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Half-integer quantum Hall effect of disordered Dirac fermions at a topological insulator surface
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The unconventional (half-integer) quantum Hall effect for a single species of Dirac fermions is analyzed. We
discuss possible experimental measurements of the half-integer Hall conductance gxy of topological insulator
surface states and explain how to reconcile Laughlin’s flux insertion argument with half-integer gxy . Using a
vortex state representation of Landau level wave functions, we calculate current density beyond linear response,
which is in particular relevant to the topological image monopole effect. As a major result, the field theory
describing the localization physics of the quantum Hall effect of a single species of Dirac fermions is derived. In
this connection, the issue of (absent) parity anomaly is revisited. The renormalization group (RG) flow and the
resulting phase diagram are extensively discussed. Starting values of the RG flow are given by the semiclassical
conductivity tensor which is obtained from the Boltzmann transport theory of the anomalous Hall effect.
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I. INTRODUCTION

Topological states of matter constitute a vibrant field
of current research. On the one hand, promising future
applications—in particular, in the fields of spintronics and
quantum computation—are expected. On the other hand,
topological phases of matter provide fascinating realizations
of fundamental concepts of field theory, mathematical physics,
and geometry.

Topological phases considered in the present work are
fermionic topological insulators (TIs) [1–4]: materials with
a band gap in their bulk that are equipped with a “twist”
in the structure of Bloch states. This leads to a nontrivial
topological index, and, by the bulk-boundary correspondence
[5] and Callias’ theorem [6,7], to protected gapless states at
the interface of two topologically distinct insulators.

The earliest example of a TI was the quantum Hall (QH)
state [8]. The Landau levels (LLs) provide the bulk band gap,
which is accompanied by the topological Thouless–Kohmoto–
Nightingale–den Nijs (TKNN) index [9] and the protected
chiral edge state. More recently, time-reversal (TR) invariant
two- and three-dimensional (2D and 3D) TIs were discovered
[10–16]. In contrast to the TKNN integer, their topological
index takes only values in Z2. The boundary states of a 3D TI
represent a single species of 2D Dirac fermions.

Alternative descriptions of TIs are topological field theo-
ries. These include, first, the theory of electromagnetic (EM)
gauge potentials, and, second, the diffusive nonlinear sigma
model (NLσM). In contrast to the Bloch-band description,
these theories capture the general interacting problem with
quenched disorder. In the case of the integer quantum Hall
effect (QHE), the effective bulk EM theory contains a Chern-
Simons (CS) term [17,18], whereas the field theory describing
the localization physics in the bulk is the NLσM supplemented
with a theta term [19–21]. At this point, it is worth reminding

the reader that one of key ingredients of the QH physics is the
disorder-induced Anderson localization of bulk states [22–25].
Both theories (EM and diffusive) can be unified within the
framework of the U(1)-gauged NLσM [26].

In the language of topological EM field theory, the bulk
of TR-invariant 3D TIs is characterized by the E · B term
[2,27–29] with theta angle ϑ = π (mod 2π ). Terminating this
bulk theory at the 3D TI boundary, one could therefore naively
expect a CS surface theory. However, this would imply a

surface Hall conductance σxy
?= ( 1

2 mod 1) e2

h
and thus would

be unphysical for two reasons: (i) the Hall conductance should
be unambiguously defined, and (ii) its value should be zero
in the presence of TR invariance. The absence of a CS
term in the surface theory of TR-invariant 3D TI was shown
employing BF theory [30], by straightforward integration of
fermions including the bulk states [31], by means of the
general conjecture of cancellation of anomalies [32], and by
investigating the U(1)-gauged diffusive NLσM, i.e., the unified
topological field theory of gauge potentials and diffusive soft
modes [33].

In this paper we use the U(1)-gauged NLσM to explore
the situation when TR symmetry is broken locally [34] on the
surface of a 3D TI, or more generally, the QHE of a single
Dirac fermion [35]. The QHE of Dirac fermions in the context
of graphene [36–42] and 3D TI surface states [43–58] has been
studied both theoretically and experimentally. The QH state is
characterized by vanishing longitudinal conductance σxx = 0
and quantized transverse conductance taking values

σxy = gD

(
ν + 1

2

)
e2

h
, ν ∈ Z. (1)

Here gD denotes the number of degenerate Dirac cones, i.e.,
gD = 4 for graphene and gD = 2 for thin 3D TI slabs. In
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particular the σxy = ±gDe2/2h states turn out to be extremely
robust [59]; they can be observed up to room temperature [60]
and can also be induced by pure exchange coupling (quantum
anomalous Hall effect [61–67]).

Notwithstanding the immense general interest towards the
subject, the single Dirac fermion QHE [gD = 1 in Eq. (1)] did
not enjoy the deserved and required attention. The following
important questions were not or only partly answered to
present date:

(i) How can half-integer gxy ≡ hσxy/e
2 be measured

experimentally?
(ii) Does not Laughlin’s flux insertion argument [68,69]

forbid σxy = (ν + 1
2 ) e2

h
?

(iii) What is the field theory describing the localization
physics of the single-species Dirac-fermion QHE?

In this work we present a comprehensive analysis of these
questions and detailed answers to them.

While our primary consideration leading to the answers
on the posed questions is very general and is based on
topology and gauge invariance, important physical insight
can be gained by a microscopic analysis of simple models.
Thus, we supplement our analysis by two complementary
semiclassical calculations of the conductivity tensor of Dirac
fermions in magnetic field. The first one is based on the
vortex-state representation of LL wave functions [70–72] and
addresses the situation of potential disorder which is smooth on
the scale of the magnetic length. In particular, this calculation
is also applicable beyond linear response. The second one is
based on the Boltzmann transport theory of the anomalous
Hall effect (AHE) [73,74] and, as usual, applies when the
kinetic energy of charge carriers exceeds the scattering rate.
The semiclassical (Boltzmann) conductivity tensor provides
starting values for the RG dictated by the field theory discussed
in the context of question (iii).

The paper is structured as follows. In Sec. II, which
concerns question (i), we review and clarify the physics of
the topological magnetoelectric effect (TME). In Sec. III we
answer question (ii) regarding Laughlin’s argument. Section
IV contains the first semiclassical calculation of current
density (vortex states). In Sec. V we derive the unified
field theory treating both diffusive matter fields and EM
gauge potentials [question (iii)]. Subsequently, in Sec. VI,
we present the second semiclassical (Boltzmann) calculation
of the conductivity tensor for gapped Dirac fermions in
magnetic field and examine the phase diagram of the problem.
The renormalization group fixed points of the field theory
bring us back to the TME and question (i), motivating a
discussion of experimental conditions in Sec. VII. We close
the article with a summary of obtained results and an outlook,
Sec. VIII.

II. (HALF-)INTEGER QHE AND TOPOLOGICAL
MAGNETOELECTRIC EFFECT

This section and Sec. VII are devoted to question (i) posed in
the introduction. To make the paper self-contained, we begin
by briefly reviewing and clarifying the current state of the
literature.

A. The QHE of a single Dirac cone in condensed
matter reality: 3D TI

The appearance of the single Dirac fermion on the 3D
TI surface crucially relies on TR symmetry. Therefore, two
questions arise concerning the realization of the single Dirac
fermion QHE on the 3D TI surface:

(a) Up to which magnetic field strength do surface states
exist?

(b) If surface states are present, does the half-integer
quantization of gxy immediately follow?

Regarding question (a), we recall that a 3D TI is character-
ized by the inverted structure of the energy bands which can be
captured by the �k-dependent mass term M(�k) in its effective
3D Dirac-like bulk Hamiltonian

M(�k) = M − B1k
2
z − B2k2. (2)

Here we follow the notation of Eq. (31) in Ref. [2], assume
positive M , B1, and B2, and denote (2D) vectors by bold italic
symbols.

The 2D interface (which we assume for concreteness to
occupy the z = 0 plane) between a 3D TI and a topologically
trivial insulator (e.g., vacuum) can be modeled by spatially
dependent Dirac mass M = M(z) which interpolates between
positive (topological phase) and negative (trivial phase) values
changing its sign at z = 0. As a consequence of the band
inversion in the topological insulator the interface supports
massless Dirac fermions in the vicinity of k = 0 [6,7,75].

The magnetic field B = (0,0,B) applied to the interface
cannot destroy the surface states provided the bulk gap is
sufficiently large. More precisely, for

M|z=∞ > B2/l2
B (3)

the massless surface excitations give rise to a zero-energy
Landau level (LL) localized at the interface M(z) − B2/l2

B =
0. Here lB = √

�/(|e|B) ≈ 26 nm/
√

B [T] is the magnetic
length. In the exemplary case of Bi2Se3, we can estimate [2]
B2/l2

B ∼ 0.6 meV × B [T], while M ∼ 0.3 eV.
In the rest of the paper (and consistently with the previous

works) we will use the term “local breaking of TR symmetry
on the 3D TI surface” if the magnetic field does not destroy
the surface states. As we have just explained, this does not
necessarily require spatially inhomogeneous magnetic field
configurations.

Let us now turn to question (b). To avoid confusion, we
stress that the physics of the half-integer QHE, which we
discuss in this work, can be described in a single-particle
picture and has no direct relation to the physics of the fractional
QHE (in the sense of Störmer’s and Tsui’s discovery) which
is a many-body phenomenon.

The half-integer QHE can be expected as soon as surface
states are present. We emphasize that it does not rely on a
precise dispersion but rather on the low-energy spin texture
and on the fact that there is an odd number of Dirac fermions
on the surface. More precisely, the half-integer QHE is a
manifestation of fermion-number fractionalization in the sense
of Jackiw and Rebbi [76,77]. The 3D TI surface states are
topologically protected fermionic zero modes associated with
a spatial kink in a background bosonic field (the mass “field”
in the present context). Generally, the fermion number in
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the presence of a bosonic kink is shifted by one-half as
compared to the situation without a kink. Specifically, if
the zero mode is filled (empty), the fermion number is 1/2
(−1/2). In the presence of the magnetic field, the zero-energy
state has additional LL degeneracy BA

�0
, where A is the area

penetrated by the flux and �0 = h/e is the flux quantum.
Consequently, the fermion density at chemical potential μ =
0+ is n = N/A = B

2�0
. In view of the relationship between

fermion density and (the quantum part of) the transverse
conductivity [78], this unveils the fundamental topological
reason for the half-integer QHE. The result of argument
remains unchanged even in the presence of finite but small
Zeeman energy EZ 	 M (gapped 3D TI surface states).

B. Can one measure a half-integer gx y in a
transport experiment?

Typical transport experiments are carried out on 3D TI
slabs, which have two major surfaces (called “top” and
“bottom” in what follows) with a single Dirac fermion each. In
most experimental situations, contacts are attached at or near
the side walls of the probes, and thus both major surfaces are
probed simultaneously. Therefore, quantum Hall data [43] of
3D TIs display the odd-integer series described by Eq. (1) for
gD = 2.

One could expect that it is sufficient to attach all measuring
contacts on a single surface of the 3D TI slab to measure
the QHE of a single Dirac fermion [53]. If the contacts
are sufficiently far away from the sample boundaries, one
might then hope to measure a half-integer Hall response.
To be specific, let us assume that a bias voltage is applied
between two electrodes attached to a TI surface, as depicted
in Fig. 1. One measures the Hall current passing through an
amperemeter connecting two perpendicular probing contacts
and hopes to extract a half-integer σ

top
xy from IHall/Vbias.

However, this attempt will fail. Indeed, let us assume that
the surface is characterized by a half-integer-quantized Hall
conductivity and zero longitudinal conductivity. In order to

FIG. 1. (Color online) Failure of transport measurement of half-
integer Hall response. A thin 3D TI slab in a QH state σ top

xy = σ bottom
xy =

e2

2h
(one shared green edge channel) is probed by a local four-contact

measurement consisting of two opposite bias gates (orange) and,
perpendicularly, two probing gates connected by an amperemeter
(blue). For further explanation, see main text.

find the total current between the current probes one should
take into account not only the current flowing in the part of the
TI surface between the contacts but also the current distribution
in the rest of the surface. The total current can be found by
integrating the transverse current density

∫
d l × j along a

contour shown by the dashed line in Fig. 1. This integral is,
however, proportional to

∫
d l · E and is equal to zero, since

the surface is terminated by a metallic edge which represents
an equipotential line. Thus, such an experiment would yield
IHall = 0.

The above discussion assumed applying bias voltage and
measuring current. One can equally analyze the reverse
situation when a current is injected and the Hall voltage is
probed. To this end, two metallic contacts are supposed to
be attached in the central region of the TI surface. They
serve as source and drain for the current. However, as in the
σxx = 0 limit current always flows along equipotential lines, it
is actually not possible to inject current in the middle of a QH
system. Instead, “edge states” circulating around the contact
will be formed. Therefore, this measurement will yield a null
result as well.

Thus, an attempt to measure a half-integer-quantized gxy

in a transport experiment fails. The reason for this is as
follows. To measure directly a half-integer gxy , one should
explore local characteristics of a single TI surface. As is clear
from the above analysis, transport experiments do not satisfy
this requirement. One can, however, devise an alternative
approach by measuring an electromagnetic response of the
system to a local perturbation. As discussed below, this kind
of measurement does probe local properties of the system
and, therefore, is able to yield directly a half-integer Hall
conductivity. The case of transport experiments in nonideal
situations (σxx 
= 0) and with a more complex arrangement of
contacts is left for future investigation.

