⊥

,t

)]
K

(
1√

s2 + 1

)
ds√

s2 + 1
.

(A8)

Here we have written the integral over θ in terms of
the complete elliptic integral of the first kind. Taking into
account that the length scale of the electron and hole density
distributions is of the order of � � a, one can approximate
this expression as

E(x,t) ∼ ef√
ε‖ε⊥

∂

∂x
[p̄(x,t) − n̄(x,t)], (A9)

with a numerical factor

f = π ln 2 + π2

8
+ 2

∫ ∞

0

[
K

(
1√

s2 + 1

)
− π

2

− π

8
√

1 + s2

]
ds√

1 + s2
≈ 5.43. (A10)

The approximate expression (A9) is a local relationship
between the charge density and the electric field, thereby
depending on the geometric mean of the permittivities,

√
ε‖ε⊥,

to which both contribute equally.
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