C. Topological electromagnetic field theory
and TR-invariant 3D TI

In a series of papers [79–81], S.-C. Zhang and coworkers
proposed to characterize 3D TIs by associated electromagnetic
field theories. In particular, they argued that the corresponding
bulk EM theory contains the E · B term (second Chern
character):

Sϑ = ϑ

2π

α

16π

∫
d3xdtεμνρτFμνFρτ (4a)

= ϑ

2π

α

2π

∫
d3xdt E · B (4b)

= ϑ

2π

α

4π

∫
d3xdtεμνρτ ∂μ(Aν∂ρAτ ). (4c)

Here α = e2/c� denotes the fine-structure constant of QED.
If not specified otherwise, we set the speed of light and Planck’s
constant to unity c = � = 1 in the entire paper. Greek indices
label space-time coordinates. Since this term leads to nontrivial
constituent equations, the authors of Ref. [79] coined the
term “topological magnetoelectric effect” (see also Sec. VII,
below). As can be seen from Eq. (4c), the E · B term
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(1) is proportional to a quantized (topological) integral:
Sϑ = ϑn (where n ∈ Z) if the base manifold has no boundary;
then, TR invariance restricts ϑ to values 0 or π (mod 2π ) [82];

(2) is intimately related to the CS term on a possible
boundary and thus to the QHE.

From the viewpoint of topological EM field theory, a TR
invariant 3D TI is defined by the presence of Sϑ with ϑ = π

(mod 2π ) in the bulk.
Let us now consider the interface between a 3D TI and

an ordinary insulator with ϑ = 0. In the presence of such a
boundary (for definiteness, we here consider a 3D TI in the
half space z < 0) the evaluation of Eq. (4c) yields Sϑ = SCS

on the surface z = 0, where

SCS = ϑ

2π

α

4π

∫
d2xdtενρτAν∂ρAτ . (5)

The value ϑ = π (mod 2π ) corresponds to the surface Hall
conductivity σxy = ( 1

2 mod 1)e2/h, with uncertainty in an
integer multiple of e2/h. Here the following questions arise.
First, the Hall conductivity is a measurable quantity and should
be defined unambiguously. Second, any nonzero Hall conduc-
tivity is in conflict with time-reversal invariance of the system.

Recall that time-reversal symmetry in the case ϑ = π (mod
2π ) is ensured by the quantized integral in Eq. (4) for the
system without boundary. In contrast, for a finite system, the
fermionic surface modes should be included. Being gapless
(and nonlocalizable), the latter are important even at longest
length scales. This is why they must be treated differently from
bulk degrees of freedom.

In a number of recent works [31–33] it was shown that the
CS term is in fact absent on the surface of a TR-invariant 3D
TI unless the TR symmetry is explicitly broken on the surface.
We will return to this issue and the closely related question of
parity anomaly [83–86] in Sec. V A.

D. Local TR breaking: Topological magnetoelectric effect

While the EM theory describing a surface of a TR-invariant
3D TI does not contain a CS term, an elegant TME description
is recovered once TR invariance is locally broken. Let us
emphasize that a TME response associated with the E · B
term is a general property of QH systems. The special feature
of 3D TI surfaces (with locally broken TR invariance) is in a
half-integer value of the associated Hall conductance.

The most prominent physical manifestations of TME
include topological Faraday and Kerr rotations [79,87,88]
and the image magnetic monopole effect [80,88–90] (see also
Sec. VII). In this work we concentrate on the latter. The essence
of the effect is that an electric charge Q placed above a QH
system (posed in the plane z = 0) induces an inhomogeneous
magnetic field configuration which can be described by a
mirror magnetic monopole.

To obtain the electromagnetic field developed in the system
in response to the charge Q we introduce the electric and
magnetic field strengths Ea and Ha together with electric and
magnetic inductions Da and Ba . The index a = 1 (a = 2)
refers to the half space z > 0 (z < 0) separated by the QH
system. They satisfy the standard boundary conditions at the

z = 0 plane

(D1 − D2)z = 4πJ0, εij (E2 − E1)j = 0,
(6)

(B1 − B2)z = 0, εij (H2 − H1)j = 4πJi.

Here and throughout the paper i,j denote spatial indices x

and y, and εij is the antisymmetric tensor of rank two defined
by εxy = 1. Further, J0 and J in Eq. (6) represent the charge
density ρ3D = J0δ (z) and current density J3D = Jδ(z) in the
QH system.

The image magnetic monopole effect can be understood
from two equivalent perspectives. One approach (which we
call the “orthodox” theory) utilizes the linear response theory
[51] of the QH state, while the other views the QH plane
as a domain wall of the E · B term. We review both these
approaches below.

1. Orthodox description of TME: Surface currents

In the “orthodox” approach the inductions Da and Ba are
related to Ea and Ha via the permittivity εa and permeability
μa of the media surrounding the QH plane in half spaces
a = 1,2:

Da = εa Ea, Ha = Ba

μa

. (7)

On the other hand the linear response theory of the QH state
gives

J0 = σxyBz, (8a)

Ji = σxyεijEj . (8b)

Since Bz and Ei are continuous, it does not matter whether
we associate the terms proportional to σxy to fields stemming
from region z > 0 or z < 0.

The nontrivial continuity conditions can now be presented
as follows:

[D1 − (D2 + 4πσxy B)]z = 0, (9a)

εij (H2 − 4πσxy E − H1)j = 0. (9b)

As we are going to discuss, these conditions imply
formation of image electric and magnetic charges whose values
are controlled by the Hall conductivity of the QH system.

2. Theory with E · B term

Instead of considering currents Jμ, we can include a QH
system into the electromagnetic theory as a domain wall
[89] of E · B terms with theta angles sufficing ϑ2 − ϑ1 =
ϑ = −(2π )2σxy/α. In the bulk regions a = 1,2 we obtain the
relations [80,88]

Da = εa Ea − ϑa

2π
2αBa, Ha = Ba

μa

+ ϑa

2π
2αEa, (10)

leading to the same continuity conditions as Eqs. (9).
As was first discovered in the 1980s [89], these continu-

ity conditions imply the mirror magnetic monopole effect.
Assuming for simplicity ε1 = ε2 and μ1 = μ2, one finds the
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magnetic (g) and electric (q) mirror charges

g = Q

(
ϑα
2π

)
1 + (

ϑα
2π

)2 , q = −Q

(
ϑα
2π

)2

1 + (
ϑα
2π

)2 . (11)

Physically, the inhomogeneous magnetic field is created by the
nonuniform, circular QH currents [80] emerging in response to
the radial electric field in the QH system. This B field induces
locally varying charge density [see Eq. (8a)] which again
leads to a radial electric field. Summing up the corresponding
geometric series one finds both g (starting from linear order in
ϑ) and q (starting from quadratic order in ϑ).

Contrary to transport experiments (see Sec. II B), the image
charge experiment does probe directly the local value of gxy .
Therefore, the image magnetic monopole can be used to
measure a half-integer gxy , as was first proposed in Ref. [80].
Clearly, the monopole character of the magnetic field persists
only in the 2D “bulk” of the QH system; in finite systems
the magnetic field lines always close [80,91]. In Sec. VII we
will return to the image monopole effect: we there further
generalize the problem to a double layer of QH systems, e.g.,
a thin 3D TI slab.

III. LAUGHLIN ARGUMENT

A. Phenomenology

This section is devoted to question (ii) of the introduction:
Is the half-integer Hall conductance of a single Dirac fermion
compatible with Laughlin’s flux-insertion argument, according
to which the integer QH conductance is a direct consequence
of gauge invariance [68,69]?

In its conventional form [69], the argument assumes a
QH film in an annular geometry and a time-dependent flux
threading the ring’s hole. However, as a consequence of the
Nielsen-Ninomiya theorem [92], a film of a single Dirac
fermion cannot be realized in a condensed matter system.
Therefore, it is inevitable to modify the setup of the gedanken
experiment. The simplest and most direct modification is a
doughnut-shaped 3D TI [45,50]; see Fig. 2. The unavoidable
change of the setup constitutes the crucial difference to the
original argument.

FIG. 2. (Color online) Since the surface of a 3D TI is itself
boundaryless, the modified setup for the flux insertion argument
involves a torus of 3D TI surface states. (Here, �j is shown for the
exemplary case of σ top

xy > 0.)

The setup in Fig. 2 depicts the 3D TI in a QH state
determined by σ

top
xy and σ bottom

xy . If σ
top
xy + σ bottom

xy 
= 0 [93],
chiral boundary modes appear at inner and outer perimeters
of the slab annulus (blurred blue lines). Most naturally, this
occurs if the QH state is created by an orbital magnetic field
in the z direction. (The 3D TI surface Dirac fermions are not
gapped on the side walls.)

In the process of the gedanken experiment the flux passing
through the hole is slowly ramped up by one flux quantum in
the period T ; e.g., �(t) = 2πt

T
�

e
. An azimuthal electric field

and corresponding electromotive force E = − d�
dt

are created
inducing a radial current I = σxyE . Over the period T an
overall charge Q = (σ top

xy + σ bottom
xy ) h

e
is transferred between

the two perimeters.
The 2D gauge potential associated with the flux piercing

the hole is Ai = −�(t)
2π

∂iφ (φ is the azimuthal angle in 2D
polar coordinates). At t = T this is a pure gauge and can be
removed by a (large) gauge transformation [94]. Thus, the
electronic states at t = 0 and at t = T are actually the states
of the same system (with � = 0) and the charge Q is the
charge of its edge excitation. In a noninteracting system, all
states have integer charge and thus Q = integer × e. As a
consequence, (σ top

xy + σ bottom
xy ) is restricted to integer multiples

of e2/h, in full accordance with the half-integer QHE on a 3D
TI surface.

B. Edge states, spectral flow, and microscopics

In Sec. III A we discussed the adiabatic flux insertion from
the macroscopic point of view and came to the conclusion that
the sum (gtop

xy + gbottom
xy ) is quantized to integer values. We now

turn to refinements, by means of which we can understand
half-integer quantization of g

top
xy and gbottom

xy .
To this end, it is necessary to specify the actual nature of

the edge states (blurred blue regions in Fig. 2), between which
the charge Q is transferred. We remind the reader that, due
to the Klein tunneling phenomenon, Dirac electrons cannot be
confined by application of scalar potential. A physical way to
model a finite 3D TI slab is shown schematically in Fig. 3:
In the vicinity of the perimeters of the torus (r ≈ Ri,e), the
3D TI slab gradually becomes thinner and top and bottom
surfaces are strongly hybridized in the region |r − Ri,e| 	 lt .
This motivates introducing the Hamiltonian as a 4×4 matrix
in the space of top/bottom and (pseudo)spin space:

H = H tot
0 + H tot

dis , (12)

3D TI

FIG. 3. (Color online) Cross section of the 3D TI torus depicted
in Fig. 2 in a plane perpendicular to the azimuthal unit vector. Here
r = √

x2 + y2. For the discussion of length scales and boundary
conditions, see main text.
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with

H tot
0 =

(
H

top
0 T (r)

T (r)† H bottom
0

)
. (13)

In the 2D “bulk,” we assume well-defined gapless surface
states with negligible penetration depth a 	 d (here d is the
slab thickness) and thus the intersurface hopping falls off
exponentially. In contrast, at the boundary T (r) is expected
to be the dominant energy scale, which is of the order of the
bulk band gap M:

T (r) ∼ Me
− |r−Ri,e |

lt . (14)

Microscopically, the tunneling matrix element T (r) can be
determined integrating out the sidewall states of the 3D TI.
For simplicity, we assume real, scalar T (r) ∝ 1σ ; this is not
essential for conclusions of our analysis.

Following Halperin [69], we assume the disorder (H tot
dis ,

represented by green, blurry dots in Fig. 3) to be confined to the
inner part of the sample R′

i < r < R′
e. In Fig. 3 and subsequent

Secs. IV–VI, for simplicity we assume the disorder potential to
be uncorrelated between the surfaces (ξ 	 d). Qualitatively,
all results of this paper are independent of this assumption; in
particular it is completely immaterial for the modified Halperin
argument discussed in the present section.

The clean Hamiltonian is determined by H
top
0 =

−H bottom
0 = H0 with

H0 = v0(�xσy − �yσx). (15)

The symbols �i = −i∂i − eAi(x) denote long derivatives;
e = −|e| is the electron charge. We assume for definiteness
that the magnetic field B = εij ∂iAj > 0.

The eigenstates of the clean Hamiltonian (15) are given by
LLs [95,96] (see also Appendix A)

|n,k〉D = 1√
1 + η2

n

(−ηn||n| − 1,k〉
||n|,k〉

)
, (16)

with quantum numbers n ∈ Z associated with energies

En = �cηn

√
|n|, �c =

√
2|e|Bv2

0 . (17)

Here ηn = sgn(n) for n 
= 0 and η0 = 0, �c is the (quantum)
cyclotron frequency, v0 is the velocity of the Dirac electrons,
and k = 1,2, . . . ,�tot

�0
accounts for degeneracy. The states

||n|,k〉 describe the LLs of usual electrons with parabolic
dispersion. In this section we choose to work in symmetric
gauge and the quantum number k determines the radius rk

around which the LL wave functions are peaked [69,97].
The length scale lt of hybridization at the edges is assumed

to fulfill

lB 	 lt 	 (R′
i,e − Ri,e). (18)

To lowest order in small parameter lB/ lt we can neglect the
mixing of Landau levels and approximate the Hamiltonian
H tot

0 , Eq. (13), by its diagonal (in LL space) blocks

H tot
0,n =

(
En T (r)

T (r) −En

)
. (19)

Each Hamiltonian H tot
0,n acts in the LL specific surface space

spanned by (|n,k〉D,0)T and (0,|n,k〉D)T . The Hamiltonian

FIG. 4. (Color online) Schematic representation of the spectrum
at the inner boundary of the TI torus shown in Figs. 2 and 3.

H tot
0,n has eigenstates

|n,k,±〉 = 1√
2En,±(En,± + En)

(
(En + En,±)|n,k〉D

T (r)|n,k〉D

)
(20)

with energies En,± = ±√
E2

n + T (r)2.
Faraway from the edge (|r − Ri,e| � lt ), |n,k,+〉 is a state

living on solely the top (bottom) surface if En > 0 (En < 0),
while |n,k,−〉 has its weight on the opposite bottom (top)
surface. It is a crucial observation that in contrast to the n 
= 0
case, the zeroth LL wave functions |0,k,±〉 are symmetric and
antisymmetric combinations of top and bottom states without
any r-dependent envelop. Note that T (r) drops out of Eq. (20)
for n = 0.

Figure 4 gives a schematic representation of the LL
bending around the inner perimeter of the sample r = Ri .
In the 2D bulk region r 	 lt + Ri states with n 
= 0 live
on the top (solid lines) or bottom surface (dashed lines).
They become hybridized (fat lines) close to the boundary. In
contrast, states of the zeroth LL always mix top and bottom
surfaces.

The intersections of the bended LLs with the line
of chemical potential define the edge states. For the
case of Fig. 4 there are three of them: two originating
from the filled first LL in the two surfaces and another
from the surface-symmetrized combination of the zeroth LL.
When the flux threading the hole is increased by one flux
quantum, the LL states contract and states right above (below)
the chemical potential get filled (emptied) at the internal
(external) perimeter (“spectral flow”) [69]. In the present case
(Fig. 4) the states |1,ki,±〉 and |0,ki,+〉 (with rki

≈ Ri) were
filled. Similarly, the states |1,ke,±〉 and |0,ke,+〉 were emptied
at the outer edge. As a consequence of energy conservation,
we conclude that during the process of flux insertion, two
electrons with energy E = �c are injected into (ejected from)
the disordered region of the top surface at r = R′

e (r = R′
i).

In addition, a third electron with E = 0 enters (exists) the
disordered region in a symmetric superposition of top states
and bottom states at the same radial positions. By consequence,
the associated current is driven through the upper and lower
surface with equal weight [98]. Altogether, we conclude that
σ

top
xy = 3e2/2h and σ bottom

xy = 3e2/2h.
The above analysis can be extended to a generic situation

with the chemical potential μ located in the mobility gaps of
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the two surfaces. In particular one finds half-integer values
σ

top
xy = (n + 1/2)e2/h for μ located between the nth and the

(n + 1)th bulk delocalized state of the top surface and an
analogous expression for the bottom surface [99].

IV. SEMICLASSICAL CALCULATION
OF CURRENT DENSITY

In the previous sections we came to the conclusion that
the Dirac fermions on the surface of a 3D TI give rise to
a half-integer-quantized gxy provided that the time-reversal
invariance is locally broken. Our argumentation was very
general, as it relied only on gauge invariance and topology.
It is instructive, however, to have a model for which an
explicit controllable calculation of half-integer gxy is possible.
In this section we present and analyze such a model consisting
of a single species of 2D Dirac fermion in the presence of
orbital coupling to a magnetic field and arbitrarily strong but
sufficiently smooth potential landscape V (x). Apart from an
externally applied electrostatic potential (caused, e.g., by a
test charge in the image magnetic monopole experiment), the
potential V (x) can include smooth disorder. The externally
applied potential is not required to be weak (in comparison
with the cyclotron frequency), so that our findings are valid
beyond the linear response. While the model we consider
in this section is sufficiently general, it is amenable to
an analytical treatment due to semiclassical nature of the
potential. Specifically, we will calculate the Hall conductivity
in this model by using the vortex state representation of
LLs [70–72]. The results of this section shed light on the
deep field-theoretical origin of the half-integer shift of Hall
conductance.

Our fermionic Hamiltonian reads

H = H0 + V (x). (21)

Here H0 is the clean fermionic Hamiltonian introduced in
Eq. (15). In this section we will use symmetric gauge and the
overcomplete vortex state representation of LLs [70–72]. In
this representation the discrete degeneracy quantum number k

is replaced by the continuous guiding center position R ∈ R2.
The wave function for the nth Landau level is then given by

〈r|n,R〉 = ein arg(r−R)

√
2πn!lB

∣∣∣∣ r − R√
2lB

∣∣∣∣ne− (r−R)2−2i ẑ·(r×R)

4l2
B . (22)

The vortex states are “semiorthogonal,”

〈n,R|n′,R′〉 = δnn′e
− (R−R′ )2−2i ẑ·(R×R′ )

4l2
B , (23)

and produce the resolution of identity [100]∫
d2R

2πl2
B

∞∑
n=0

|n,R〉 〈n,R| = 1. (24)

On the other hand, for fixed n and n′∫
d2R 〈r|n,R〉 〈n′,R|r ′〉 = 〈n,r|n′r ′〉, (25)

as follows from the identity 〈r|n,R〉 = 〈n,r|R〉. The vortex
states |n,R〉D for the Dirac Hamiltonian are the spinors
constructed out of states (22) analogously to Eq. (16).

We are interested in the current density which couples to the
macroscopic probing gauge potentials Aμ via local coupling

Lagrangian

Lcoupling =
∑
i=x,y

JiAi (26)

and enters subsequently the Maxwell equations for Aμ.
We concentrate on stationary current distributions. Our

semiclassical calculation relies on the following assumptions:
(1) The scalar potential V (x) is smooth on the scale of the

magnetic length.
(2) The macroscopic gauge potential A(x) is smooth on the

scale of the magnetic length.
(3) Local thermodynamic equilibrium is maintained on the

typical length scale of V (x).
Requirement (2) is the defining distinction between the

gauge potential Ai creating the magnetic field responsible for
QHE and the probing gauge potential A. It guarantees that the
electron position and the vortex (guiding center) position are
indistinguishable for A.

It is convenient to combine the current densities Jx,y into
complex combinations J± = Jx ± iJy given by

J±(x) = lim
x′→x

〈ψ†(t,x)j±ψ(t,x′)〉. (27)

The first quantized current operators j± = jx ± ijy , defined
by j = ie[H0,r] in the Hamiltonian formalism, are

j+ = −2iev0

(
0 1
0 0

)
, (28a)

j− = 2iev0

(
0 0
1 0

)
. (28b)

The operators ψ†(t,x) and ψ(t,x) entering Eq. (27) are
fermionic field operators with two spinor components. Thus,
J± are proportional to the off-diagonal elements of the
fermionic Green’s function Gσσ ′(t,x; t,x) at equal point and
time. Since we expect ultraviolet divergences [unbounded
spectrum of Hamiltonian (15)], we regularize J±(x) via point
splitting. Strictly speaking, to make this procedure U(1) gauge
invariant, a Wilson line eie

∫ x
x′ (A+A)d y should be inserted in the

end of Eqs. (27), (29), and (30). However, it drops out in the
limit x → x′ and is thus omitted for simplicity. The physical
reason is that at small splitting |x − x′| 	 lB , the right-hand
side of Eq. (27) is invariant under the “macroscopic” (slow)
local U(1) symmetry associated with potentials A even before
taking the limit x → x′.

Under the assumptions (1)–(3), we find (see Appendix A)

J±(x) ≈ ±i|e|
2π

lim
x′→x

∫
d2R

∞∑
|n|=0

∑
ηn

nF [En + V (R)]

× D 〈n,R|x〉 〈x′|n,R〉D ∂±V (R). (29)

This formula has the following simple physical interpretation.
In order to find the local current density J±(x) as a response to
the electric field ∂±V (R), one should sum over all locally filled
Landau levels and perform a convolution with |〈x|n,R〉D|2
representing the response of a single vortex state.

The integral in Eq. (29) diverges at x = x′. How-
ever, the point-splitting procedure, which implies the for-
mal rule limx′→x δ(x − x′) ≡ 0, renders Eq. (29) finite. To
make the regularization manifest, we add and subtract the
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zero-temperature linear-response current to/from Eq. (29):

X±(x) = J±(x)|T =0 = ±i|e|∂±V (x)

2π

× lim
x′→x

∫
d2R

∑
n�0

D 〈n,R|x〉 〈x′|n,R〉D

= ±i|e|∂±V (x)

[
lim

x′→x
l2
Bδ(x − x′) + 1

4π

]
. (30)

The first term in the square brackets (delta function) comes
from the resolution of identity of the usual (equidistant) LLs
[see Eq. (24)] and vanishes after the point splitting. In contrast,
the second term will turn out to be responsible for half-integer
gxy . Its appearance is a direct consequence of the definite
chirality of the zeroth LL wave function (see Appendix A) and
thus a manifestation of the Atiyah-Singer (AS) index theorem
[101,102].

The integral determining the quantity J± − X± is now
regular, since the divergence has been shifted entirely into
X± and is cured by the formal point-splitting procedure:
X± = ±i|e|∂±V (x)/4π. We can therefore take the x′ → x
limit, rearrange integrals and sums, and exploit once more the
smoothness of V (x) [assumption (1)] to obtain

J± (x) = ±i|e|
2π

∂±V (x)

{∑
n>0

nF (En + V (x) )

+
∑
n�0

[nF (En + V (x)) − 1] + 1

2

}
. (31)

The local transverse conductivity is thus given by

σyx(x) = −σxy(x) = e2

h

1

2
+ e2

h

{∑
n>0

nF (En + V (x))

+
∑
n�0

[nF (En + V (x)) − 1]

}
. (32)

The semiclassical, local current density, Eq. (31), for a
continuum, single-species 2D Dirac theory has the following
features: (i) The current density follows equipotential lines
(i.e., it is perpendicular to the local electric field). (ii) The
strength of the current density is determined by the local filling
factor of LLs; see Eq. (32). (iii) The crucial difference between
electrons with parabolic dispersion and Dirac fermions is the
half-integer contribution by the filled-hole band, i.e., the last
term in the curly brackets of Eq. (31). As explained, it is a
consequence of the AS index theorem and fermion number
fractionalization. (iv) Recall that, in view of global fermion
doubling in a TI, there is always a second area which provides
an additional half-integer contribution. In the simplest setup,
see Figs. 1 and 2, the two additive contributions stem from
the opposite major surfaces of a 3D TI slab. (v) Let us finally
reiterate that, in contrast to usual linear response calculations,
Eqs. (31) and (32) are also valid in the case of a strong static
electric field. In particular, they can be applied to study the
magnetic image monopole effect in the situation when the
voltage between test charge Q and the QH system exceeds
�c/|e|.

In summary, the semiclassical calculation of the conduc-
tivity tensor in a smooth disorder exposed in this section
sheds light on the deep origin of the half-integer QHE. At
the same time, the semiclassical calculation can explain the
quantization of Hall conductance only when the Fermi level
resides in the energy gaps between LLs. In order to understand
the quantization in the generic situation, the field-theoretical
formalism describing Anderson localization is derived in the
following section.

V. FIELD THEORY OF LOCALIZATION

This section is devoted to the field theory describing the
localization physics in the half-integer QH state. It should be
emphasized that the QHE crucially depends on the presence
of disorder. Specifically, it is the disorder-induced localization
that provides mobility gaps with a finite density of states in
the bulk of a 2D system, which in turn leads to plateaus with
quantized values of σxy as a function of carrier density. Thus,
the analysis of half-integer QHE should contain a discussion
of Anderson localization as one of key ingredients.

On the basic level the 3D TI surface fermions are described
by the Euclidean field theory

Z =
∫

D[ψ̄,ψ] e−S[ψ̄,ψ] (33)

with the Matsubara action

S[ψ̄,ψ] =
∫

τ,x
ψ̄[Dτ + H0 + V (x) − μ]ψ + Sint. (34)

Throughout the paper we use the notation
∫
τ,x = ∫

d2x
∫ β

0 dτ ;
as usual β = 1/T is the inverse temperature (in our units,
Boltzmann’s constant is kB = 1). We compactify the space, so
that the base manifold of our field theory is (R2 ∪ {∞}) × S1.
The clean, free Hamiltonian H0 was introduced in Eq. (15).
The long derivatives �i = −i∂i − e(Ai + Ai) include
both the vector potential Ai responsible for the quantizing
magnetic field B and a source field Ai . The long Matsubara
derivative is Dτ = ∂τ − ie�; V (x) and μ represent Gaussian
δ-correlated disorder potential and chemical potential, respec-
tively. The fermionic fields ψ̄(x,τ ) = (ψ̄↑,ψ̄↓) and ψ(x,τ ) =
(ψ↑,ψ↓)T describe the spinful (↑,↓) surface excitations. The
electron-electron interaction (Sint) can also be included in
our treatment (see Refs. [26,33]). It can be strong (rs =
e2/ε�v0 ∼ 1), with the only condition that it does not induce
any spontaneous symmetry breaking.

Our aim in this section is to determine the effective
low-energy theory of gauge potentials Aμ = (�,Ai) in the 2D
“bulk” of the general interacting, disordered system without
resorting to QH edge states. Let us summarize shortly our
strategy. We first note that there are two relevant energy
scales in this problem: the elastic scattering rate 1/τ and the
(inelastic) phase breaking rate 1/τφ(T ). At low temperatures,
these scales form the hierarchy

1

τφ(T )
	 1

τ
. (35)

Consequently, to get the desired theory for the gauge field,
we integrate out matter fields in a stepwise fashion: since
electrons with quantum numbers n,k (see Sec. III B) are good
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excitations only above 1/τ , they are integrated out first. The
resulting theory then involves gauge fields and diffusive soft
modes (diffusive sigma model). To account for the interaction
of the diffusive modes (also known as quantum interference
effects) at energies lower than 1/τ the renormalization group
approach is employed. The renormalization group flow stops
at the energy scale 1/τφ(T ) where the phase breaking destroys
quantum interference. The remaining modes of the matter field
can then be integrated out in the saddle-point approximation
resulting in the effective low-energy theory of the gauge
potential, which was discussed on phenomenological grounds
in Sec. II.

A. Parity anomaly

We will first review the concept of parity anomaly. The
high-energy action (34) is invariant under transformations
of the gauge group G, and in our case G = U(1). Later we
will replicate the theory NR times and G will turn out to be
(U(1))⊗NR . In addition, in the absence of a net magnetic field
or Zeeman term and after disorder average it is also invariant
under the parity transformation of (2+1)-dimensional space-
time:

(x,y,τ ) → (−x,y,τ ), (36a)

ψ → σxψ, (36b)

ψ̄ → ψ̄σx. (36c)

Clearly, to keep the fermionic action invariant, the vector
potential should transform under x → −x as

(Ax,Ay,�) → (−Ax,Ay,�). (37)

For dynamic gauge fields we note that this transformation
leaves the Maxwell term invariant. Contrarily, a fixed back-
ground B field does not respect this symmetry (B is a
pseudoscalar).

The peculiar fact about (2+1)-dimensional gauge theories
is that invariance under parity transformation does not always
persist to the quantized theory [83–86]. Following Ref. [103]
we will however distinguish between “parity anomaly” and
“intrinsic parity anomaly” for our problem of QED3 on a space-
time manifold (x,τ ) ∈ S2 × S1. Of course both effects are
related.

The notion of parity anomaly follows Ref. [83] and arises
often in the context of condensed matter physics. It boils
down to calculating σxy for the problem of massive (2+1)-
dimensional Dirac fermions in the absence of any other energy
scale. The result is σxy = − sgn(m)

2
e2

h
. As there is no other energy

scale, the mass m breaks time reversal and parity symmetries
on all scales and therefore σxy(m) is discontinuous at m = 0.
One concludes that upon integration of Dirac electrons and
subsequent m → 0 limit the effective gauge theory contains
a CS term with prefactor ϑ = ±π . The notion of parity
anomaly means that the Lagrangian of fermions coupled to
gauge potentials preserves parity upon taking the massless
limit, while the effective electrodynamic Lagrangian does
not. Not surprisingly, this “anomaly” disappears as soon as
another infrared energy scale is introduced, for example finite
temperature [103], a finite disorder scattering rate [64], or

a finite bulk band gap M [31]. Then, σxy(m) becomes a
continuous function of m and σxy(0) = 0.

The notion of intrinsic parity anomaly is more subtle.
According to the early works [84,85,104], which treat the
case of strictly massless fermions, in the process of field
quantization one has two options:

(i) One can choose a regularization scheme in a manner
preserving parity. But then the partition function acquires a
sign (−)k under large gauge transformations.

(ii) Alternatively, one can regularize the theory in a manner
preserving gauge invariance. In this case, a CS term with angle
ϑ = π (mod 2π ) appears after integration of fermions. The
latter breaks parity.

A theory with anomalously broken gauge symmetry is
inconsistent, therefore, whenever (−)k 
= 1 option (ii) must
be chosen for a purely (2+1)-dimensional theory. A common
variant of these regularization schemes is to use regularization
as in (i) and to add the CS 3-form by hand to the fermionic
action [85] when the latter contributes an additional factor of
(−)k under large gauge transformations.

To prove assertion (i) one needs to unwind the gauge po-
tentials eAn(x,τ ) = −iU−1

n ∇Un associated with large gauge
transformations Un ∈ G. A fourth dimension is introduced and
it can be shown that k equals the analytical index ν+ − ν− of
the corresponding four-dimensional Dirac operator. For non-
Abelian gauge groups with third homotopy group �3(G) = Z
the AS index theorem [101,102] immediately implies k = n

(n is the homotopy class of Un) [84,85].
Contrarily, for the case of QED3 on S2 × S1 the topology

is more complicated: as �1(G) = Z, large gauge transforma-
tions act in the imaginary time sector. Further, topologically
distinct instanton (monopole) configurations in the spatial
S2 � R2 ∪ {∞} sector (i.e., field configurations with different
magnetic flux � through the R2 plane) have to be treated
with care. (We recall that the gauge potential, which explicitly
enters the CS term, cannot be defined on the whole manifold.)
Nevertheless, k can still be associated with the topological
index of extended gauge fields. Specifically, it turns out that
k = n�/�0, where n is the winding in time direction [104].
In the presence of time-reversal symmetry we have � = 0
and hence k = 0. We thus conclude that for the 2D theory
of time-reversal-invariant surface states of 3D TIs there is no
reason for inclusion of an additional CS term that would violate
the parity of the theory.

More generally, we can consider the Dirac fermions on
the entire surface wrapping the 3D TI sample [105]. This field
theory again lives on a manifold homotopical toS2 × S1. Then,
since there are no physical monopoles, the total flux through
the spatial sector vanishes even in the case of broken time-
reversal symmetry and hence the topological insulator surface
states do not exhibit intrinsic parity anomaly. We conclude that
additional CS terms never need to be included. Such terms will
therefore not appear in the effective electromagnetic actions
to be derived in the following sections.

Recently [31], similar topological arguments for 3D TIs
avoiding the intrinsic parity anomaly were presented. While
the topological peculiarities of U(1) gauge theories were
disregarded by the authors of that work, their argument in
favor of the absence of parity anomaly in the theory of 3D TI
surface states is in agreement with our conclusion.
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An alternative line of argumentation with the same outcome
is based on the concept of cancellation of anomalies [32]. It
relies on the Callan-Harvey mechanism [106], according to
which the anomaly of the boundary modes of a TI is canceled
up exactly by the anomaly of the bulk states. A famous example
is the theory [107] of chiral edge states in QH systems.

B. Gauged NLσM of integer QHE

Before turning to Dirac fermions, we briefly review the
field-theoretic description of the conventional integer QHE.
The U(1)-gauged NLσM [19,26] describing the interaction of
diffusive modes and the gauge potential has the action

S = 1

8

∫
x

tr

[
gxxDiQDiQ+εij

ϑ

2π
QDiQDjQ

]
+Sη+int+B2 .

(38)

According to the double cutoff regularization of Matsubara
frequencies [26], the diffusive (2N ′

M × NR) × (2N ′
M × NR)

matrix fields Q(x) carry both Matsubara and replica indices
and are typically represented as (Q)αβ

lm = (U−1�U )αβ

lm (α,β =
1, . . . ,NR denote replicas and l,m ∈ {−N ′

M, . . . ,N ′
M − 1}

Matsubara indices). The unitary matrices U have nontrivial
entries belonging to U(2NM × NR) in the central block l,m ∈
{−NM, . . . ,NM − 1} (NM 	 N ′

M ) and are unity outside.
Recall that the dimensionless conductances are denoted by
gij = σijh/e2. The term Sη+int+B2 is less important for the
present discussion and we mention it here for completeness
only. It contains frequency and interaction contributions, as
well as a term quadratic in magnetic field which renormalizes
the permeability. The kinetic term (proportional to gxx) and the
theta term (proportional to ϑ) contain long derivatives acting
as

DiQ = ∂iQ − ie[Âi,Q]. (39)

Hatted objects are defined by â ≡ ∑
m,α aα

mIα
m. In the above, we

have introduced the following (2N ′
M × NR) × (2N ′

M × NR)
matrices:

�
αβ

lm = sgn(εm)δαβδlm, (40a)(
Iα0
m0

)αβ

lm
= δα0αδα0βδl−m,m0 . (40b)

The limits NM → ∞, N ′
M → ∞ (N ′

M/NM → ∞) as well as
the final replica limit NR → 0 are implicitly assumed.

Differentiation of Eq. (38) with respect to the vector
potential and evaluation of the functional integral in the saddle-
point approximation leads to the identification of the NLσM
coupling constants gxx and ϑ

2π
with the bare longitudinal and

transversal (Hall) conductivities of the QH system (in units of
e2/h) [26]. At the diffusive saddle point Q = � the theta term
becomes the CS term [26].

C. Gauged NLσM of half-integer QHE

1. Gauged NLσM of Dirac fermions at B = 0

We turn now to the localization physics of a single Dirac
fermion. Let us assume that TR symmetry is present on average
(i.e., there is no net magnetic field) but broken by a random
magnetic field or random Zeeman coupling [108]. In this

case, the gauged NLσM can be derived using the non-Abelian
bosonization technique (see Ref. [33] and Appendix B 1)

S = 1

8

∫
x

tr

[
gxxDiQDiQ + εij

θ

2π
Q∂iQ∂jQ

]
+ Sη+int ,

(41)

where θ = π (mod 2π ). It is worth emphasizing that the
derivatives in the theta term are not covariant derivatives.
Yet, the action (41) is gauge invariant. Indeed, local U(1)
transformations of fermionic fields translate into the following
operation on NLσM matrices:

Q(x) → eiχ̂ (x)Q(x)e−iχ̂(x). (42)

The theta term in Eq. (41), being quantized, is unchanged
under smooth gauge transformations.

Since the theta term does not include coupling to the
electromagnetic field, the Hall conductance of the Dirac
fermions is not related to θ . Instead, gxy = 0, which is exactly
what one should expect in the absence of a net B field.

2. Gauged NLσM at B �= 0

The gauged NLσM describing both electromagnetic re-
sponse and localization physics of a single Dirac fermion is

S = 1

8

∫
x

tr

[
gxxDiQDiQ + εij

θ

2π
Q∂iQ∂jQ

+ εij

ϑ

2π
QDiQDjQ

]
+ Sη+int+B2 . (43)

The derivation of this action can be found in Appendix B 2. It is
crucial to observe that only ϑ couples to electromagnetic gauge
potentials. Thus the transverse conductivity σxy is determined
by ϑ alone, while the localization physics is governed by the
sum ϑ + θ = ϑ ± π . In the renormalization group flow this
will lead to an overall shift of gxy by ±1/2; see Eqs. (44)
below. The Matsubara NLσM description of the QHE allows
for inclusion of electron-electron interactions [109,110]. The
shift of the RG flow by half a conductance quantum equally
applies to the interacting case.

D. RG analysis of the sigma model

1. RG flow and phase diagram

Up to the important shift of the theta angle, the action
(43) corresponds to the standard Pruisken NLσM for spinless
fermions. Therefore its renormalization [19,21] is analogous
to the conventional case. The only modification is a connection
between the theta angle and the Hall conductivity. This implies
the following RG equations [109–111]:

dgxx

dy
= −A − B

gxx

− Cg2
xxe

−2πgxx cos

[
2π

(
gxy ± 1

2

)]
,

(44a)

dgxy

dy
= −Cg2

xxe
−2πgxx sin

[
2π

(
gxy ± 1

2

)]
. (44b)

In these equations y = ln L/l, where L is the running
scale and l the UV reference scale (mean-free path). The
equations are written with the two-loop perturbative accuracy
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FIG. 5. (Color online) RG flow diagram for Dirac fermions,
based on the scaling proposed by Khmelnitskii. As compared to the
case of fermions with parabolic dispersion, the diagram is shifted by
half a conductance quantum.

and contain in addition the leading nonperturbative (instanton)
contributions. The prefactors A,B,C entering these RG equa-
tions are numerical constants. Below we give their values
both for the case of noninteracting electrons [111] and for
the Coulomb interaction [110]:

A =
{

0
2
π

no interaction,

Coulomb interaction; (45a)

B =
{

1/2π2

≈ 0.66
no interaction,

Coulomb interaction; (45b)

C =
{

4π exp(−1)
4π exp(1 − 4γ )

no interaction,

Coulomb interaction.
(45c)

Here γ � 0.577 is the Euler-Mascheroni constant.
Equations (44) lead to the RG-flow diagram for the half-

integer QHE of Dirac fermions [48,112,113]; see Fig. 5
[114]. The attractive fixed points are now (g∗

xx,g
∗
xy) = (0,(ν +

1/2)e2/h) while the delocalized critical state (black dot)
appears at integer valued gxy [115,116].

Starting values of the RG flow at the scale of the mean-free
path l are given by the Drude expression of the conductivity
tensor. We will discuss them in detail in Sec. VI below.

2. The gx y = 0 transition

Generally, the universality class of the Dirac QH tran-
sition coincides with the QH transition in parabolic 2DEG
[22,24,110,117]. However, if in the absence of magnetic
impurities the QH transition from σxy = −e2/2h to σxy =
+e2/2h is driven by the variation of the magnetic field from
negative to positive, then additional soft modes, cooperons,
modify the physics at length scales smaller then the magnetic
length. This changes the nature of the transition and is
represented in Fig. 6 by the blue upward arrows at σxy ≈ 0 for
the case without electron-electron interactions. At small length
scales the systems follows the RG of symplectic symmetry
class (weak antilocalization). In the one-loop approximation
the interference corrections can be understood as a renormal-
ization of the elastic scattering rate, and the RG equations take

FIG. 6. (Color online) RG flow diagram for noninteracting Dirac
fermions for the case when the magnetic field is the only source
of time-reversal-symmetry breaking (i.e., assuming no magnetic
impurities and no Zeeman coupling). The QH transition at B = 0
(σxy = 0) is qualitatively different from all others; see main text. The
corresponding flow is depicted by black bold arrows. It follows the
behavior of the symplectic class for L < lB and crosses over to the
unitary class at L ∼ lB .

the form [118]

dgxx

dy
= 1

π
, (46a)

dgxy

dy
= 2

gxy

gxx

× dgxx

dy
= 2

π

gxy

gxx

. (46b)

The crossover to the unitary class occurs when the running
scale L hits lB , and for larger length scales the flow follows
Eqs. (44). Integrating the symplectic RG equations up to lB
we obtain

gxy(lB) ∼ 1

(kF lB)2
(kF l + ln lB/ l)2 	 1. (47)

Therefore, as long as the bare (Drude) value of the Hall
conductivity is small, the renormalized value gxy(lB) at the
output of the symplectic stage of evolution remains small as
well, and the system flows, in the infrared limit, into one of
the lowest QH states σxy = ±e2/2h.

With the notation t = 2/(πgxx) we rewrite the RG equa-
tions (46) as follows:

dt

dy
= −1

2
t2, (48a)

dgxy

dy
= gxyt. (48b)

The RG flow dictated by Eqs. (48) is shown in Fig. 7.

E. Effective electromagnetic theory

The RG stops at the scale of the infrared cutoff, e.g., the
dephasing rate. To determine the effective electromagnetic
theory at even lower energies, the diffusive modes should be
integrated out at tree level. We here choose a gauge in which
the scalar potential vanishes and restrict ourselves to the local
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gxy

1
g x
x

FIG. 7. (Color online) RG flow describing the B = 0 transi-
tion near the “supermetallic” fixed point (1/g∗

xx,g
∗
xy) = (0,0); see

Eqs. (48).

part of the linear response functions. Then the effective action
for the vector potential Aα

m,i becomes

Seff[A] =
∫

x

∑
m>0,α

e2mAα
−m,iA

α
m,j (δij gxx + εij gxy), (49)

where m is the Matsubara frequency, α the replica index and
i,j denote spatial coordinates; see Sec. V B.

At the QH fixed points, Eq. (49) reproduces the CS theory. A
more detailed discussion in the context of the integer quantum
Hall effect can be found in Ref. [26].

VI. STARTING VALUES OF RG: LEVITATION SCENARIO
AND PHASE DIAGRAM

The RG flow represented in Fig. 5 allows us to study the
phase diagram of the Dirac QH effect [119,120] and discuss
the levitation of extended states taking place at low magnetic
field (or, equivalently, strong impurity scattering) [121].

A. Phase diagram

The phase diagram of the Dirac quantum Hall effect can be
built by equating the Drude value of transverse conductance
(which determines the electromagnetic response of our system
at length scales of the order of the mean-free path and
constitutes the initial conditions for the RG flow discussed
in the previous section) to its values on the transition lines:

σ (0)
xy = n

e2

h
, n ∈ Z. (50)

Figure 8 shows the resulting phase diagram of our system
in terms of the Drude resistivities. The major quantitative
difference to the situation of parabolic 2DEG [119] is the
absence of any usual (the one with σxy = 0) insulating phase:
the diagram is covered by QH states only. In addition, positions
and radii of semicircular phase boundaries are modified.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 8. (Color online) Phase diagram for the QHE of Dirac
fermions in the plane of longitudinal and Hall resistivities.

B. Drude conductance

In order to build the phase diagram of the Dirac quantum
Hall effect in terms of the magnetic field B and the chemical
potential μ and to discuss the levitation scenario, we need
to know the Drude conductivity tensor as a function of
these parameters. In this section we present a semiclassical
derivation of the Drude conductivity tensor based on the
Boltzmann kinetic equation. We consider the general situation
of Dirac fermions subject to orbital magnetic field B and
Zeeman term HZ = EZσz (EZ 	 μ), thus allowing for the
anomalous Hall effect. To the best of our knowledge, a
comprehensive study of the Drude conductivity tensor in these
settings has not been reported in the literature so far (see
Refs. [122,123] for earlier work on the subject).

Our approach to the problem is justified provided that
the quantum scattering time τq � 1/μ (which is the usual
condition of applicability of a semiclassical treatment). In
the following we also assume that the classical cyclotron
frequency �cl

c = |eBv2
0/μc| 	 1/τq , which allows us to ne-

glect the modification of the scattering integral by the orbital
magnetic field. We note that for smooth disorder the transport
scattering time τtr � τq , so that in this case both regimes
of the classically strong (1/τtr � �cl

c ) and classically weak
(1/τtr 	 �cl

c ) magnetic field can be studied. On the other hand,
for short-range impurities τtr ∼ τq , so that our approach does
not apply to the limit of strong fields.

The relation between the Zeeman energy EZ (which is
assumed to be small compared to μ) and the quantum
scattering time τq controls the importance of the coherence
in the scattering between the Zeeman-split bands. In the case
of weak scattering EZ � 1/τq the interband coherence should
be taken into account and leads to the anomalous Hall effect.

To the leading order in small parameters EZ/μ and �cl
c /μ

the Drude conductivities are given by (we refer the reader to
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Appendix C for detailed derivation)

σxx = σ
(
B)
xx

1 + (
�cl

c τtr

)2

[
1 + 2ζ�cl

c τ 2
tr /τa

1 + (
�cl

c τtr

)2 + EZ

μ2τsj

ζ�cl
c τtr

]
,

(51a)

σxy = − e2

2h

[
sgn(EZ)θ

(
E2

Z − μ2
) + EZ

|μ| θ
(
μ2 − E2

Z

)]
+ σ

(
B)
xx

1 + (
�cl

c τtr

)2

[
ζ�cl

c τtr

(
1 + 2ζ�cl

c τtr

1 + (
�cl

c τtr

)2

τtr

τa

)

− τtr

τa

− EZ

μ2τsj

]
. (51b)

Here ζ = −sgn(μB) and we have introduced the notations
ν(μ) = |μ|/(2πv2

0)θ (μ2 − E2
Z) and v(μ) = v0

√
1 − E2

Z/μ2

for the density of states and velocity at the Fermi level. The
classical conductance at zero magnetic field is

σ (
B)
xx (μ) = 2π

e2

h
ν(μ)

v2(μ)τtr (μ)

2︸ ︷︷ ︸
D(μ)

. (52)

At zero magnetic field, Eqs. (51) reproduce the results of
Ref. [124].

The first term in the transverse conductivity in Eq. (51b)
represents the so-called intrinsic Hall conductivity [125]
related to the modification of the classical equations of motion
for a wave packet caused by the Berry curvature of the Dirac
band. Equations (51) contain also terms characterized by
times τa and τsj . These are the scattering times associated to
the skew-scattering and the side-jump processes, respectively
[73,74,125]. Assuming short-range impurities, one can express
them, as well as the transport scattering time τtr , in terms of
disorder amplitude V0 (see Ref. [124] and Appendix C8) [126]:

1

τa

= πν(μ)
(
niV

2
0

)2[
3EZ

(
μ2 − E2

Z

)]
8v2

0μ
3

, (53a)

1

τ sj
= 2πniV

2
0 ν(μ), (53b)

1

τtr

= 2πniV
2

0 ν(μ)
1 + 3

(
EZ

μ

)2

4
. (53c)

Here ni is the concentration of impurities. The behavior of
the Drude conductivity tensor as a function of the chemical
potential and the magnetic field is illustrated in Figs. 9
and 10.

C. Levitation of critical states

Equating the Drude value of the Hall conductance,
Eq. (51b), with the transition lines of the RG flow (i.e., integer
gxy), one obtains the phase boundaries of QH phases in the
B-μ plane.

At small EZ 	 1/τq we can neglect all the contributions of
the anomalous Hall effect in Eqs. (51). Assuming further that
the dominant source of disorder is Coulomb impurities, we
can deduce the dependence of the transport scattering time on
the chemical potential: τtr ∝ μ. Accordingly, the combination

-10

10

20

30

FIG. 9. (Color online) Dependence of the classical conductivities
on chemical potential. The transverse conductivity was split into
intrinsic (red, σ (intr.)

xy ) and Fermi-surface (violet, δσxy) contributions.
The dashed curves are obtained by reflection with respect to the origin
and visualize the magnitude of the AHE contributions.

�cl
c τtr ∝ B is independent of μ, and the energies of critical

states are given by

μdeloc = ±
√√√√�2

c |n|1 + (
�cl

c τtr

)2(
�cl

c τtr

)2 + E2
Z, n ∈ Z, (54)

where �c is the quantum cyclotron frequency defined in
Eq. (17). For nonzero n, Eq. (54) describes the “floating
up” or, equivalently, “levitation” of delocalized critical states
separating QH phases. In the limit �cl

c τtr � 1 the usual LL
spectrum of gapped Dirac fermions is recovered. For n = 0
the solutions to be retained are μdeloc = −sgn(B)EZ . This
is a consequence of the AS index theorem, according to
which the zeroth LL is fully spin polarized. The definite spin

-

-50

50

100

100

FIG. 10. (Color online) Dependence of the classical conductivity
tensor on magnetic field. The transverse conductivity was split into
intrinsic (red, σ (intr.)

xy ) and Fermi-surface (violet, δσxy) contributions.
The dot-dashed vertical lines denote the position where �cl

c τtr = 1. In
the inset, the contributions to the transverse conductance are plotted
in the limit of vanishing B field. The ticks on the abscissa denote
�cl

c τtr = 1/20. The dashed curves are obtained by reflection B →
−B and visualize the magnitude of the AHE contributions. In this
plot, the Zeeman energy is assumed to be B-field independent (which
could result from an exchange coupling to a nearby ferromagnetic
layer).
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FIG. 11. (Color online) Levitation of delocalized states of gap-
less Dirac fermions for Coulomb impurities (μ/τtr and �cl

c τtr ∝ B

are μ-independent).

polarization predicts the sign of the Zeeman energy and thus
of the energy level. It is worth emphasizing that, according to
this result, the zeroth LL is immune against strong scattering.
As a result, in the limit of strong scattering, �cl

c τtr 	 1, the
phases with σxy = ±e2/2h extend all the way from μ = 0 up
to large values of μ; see Figs. 11 and 12. The robustness of
the σxy = ±e2/2h state against disorder was indeed observed
numerically [59,127].

FIG. 12. (Color online) Phase diagram of QH phases in the B-μ
plane (“levitation scenario”) for the case of short-range impurities.
Here, as in Fig. 10, EZ < 0 is assumed to be B-field independent.
The floating up of delocalized states with odd (even) number is
depicted by solid blue (red) curves. The dashed lines correspond
to �cl

c τtr = 1. The insets magnify the region of weak magnetic
fields. The asymmetry under B → −B (dotted blue/red curves) is
a consequence of the AHE. Disorder strength is determined by
|μ|τsj = 100.

TABLE I. Typical experimental energy scales of 3D TI in kelvins
[43,128,129]: The bulk band gap M , the cyclotron frequency �c =√

2|e|Bv2
0/�, the Zeeman energy |EZ| = gμBB, and the inelastic

scattering rate 1/τtr . Bulk g factors [130,131] entering EZ were
typically determined outside the TI regime. The presented values of
EZ correspond to the maximal Zeeman energy, with perfect alignment
of pseudospin σ and electron spin s (see main text). Here we disregard
Zeeman energy due to exchange coupling.

Quantity Bi2Se3 Strained HgTe

Bulk band gap M/kB 3480 K 255 K
Cyclotron freq. ��c/kB 210 K ×√

B [T] 210 K ×√
B [T]

Zeeman energy |EZ|/kB 21 K ×B [T] 15 K ×B [T]
Scattering rate �/(τtrkB ) 127 K 10 K

Our findings about the levitation of critical states in the
absence of the anomalous Hall effect are summarized in
Fig. 11. In this plot we assumed that EZ = 0 and also took
into account that for Coulomb impurities

√
μτtr ∝ μ. A

generalization of this plot to the case of a fully developed
anomalous QHE, EZ � 1/τq , is shown in Fig. 12.

VII. EXPERIMENTAL REALIZATION

After having derived the effective electrodynamic theory,
Eq. (49), via the two-step integration of matter fields, we
return to the possibility of experimental observation of the
half-integer Hall conductivity.

A. Typical experimental scales

In Table I, typical energy scales of experimental setups are
presented. In the exemplary 3D TI experiments the Zeeman
contribution appears to be negligible [43,132]. This observa-
tion is consistent with the calculated values of |EZ| = gμBB;
see Table I. As a side remark, we note that the spin σ appearing
in Eq. (21) in general does not coincide with the physical
electron spin s [133,134]. The mixing angle φ depends on
how the crystal is cut and in general EZ ∼ gμBB cos φ. In this
section we neglect the possible B-independent Zeeman energy
due to exchange coupling and proximity to a ferromagnet.

B. Image magnetic monopole effect

1. Magnitude of the effect

It is useful to estimate the typical magnetic field strength
associated with the mirror monopole effect. The charge
Q0 = Uz0 at distance z0 of the QH system of “filling factor”
ν is bound by the scale of “magnetic breakdown” |e|U �
�c(ην+1

√|ν + 1| − ην

√|ν|). Using this bound and Eq. (11),
the ratio of image magnetic field and quantizing external field
can be estimated:

Bimage

B
= g

|r + z0êz|2B � α�c

z0|e|B ∼ α
v0

c

lB

z0
. (55)

This ratio is of the order of Bimage/B ∼ 10−7 for the typical
magnetic field strength B ∼ 1 T and the distance z0 ∼ 1 μm.

While in an idealized system at the QH plateau, the
longitudial conductivity σxx is exactly zero, in a realistic
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FIG. 13. (Color online) Sketch of the setup discussed in the main
text. An electric test charge (solid dot) is placed above a double QH
structure (e.g., a thin 3D TI slab) and creates a series of magnetic and
electric mirror charges (circles).

situation it always takes a small but nonzero value due to a
finite temperature. This allows a rearrangement of charges in
the QH system, which leads to screening of the test charge
and, as a result, destroys the driving force of ring currents and
thus the image monopole effect. In Ref. [90] the decay rate of
the image monopole effect after sudden appearance of a test
charge was found to be

1

τ
= 2πσxx

z0
= αcgxx

z0
∼ 1012 s−1 × gxx. (56)

The decay of the magnetic monopole effect enforces one to
perform finite frequency measurements (or optical measure-
ments; see below). We note, however, that already in the early
days of the QH effect the longitudinal conductance on the
QH plateau was demonstrated [8] to be gxx � 10−6. Thus, the
decay of the monopole effect does not seem to constitute an
insuperable difficulty.

2. Topological magnetoelectric effect in thin 3D TI films

In this section we consider the image magnetic monopole
effect for a double QH structure (i.e., a double domain wall of
the theta angle multiplying the E · B term). This problem
is relevant for realistic 3D TI experiments: As was stated
above, the electric test charge should be placed at macroscopic
distance from the QH systems. On the other hand, typical 3D
TI samples are only a few hundred angstroms thick. Thus, the
test charge simultaneously probes both TI surfaces, a double
QH structure.

A realistic experimental setup is shown in Fig. 13, where
the electric test charge Q0 (solid dot) is placed above a double
QH structure at position (0,0,z0). The upper QH system, in the
plane z = 0, has Hall conductance σ

top
xy = (ϑ1 − ϑ2)e2/2πh,

while the lower one is characterized by σ bottom
xy = (ϑ2 −

ϑ3)e2/2πh. In addition, in the three bulk regions denoted
by a = 1 (0 < z), a = 2 (−d < z < 0), and a = 3 (z < −d),
localized charges might induce nontrivial electric permittivity
εa and magnetic permeability μa = 1/εac

2
a .

Following Ref. [88], we use the unified description in terms
of the vector (Da,2αBa)T which is connected to Ea and Ha

via (
Da

2αBa

)
= Ma

(
2αEa

Ha

)
(57a)

with the matrix

Ma = 2α

c2
aεa

(
ϑ2

a

4π2 + (
caεa

2α

)2 − ϑa

2π

− ϑa

2π
1

)
. (57b)

The electromagnetic field above the plane z = 0 can be
expressed in terms of the two-component potential �1 =
(�1,E,2α�1,M )T ,

(D1,2αB1)T = −∇�1. (58)

To present the potential �1, it is convenient to perform the
Fourier transformation with respect to coordinates in the plane,
(x,y) → (qx,qy),

�1(x,y,z,z0) =
∫ ∞

0
dq

q

2π
�1(q,z,z0)J0(qρ). (59)

Here J0(qρ) is the zeroth Bessel function, ρ =
√

x2 + y2 is the
modulus of the 2D component of the position vector, and q =√

q2
x + q2

y is the norm of the 2D component of momentum.
As shown in Appendix D, the Fourier transform of the two-
component potential �1 is given by

�1(q,z,z0) = 2π

q
{e−|z−z0|q + e−(z+z0)qTeff}

(
Q0

0

)
. (60)

Here we introduced the matrices

Teff = (R+
32R

+
21e

dq + R−
32R

−
21e

−dq)−1

× (R+
32R

−
21e

dq + R−
32R

+
21e

−dq) (61)

and R±
ab = 1 ± MaM−1

b . Each of the limits d → ∞, d → 0,
(ε2,μ2,ϑ2) = (ε3,μ3,ϑ3), and (ε2,μ2,ϑ2) = (ε1,μ1,ϑ1) repro-
duces the result for a single domain wall; see Appendix D.

The two-component potential, Eq. (59), can also be repre-
sented as an infinite sum of mirror charges; see Appendix D
[135]. In the limit z0 	 d the dominant contribution arises
from the mirror charge, which is located in −d < z < 0
and solely determined by σ

top
xy . In contrast, for z0 � d the

double QH system behaves effectively as a single QH system
with the Hall conductivity σ tot

xy = σ
top
xy + σ bottom

xy . Again the
field configuration displays the mirror monopole, but this
time its strength is determined by σ tot

xy . This is illustrated in
Fig. 14 where we plot the magnetic field corresponding to the
potential, Eq. (59), for two otherwise identical 3D TI slabs
of different thickness, d = 10 μm and d = 20 nm [136]. In
these plots, we have assumed that the distance of a charge from
the top surface is z0 = 2 μm and the Hall conductivities are
σ

top
xy = e2/2h and σ bottom

xy = −7e2/2h. Thus, for a thick slab
the condition z0 	 d is well satisfied and the magnetic field
is mainly determined by the mirror monopole corresponding
to the upper surface with σ

top
xy = e2/2h. On the other hand,

the thickness d of a thin slab is much smaller than z0, so
that the monopole corresponding to the total Hall conductivity
σ tot

xy = −3e2/h is observed.
It is worth emphasizing that the magnetic field plotted

in Fig. 14 only includes the field induced by the image
monopole and not the magnetic field generating the QH
state. As noted before, typical magnetic field strengths in 3D
TI QH experiments are of the order of a few teslas [43].
The induced monopole field per test charge Q0 is of the
order of 10 nT/|e|. We can estimate the voltage associated
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FIG. 14. (Color online) The magnetic field configuration for 3D TI in the QH state in a setup as depicted in Fig. 13. Left: slab of thickness
10 μm. Right: slab of thickness 20 nm. In both figures z0 = 2 μm, σ top

xy = e2/2h, σ bottom
xy = −7e2/2h, and, for simplicity, ε1 = ε2 = ε3 and

μ1 = μ2 = μ3.

with magnetic breakdown to be U ∼ 0.01 . . . 0.1 V, which
at a distance of 2 μm corresponds to Q0 ∼ 14 . . . 140|e|.
Therefore, the induced magnetic field can be expected to be of
the order of 0.1 . . . 1 μT. Measurement of such a variation of
the magnetic field is quite challenging from the experimental
point of view.

C. Spectroscopic measurement: Topological Faraday
and Kerr rotation

As discussed above, a measurement of the half-integer Hall
conductivity should be local and contactless. The magnetic
monopole effect satisfies these requirements but its magnitude
is very small and might pose a serious experimental obstacle.
This motivates us to think about possible alternatives.

A possible experimental probe of the QH effect is based
on the topological Faraday and Kerr rotation in spectroscopic
setups [2,51,137,138]. In these experiments the frequency of
light is typically of the order of THz, with a wavelength
λ ∼ 300 μm. For a sufficiently disordered realistic system the
condition

ωτ ≡ c

v0

l

λ
� 1 (62)

can be well satisfied. The system is then in the diffusive regime,
opening a possibility for approaching the regime of quantized
Hall conductivity.

Faraday and Kerr rotation induced by surface states of
3D TI were studied in recent spectroscopic experiments
[128,139] (see also earlier works Ref. [140,141]), and
magneto-oscillations of conductivities were indeed observed.
In these experiments, the systems were in the diffusive regime,
ωτ ∼ 0.1 . . . 1. This implies that the RG flow of conductivi-
ties, Fig. 5, should be directly observable in the frequency
dependence of optical conductivity σij (ω) measured in THz
spectroscopy.

There exists, however, a problem related to a small thickness
d of realistic TI samples. Indeed, in order to probe separately
each of the surfaces in a spectroscopic experiment, d should
be larger than the wavelength λ. On the other hand, for state-
of-art structures the opposite condition is satisfied, d 	 λ.
This appears to be a serious obstacle for a measurement of
conductivities of individual surfaces by spectroscopic means.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we studied the quantum Hall effect of a
single-species (2+1)-dimensional Dirac fermion. We focused
on the case of 3D topological insulator surface states, where
the half-integer QHE is a manifestation of fermion number
fractionalization; see Sec. II. Our key results are as follows:

(1) We explained in Sec. II why a naive attempt to measure
the half-integer Hall conductivity of a surface of a 3D TI fails.

(2) We have further reviewed in Sec. II the topological
magnetoelectric effect and demonstrated that it can be used
for measurement of the half-quantized Hall conductivity
in topological insulator surfaces with locally broken time-
reversal invariance.

(3) Subsequently, in Sec. III we have shown that the
half-quantized value is not in contradiction to Laughlin’s flux
insertion argument (which predicts, in its conventional form,
an integer value of gxy as a consequence of gauge invariance).
Specifically, we have modified Laughlin’s argument to the case
of a 3D TI and demonstrated that it leads to half-quantized
values of conductivities of each of the surfaces.

(4) Next, in Sec. IV, we employed the vortex state basis to
calculate the conductivity tensor and explicitly uncovered the
half-integer contribution of the zeroth LL. This calculation also
allowed us to extend the topological magnetoelectric effect
beyond the linear response.

(5) In Sec. V we derived the unified field theory treating
both diffusive matter fields and EM gauge potentials. In
contrast to the case of the integer quantum Hall effect, two
different theta angles appear. One of them is associated with
the Hall conductivity σxy , while the other one (reminiscent of
chiral anomaly) provides a shift of the renormalization flow
diagram.

(6) We discussed the RG flow and the phase diagram in
great detail. To this end, the semiclassical conductivity tensor
of Dirac fermions in magnetic field was derived in Sec. VI.

(7) Finally, in Sec. VII we carried out an analysis of
conditions for experimental observation of the half-integer
QHE. We have paid particular attention to implications of
the slab geometry characteristic for currently manufactured TI
samples.

We conclude the paper with a few remarks of a more general
character:
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(i) First, we would like to comment on the issue of a
physically observable topological Z2 invariant of 3D TIs that
has been discussed in the literature. It has been argued that
the theta angle ϑ of the bulk E · B term plays this role. We
have shown that in the presence of a boundary, this angle gives
rise to a topological angle θ = ±π of the boundary NLσM
theory. While this angle is indeed a Z2 invariant, it does not
couple to gauge potentials and thus does not directly represent
a measurable quantity. The situation should be contrasted to the
paradigmatic case of the QH effect where the Hall conductivity
which is the topological invariant directly corresponds to the
theta angle of the theory. In the present case, the role of
the angle θ is in shifting the RG flow diagram (and thus
the fixed-point values of the Hall conductivity). Such an
indirect physical meaning of topological invariants might be
applicable also to other symmetry classes.

(ii) We hope that our work will motivate further exper-
imental efforts for the observation of half-integer QHE in
surfaces of 3D TIs. It is also worth emphasizing that the TME
is not specific to 3D TI surfaces but should also take place in
conventional QH systems. There, the parameter regime might
be more favorable (allowing in particular a higher number
of charges on the probing tip). Corresponding experimental
studies would be certainly of great interest.

(iii) Some of our results on transport properties of 2D Dirac
fermions may be relevant also in a context more general than
TI surfaces. In particular, the peculiar critical behavior of the
B = 0 QH transition (Sec. V D 2) could also be observable in
doped graphene. Further, the calculation of the semiclassical
transport coefficients (that served as starting values for the RG)
in Sec. VI and Appendix C is generic and applies to any 2D
material with a nonvanishing Berry curvature.

(iv) Finally, it is worth emphasizing that even though
topological insulators avoid the fermion doubling theorem
[92] by spatially separating two single Dirac or Majorana
modes, the gauge invariance still implies strong constraints.
Specifically, the anomalous contributions of the two surfaces
mutually cancel, both in the analysis of Laughlin’s argument,
Sec. III, and of the parity anomaly, Sec. V A. Such an
additive cancellation of anomalies from opposite boundary
states also occurs, e.g., in the context of topological Josephson
junctions [142,143]. In this reasoning, the fermion doubling
plays a crucial role (even though the two species are spa-
tially separated). On the other hand, one could also regard
the Dirac (or Majorana) fermions on the whole boundary
of TIs in dimensions larger than one as a single mode.
In the context of 3D TIs, it is instructive to imagine a
sample of, e.g., spherical form. Then the notion of fermion
doubling loses its meaning, as there is just a single species
of Dirac fermions on the whole closed boundary of the
sample. Nevertheless, as we discussed in Sec. V A, the
theory is internally consistent and the parity anomaly is
avoided. Local response properties are controlled by a theory
of a single species of Dirac fermions, and the theory is
unambiguously defined due to the fact that surface is a
closed manifold. We therefore conclude that the reason for
single-species Dirac fermions to appear only on boundaries of
higher-dimensional bulk systems (which themselves have no
boundary) is very deep and ultimately follows from gauge
invariance. We expect similar arguments to hold also for

other dimensions and classes of topological insulators and
superconductors.
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APPENDIX A: SEMICLASSICAL CALCULATION OF
CURRENT DENSITY

In this Appendix we present the semiclassical calculation
of current density induced by external potential in QH sample
with smooth disorder.

1. Notation

We consider the model of a single Dirac cone, specified by
Eqs. (15) and (21). Further, we use the notation

H0 = v0(�xσy − �yσx) =
(

0 −iv0�−
iv0�+ 0

)
(A1)

with

− i�− = −i(�x − i�y), i�+ = i(�x + i�y). (A2)

These objects have the following commutation relation:

[−i�−,i�+] = 2i[�x,�y] = 2|e|εij ∂iAj = 2/l2
B, (A3)

where lB = (|e|B)−1/2 is the magnetic length. Under the
assumption of B > 0 we define creation and annihilation
operators

b = − lB√
2

(−i�−), b+ = − lB√
2
i�+. (A4)

Then, using the cyclotron frequency �c =
√

2v0
lB

, we can rewrite
Eq. (15) as

H0 = −�c

(
0 b

b+ 0

)
. (A5)

Independently of the gauge, this Hamiltonian has eigen-
states

|n,k〉D = 1√
1 + η2

n

(−ηn||n| − 1,k〉
||n|,k〉

)
, (A6)

with eigenenergies En = �cηn

√|n| [ηn = sgn(n) for n 
= 0
and η0 = 0]. The quantum number n ∈ Z labels the Landau
level (LL) while k = 1,2, . . . ,�tot

�0
accounts for the degeneracy.

The eigenstates ||N |,k〉 constituting the spinor in Eq. (A6) are
the conventional eigenstates of the |N |th LL for electrons with
parabolic dispersion.
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2. Gradient expansion

The central assumption for the semiclassical calculation is
that the potential V (r) is smooth on the scale of the magnetic
length. In the vortex state basis [see Eq. (22) on p. 8] we expand
its matrix elements in gradients:

(V )12 = (V )(0)
12 + (V )(1)

12 + O
(
l2
B∂2V

)
. (A7)

[For any operator O we use the shorthand notation (O)12 ≡
〈1|O|2〉 and |1〉 = |n1,R1〉D .] The zeroth order is [c12 =
(R2 + R1)/2]

(V )(0)
12 = V (c12) 〈1|2〉. (A8)

The first order is [d12 = (R2 − R1)/2]

(V )(1)
12 = (V )(1,0)

12 + (V )(1,+)
12 + (V )(1,−)

12 (A9)

with

(V )(1,0)
12 = i ẑ · [∇V (c12) × d12] 〈1|2〉 , (A10a)

(V )(1,+)
12 = −i

En1 + En2

2|e|�2
c

(j+)12∂−V (c12), (A10b)

(V )(1,−)
12 = i

En1 + En2

2|e|�2
c

(j−)12∂+V (c12). (A10c)

The solution of the Dyson equation for the re-
tarded/advanced single-electron Green’s functions within the
same approximation leads to

G
R/A

12 (ω) ≈ G
(0),R/A

12 (ω) + G
(1),R/A

12 (ω) (A11)

with

G
(0),R/A

12 = 〈1|2〉
ω± − En2 − V (R2)

, (A12)

G
(1),R/A

12 = (V )(1)
12

[ω± − En1 − V (R1)][ω± − En2 − V (R2)]
.

(A13)

Here we use the shorthand notation ω± = ω ± i0.

3. Current density

We base our calculation of the current density in arbitrary
potential configuration on general results on vortex states and
the semiclassical expansion reported in Ref. [70].

The current density [see Eq. (27)] is the x1 → x2 limit of

〈ĵ±(x1,x2)〉 =
∑
1,2

∫
dω

2π
inF (ω)

[
GR

21(ω) − GA
21(ω)

]
× D 〈n1,R1|x1〉 j± 〈x2|n2,R2〉D . (A14)

Here we introduced shorthand notation∑
1

=
∫

d2R1

2πl2
B

∞∑
|n1|=0

∑
ηn1

. (A15)

The matrix elements of the first quantized current operators,
Eq. (28), will be useful. They can be expressed via spinor

components of |n,R〉D in the following way:

(j+)12 = −2iev0 〈n1,R1, ↑ |n2,R2, ↓〉, (A16)

(j−)12 = 2iev0 〈n1,R1, ↓ |n2,R2, ↑〉. (A17)

To proceed further we use the gradient expansion of the
Green’s functions (A11). The important simplification comes
from the fact that we are interested in the slow (on the scale of
magnetic length) part of the current density (cf. discussion in
Sec. IV). We will see shortly that most of the terms of gradient
expansion (A11) do not contribute in this approximation. To
demonstrate this fact we will need the Fourier representation
of the vortex states

〈 p|n,R〉 = 4lBπe−i pR

√
2πn!

[
i
√

2lB

(
p+ + iR+

2l2
B

)]n

× exp

[(
p− − iR−

2l2
B

)(
p+ + iR+

2l2
B

)
l2
B

]
. (A18)

Here, p± = px ± ipy and R± is defined analogously.

a. Contributions of V (0)
12 and V (1,0)

12

The simplest terms of the gradient expansion are those
involving V

(0)
12 and V

(1,0)
12 . Writing down the corresponding

current densities J± (q) in momentum representation we find
[see Eq. (27) and the x1 → x2 limit of Eq. (A14)]

J±(q)|
V

(0)
12 ,V

(1,0)
12

∝
∫

(d p) 〈2|1〉 〈1| p − q〉 j± 〈 p|2〉

≈ e−iq R1

∫
(d p) 〈2|1〉 〈1| p〉 j± 〈 p|2〉

= e−iq R1 〈2|1〉 (j±)12 = 0. (A19)

In this expression q is the slow momentum associated with
the macroscopic vector potential A∓ (−q) and 〈1| p − q〉 ≈
e−iq R1 〈1| p〉 to zeroth order in qlB 	 1 [see Eq. (A18)].
Similar analysis shows that only V

(1,∓)
12 and not V

(1,±)
12

contribute to J±.

b. Leading contribution

The leading contribution to the current densities can now
be presented as

〈ĵ±(x1,x2)〉 =
∑
1,2

±inF [En1 + V (R1)]

2|e|�2
c

En1 + En2

En1 − En2

× [∂±V (c12)(j∓)21 〈1|x1〉 j± 〈x2|2〉
+ ∂±V (c12)(j∓)12 〈2|x1〉 j± 〈x2|1〉]. (A20)

This expression can be further simplified by employing the
relation∑

2

En1 + En2

En1 − En2

〈x2|2〉 (j+)21 = −(2|n1| + 1)j+ 〈x2|1〉.

(A21)

Here we used (j+)21 ∝ δ|n2|−1,|n1| and the following identities:∑
2

{
1

ηn2

}
〈x|2〉 〈2|x′〉 =

{
δ(x − x′)1σ

0

}
. (A22)

165435-18



HALF-INTEGER QUANTUM HALL EFFECT OF . . . PHYSICAL REVIEW B 90, 165435 (2014)

As a result, we obtain

〈ĵ± (x1,x2)〉 = ±i|e|l2
B

∑
1

nF [En1 + V (R1)]∂±V (R1)

×[〈1|x1〉 〈x2|1〉 − 2|n1| 〈1|x1〉 σz 〈x2|1〉].
(A23)

The term proportional to |n1| does not contribute to the slow
part of the current. Indeed, consideration similar to that of
Eq. (A19) leads to∫

(d p)|n1| 〈1| p − q〉 σz 〈 p|1〉 qlB	1≈ |n1| 〈1|σz|1〉 = 0. (A24)

c. Regularizing the divergence

The expression (A20) is singular in the limit x1 → x2. The
singularity can be regularized by adding and subtracting the
following term (corresponding to the linear-response current
at zero temperature and chemical potential μ = 0+):

X±(x) = ±i|e|∂±V (x)

2π
lim

x′→x

∫
d2R

∑
n�0

D 〈n,R|x〉 〈x′|n,R〉D

= ±i|e|∂±V (x)

2π

× lim
x′→x

∫
d2R

∑
n�0

{ 〈x′||n|,R〉 〈|n|,R|x〉
1 + |ηn|

+ η2
n 〈x′||n| − 1,R〉 〈|n| − 1,R|x〉

1 + |ηn|
}

= ±i|e|∂±V (x)

× lim
x′→x

[
l2
Bδ(x − x′) + 〈0,x′|0,x〉

4π

]
. (A25)

To get the δ-function contribution we have used the resolution
of identity, Eq. (24), for up and down components separately.
However, the double weight of down component of the zeroth
LL generates the second contribution in the angular brackets:
this is where half-integer gxy comes from.

APPENDIX B: DERIVATION OF THE NLσM DESCRIBING
THE HALF-INTEGER QHE

1. No net B field: Non-Abelian bosonization

The first step of the derivation of NLσM for the QH
problem is to apply non-Abelian bosonization to the system of
disordered Dirac fermions which is TR invariant on average
but contains a random Zeeman term.

The model under consideration is Eq. (34), with the
following white-noise scalar disorder potential,

〈V (x)V (x′)〉 = 1

πντsc

δ(x − x′), (B1)

and a random Zeeman term HZ = mσz,

〈m(x)m(x′)〉 = 1

πντZ

δ(x − x′). (B2)

After disorder averaging, the Matsubara action of our system
receives an additional contribution:

Sdis = − 1

2πν

∫
x

{
1

τsc

[ψ̄(x)ψ(x)][ψ̄(x)ψ(x)]

+ 1

τZ

[ψ̄(x)σzψ(x)][ψ̄(x)σzψ(x)]

}
. (B3)

a. SCBA

On the mean-field level the fermionic Green’s functions are
given by the self-consistent Born approximation (SCBA). The
SCBA equation for the self-energy reads

�n = − 1

πντ
Gn (x,x) . (B4)

Here the scattering rate 1/τ = 1/τsc + 1/τZ . The solution of
Eq. (B4) is (in the limit kF l � 1)

�n = i

2τ
sgn(n). (B5)

b. Non-Abelian bosonization

In order to go beyond the mean-field treatment, we derive
the NLσM from the fermionic action. We will employ the
double cutoff truncation scheme in Matsubara space [26] and
use non-Abelian bosonization [144], with the dictionary for the
U(2N ′

MNR) × U(2N ′
MNR) invariant model being [145,146]

ψ↑ ⊗ ψ̄↓ ↔ 1

4πv0
U †∂+U, (B6a)

ψ↓ ⊗ ψ̄↑ ↔ 1

4πv0
U∂−U †, (B6b)

ψ↑ ⊗ ψ̄↑ ↔ −λU †, (B6c)

ψ↓ ⊗ ψ̄↓ ↔ λU. (B6d)

Here U ∈ U(2N ′
MNR) is a unitary matrix field. Typically it is

decomposed in a phase (Abelian bosonization) and a special
unitary part,

U = e
i

√
4π

2N ′
M

NR
�

Ũ .

The dimensionful constant λ is of the order of the UV cutoff.
In the presence of disorder and a finite chemical potential it
turns out to be of the order of the density of states; see below,
Appendix B1 c.

The kinetic part of the action can now be rewritten as [147–
150]

S =
∫

x

1

2
(Di�)2 +

∫
x

1

8π
TrDiŨ

†DiŨ

+
∫

x,w

−i

12π
εijkTr(Ũ †DiŨ )(Ũ †DjŨ )(Ũ †DkŨ )

+
∫

x,w

i

8π
εijkTrFij (Ũ †DkŨ + DkŨŨ †) (B7)

.=
∫

x

1

2
(Di�)2 +

∫
x

1

8π
Tr∂iŨ

†∂iŨ
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+
∫

x,w

−i

12π
εijkTr(Ũ †∂iŨ )(Ũ †∂j Ũ )(Ũ †∂kŨ )

+
∫

x

−ie

4π
Tr[A−Ũ †∂+Ũ + A+Ũ∂−Ũ †]

+
∫

x

−e2

4π
Tr[A−Ũ †A+Ũ − A+A−]. (B8)

Here the symbols Di denote long derivatives, Di = ∂i − ieA
(0)
i

when acting on a scalar field and Di = ∂i − ie [Ai,·] when
acting on a matrix field. The gauge potentials are arbitrary
U(2N ′

MNR) gauge potentials [split in traceless (traceful)
components Ai (A(0)

i )]; Fij is the corresponding field strength
tensor. For the problem of disordered Dirac fermions coupled
to U(1) gauge potentials, we will set Ai = Âi in the end
[see Eq. (39)]. The symbol

.= here denotes equality for all
cases when gauge fields are nontopological (recall that we are
interested in situations without net magnetic flux through the
spatial plane).

The expressions containing integrals over the variable w

involve the extension of the base manifold [(x,w) ∈ (R2 ∪
{∞},[0,1])]. In these terms Ũ implicitly denotes a different
function Ũ (x,w) which coincides with the physical field on
the physical space Ũ (x,0) = Ũ (x) while taking a uniform
fixed value at w = 1; e.g., Ũ (x,1) = 1.

c. Bosonized SCBA

The SCBA equation (B4) can be rederived in the bosonic
language:

� = 1

πντ
〈ψ ⊗ ψ̄〉SCBA

↔ 1

πντ

〈(
−λU † 1

4πv0
U †∂+U

1
4πv0

U∂−U † λU

)
σ

〉
SCBA

. (B9)

The symbol 〈. . . 〉SCBA denotes self-consistent SCBA average.
Equations (B9) are consistent with the previous solution
provided U = i� and λ = νπ/2 [�nn′ = δnn′sgn(n)].

d. Bosonized effective action

We now return to Eq. (B3). We bosonize both channels of
possible soft modes

Sdis ↔ −1

2πντsc

∫
x

[{
tr

(
−λU † U †∂+U

4πv0
U∂−U †

4πv0
λU

)
σ

}2

− tr

{(
−λU † U †∂+U

4πv0
U∂−U †

4πv0
λU

)2

σ

}]

+ −1

2πντZ

∫
x

[{
tr

(
−λU † U †∂+U

4πv0−U∂−U †

4πv0
−λU

)
σ

}2

− tr

{(
−λU † U †∂+U

4πv0−U∂−U †

4πv0
−λU

)2

σ

}]
.= λ2

2πν

∫
x

[
tr([U † + U ]2)

τ

− (tr[U † − U ])2

τsc

− (tr[U † + U ])2

τZ

]
. (B10)

Here, the sign
.= indicates that in this formula we omitted the

gradient terms which renormalize the kinetic part of the action
as well as a constant.

e. Saddle-point equations

By infinitesimal left rotation of spatially constant U we
determine the saddle-point equations for the disorder-induced
potential

0 = iλ2

πν

[
(U 2 − [U †]2)

τ
+ (U † − U )tr[U † + U ]

τsc

+ (U † − U )tr[U † + U ]

τZ

]
. (B11)

We see that the SCBA solution U = i� solves the saddle-point
equation.

f. Goldstone manifold and field theory

We will now rotate the bosonic fields by slow, small, unitary
rotations: U → U

†
softUUsoft. For the saddle-point solution

U = i� these fields equally annihilate the disorder-induced
mass terms of Eq. (B10). Thus the effective field theory
will be constructed on a saddle-point manifold, namely
the coset space formed by the Q = U

†
soft�Usoft which is

U(2NMNR)/U(NMNR) × U(NMNR). To derive the effective
field theory, Eq. (41) of the main text, the following steps are
in order: (i) The prefactor of the gradient term is renormalized
by integration of the U fields in SCBA approximation [33].
(ii) Upon restriction to the coset space, the Wess-Zumino-
Novikov-Witten term in third line from the bottom of Eq. (B8)
becomes the theta term with short derivatives and angle θ = π

(mod 2π ) [39,151]. (iii) The last two lines of the same Eq. (B8)
provide the gauge potentials entering the long derivatives of
the gradient term. It is an important observation that terms
containing Q†∂±Q and εij trAiQ

†AjQ drop out in view of the
hermiticity and unitarity of Q. Therefore the theta term has
short derivatives. (iv) Frequency and interaction terms were
not discussed in this Appendix, but can be equally included
following Ref. [33]. (v) The subscript soft is omitted in all other
parts of this paper.

2. Finite net magnetic field: Gradient expansion

We now turn to the derivation of the NLσM describing
disordered Dirac fermions in strong magnetic field (�cτ � 1).
The fermionic action on saddle-point level is

S[ψ̄,ψ] =
∫

x
ψ̄[−iε̂ − ie�̂ + H0( p − e[A + Â])

−μ − i(�R)′′Q]ψ. (B12)

The SCBA is justified in the center of LLs with large index
|n| � 1. For the present case of Dirac fermions, the imaginary
part of retarded self-energy (�R)′′ = 1/2τ is energy dependent
and nontrivial (trivial) in spin space for the zeroth (all other)
LLs; see, e.g., Ref. [40] for more details.
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Just as in the previous section, we set Q = U †�U with
slow unitary (2NMNR) × (2NMNR) matrix field U . Note that
at this stage, all sums and traces over Matsubara indices go
from negative to positive infinity. Thus � is an infinite matrix
with only diagonal entries �nn′ = δnn′sgn(n). In order to obtain
finite-dimensional � (and thus Q), a second cutoff will be
introduced at the end of this section [26].

In order to perform an accurate gradient expansion of the
action, it is convenient to reexpress the partition function as

Z =
∫

DQ

∫
D[ψ̄,ψ]e−S[ψ̄,ψ]

=
∫

DQJ [U,�̂,Âi]
∫

D[ψ̄ ′,ψ ′]e−S[ψ̄ ′,ψ ′]. (B13)

Here the rotated fields ψ ′ = Uψ and ψ̄ ′ = ψ̄U † were intro-
duced at the expense of the Jacobian J [U,�̂,Âi]. The action
for the rotated fermions reads

S[ψ̄ ′,ψ ′] =
∫

x
ψ̄ ′[−G−1 − ie� + J · A]ψ ′, (B14)

where we use the notation Ji = δH0/δAi and the rotated gauge
potentials are

� = 1

e
U [ε̂,U †] + U�̂U †,

Ai = −1

e
U [−i∂i,U

†] + UÂiU
†. (B15)

We denote the SCBA Green’s function by

Gαα′
mm′ (x,x′) = ([iεm − H0 ( p − eA) + μ

+ i(�R)′′sgn(εm)]−1)x,x′δαα′
mm′ . (B16)

As we are working in the limit εn 	 (�R)′′, we will partly
drop the frequency dependence below.

We will further use the notation

−G−1 = −G−1 − ie� + J · A.

Since we are interested in the topological theta term involving
spatial derivatives only, we omit � in what follows. Integrating
fermions out, we get

Z =
∫

DQJ [U,�̂,Âi]e
−Seff , (B17)

with

Seff = −Tr ln[−G−1]. (B18)

Here and below Tr includes also the spatial integration. The
expansion of Seff in A (omitting � and the constant term)
yields

Seff ≈ Tr [G0JiAi] + 1
2 Tr[G0JiAiG0JjAj ]. (B19)

a. The RR and AA correlators in the term O(A2)

First, we will disregard the diffusive fields and set A = Â.
Recall that we are working with infinite Matsubara sums. The
expansion contains the standard conductivity term

1

2
Tr[GJiÂiGJj Âj ] = e2

∑
m>0,α

∫
x
m(Ai)

α
−mgij (m)(Aj )αm,

(B20)

with

gij (m) = 1

e2Am

∑
k

Sp[JiGk+mJjGk]. (B21)

Here A denotes the sample area. The symbol Sp involves trace
in spin and real space only. The RR + AA contribution to gxx

for Dirac fermions is nonzero but negligible as compared to the
RA contribution. In contrast, for the transverse dc conductivity
we find the standard gII

xy contribution:

1

2
Tr[GJ[i ÂiGJj ]Âj ]

RR+AA= e2gII
xy εij

∑
m>0,α

∫
x
m(Ai)

α
−m(Aj )αm. (B22)

(Square brackets in the indices denote antisymmetrization.)
Now we return to the full A which we write as A = A +
Â. Clearly, A = A − Â is a finite (2NMNR) × (2NMNR)
matrix. We will show that also for the full A we have

1

2
Tr[GJ[iAiGJj ]Aj ]

RR+AA= e2gII
xy εij

∑
m>0,α

∫
x
m(Ai)

α
−m(Aj )αm. (B23)

Indeed, all terms linear or quadratic in AI involve traces
over the finite (2NMNR) × (2NMNR) space. All of these finite
traces vanish by symmetry; for example,

1

2
Tr[GJ[iAiGJj ]Aj ]

RR= 1

2A
Sp[GRJ[iGRJj ]]Tr

[
Ai

1 + �

2
Aj

1 + �

2

]
= 0.

(B24)

b. The RA correlator in the term O(A2)

For the RA correlator we obtain the standard result:

1

2
Tr[GJiAiGJjAj ]

RA=
∑

i

Tr [AiAi − Ai�Ai�]

× 1

8A
Sp[GAJxGRJx + GRJxGAJx]

+ 2Tr[�(AxAy − AyAx)]

× 1

8A
Sp[GRJxGAJy − GAJxGRJy].

(B25)

In what follows we use the notation

gxx = 1

e2A
Sp[GRJxGAJx],

gI
xy = −1

2e2A
Sp[GRJxGAJy − GAJxGRJy]. (B26)

c. Term of O(A1)

We follow the steps presented in Ref. [20] and use

∂

∂μ
G(x,x′) = −

∫
d2x ′′G(x,x′′)G(x′′,x′) (B27)
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to rewrite the O(A1) part of the action as

TrG J · A = −
∫ μ

−∞
dμ̃

∫
x,x′

tr[G(x,x′)G(x′,x)JiAi (x)]

= −1

2

∂

∂B

∫ μ

−∞
dμ̃trσGR−A (0,0) Tr[εij ∂iAj�]

− 1

2

∂

∂B

∫ μ

−∞
dμ̃trσGR+A (0,0) Tr[εij ∂iAj ].

(B28)

The term Tr[εij ∂iAj ] = 0 vanishes, since it contains com-
mutators of small matrices and the only noncommuting term
is TrÂ = 0 by assumption of purely dynamic gauge fields.
In contrast, the Tr[εij ∂iAj�] term plays an important role:
its prefactor ∂n/∂B is related to gII

xy by the Smrcka-Streda
formula [78].

d. Collecting all terms

We are now in position to present the full gradient expansion
of Seff :

Seff = gxxe
2

4
Tr [AiAi − Ai�Ai�]

− gI
xye

2

2
εij Tr[�(AiAj )]

− gII
xy e2

2
εij

[
−i

e
Tr[∂iAj�] +

∑
m,α

∫
x
m(Ai)

α
m(Aj )α−m

]
.

(B29)

In order to rewrite Seff in a more compact way we will
introduce a second cutoff N ′

M in Matsubara space [26]. In
particular, now also Â and � are finite matrices of size
(2N ′

MNR) × (2N ′
MNR). We assume N ′

M/NM → ∞. Then we
can use the notation (from now on Tr denotes finite traces)

DiQ ≡ ∂iQ − ie[Âi,Q] = −ieU † [Ai ,�] U (B30)

to express

TrDiQDiQ = 2e2Tr
[
A2

i − (Ai�)2 ],
εij TrQDiQDjQ = 4e2εij Tr[�AiAj ]

= 4eεij

[
−iTr(∂iAj�)

+ e

∫
x

∑
n,α

n(Ai)
α
n(Aj )α−n

]
. (B31)

Including now the contribution of the Jacobian of the
transformation from initial to rotated fermions we find the

sigma model action

S = 1
8 (gxxTr [DiQ]2 − gxyεij TrQDiQDjQ) − lnJ (U,Â).

(B32)

Finally, we will discuss the Jacobian J (U,Â) in more
detail. Generally speaking, its precise value depends on the
regularization of the functional integral measure of the initial
fermionic field theory. The same ambiguity is generally present
in the microscopic calculation of gxy due to the unbounded
spectrum of Dirac fermions. The final result should however
be independent of the regularization. We have learned in
Sec. V A that one can regularize the fermionic theory in such
a manner that the parity symmetry is preserved. In our present
problem this does not contradict gauge invariance or any other
fundamental principle. Choosing such a regularization, we see
that gxy vanishes for B → 0. On the other hand, in the B → 0
limit, the action should reproduce the result (41). We therefore
conclude that, at least in this limit, the Jacobian − lnJ (U,Â)
equals the theta term with short derivatives.

Recall that the derivation of the theta term with short deriva-
tives assumed nontopological gauge potentials. Differently
said, the total flux through the surface should vanish.

Now consider a single Dirac cone in an infinite 2D plane
with locally homogeneous magnetic field but zero total flux.
(This implies the existence of at least one contour with
B = 0 in this plane; it is necessary to keep zero total flux.)
The equality of Eqs. (B7) and (B8) is still ensured. We
further follow the strategy exposed in Appendix B1f. (i) The
integration of U fields in the presence of locally homogeneous
magnetic field is the bosonic equivalent to the integration
of fermions performed in this section. In particular, it leads
to Eq. (B29) with local values of gij . (ii) Upon restriction
to the coset space, the Wess-Zumino-Novikov-Witten term
becomes the theta term with short derivatives [33] which we
identify with the Jacobian in the fermionic treatment (also for
a nonvanishing magnetic field).

In the setup for real QH experiments on TI slabs, the
Dirac states reside on a surface with locally homogenous B

field and vanishing total flux. (We assume that no physical
magnetic monopoles are located inside the TI bulk.) This
setup is equivalent to the case of the 2D plane analyzed in
the preceding paragraph. Note that typically, i.e., when the
magnetic field is perpendicular to the two major surfaces of the
slab, the sidewalls of the system form a contour of vanishing
magnetic field. This concludes the derivation of Eq. (43) of the
main text.

APPENDIX C: CLASSICAL CONDUCTIVITY TENSOR

In this Appendix we present the semiclassical Boltzmann
calculation of the conductivity tensor in the presence of both
orbital magnetic field and a Zeeman term HZ = mv2

0σz.

1. Semiclassical theory of anomalous Hall effect

The basic concepts of anomalous Hall effect (AHE) are
reviewed in Refs. [73,74]. The contributions to the AHE are
threefold [we denote the two bands by ξ = ± with dispersion
relation εξ ( p) = ξ

√
v2

0 p2 + (mv2
0)2]:
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(i) intrinsic AHE, which is the contribution of integral over

Berry connection �ξ = −mv4
0

2ε3
ξ

;

(ii) skew scattering ωll′ 
= ωl′l contribution, which splits
into (a) conventional (ωll′ ∝ V 3) and (b) intrinsic (ωll′ ∝ V 4).
[Here ωl′l is the squared scattering amplitude from state l =
( p,ξ ) to l′ = ( p′,ξ ′).]

(iii) Side-jump contributions, which again are twofold,
including (a) side-jump accumulation and (b) modification
of collision integral in view of work performed due to the side
jump at a single scattering event.

These contributions are reflected in the equations of motion
[152–154]

ṙi =

≡v
(ξ )
i︷ ︸︸ ︷

∂εξ ( p)

∂pi

−εij ṗj�ξ+
∑

l′
ωl′l (δr l′l)i , (C1)

ṗi = Fi = q(Ei + εij ṙjB/c), (C2)

as well as in the collision integral of the Boltzmann equation

∂tf + ṙ · ∂xf + ṗ · ∂ pf = St [f ] , (C3)

where

St [f ] = −
∑

l′
[ωl′lfl − ωll′fl′ ] . (C4)

The precise modification of the collision integral, which will
involve the work W1→2 = Fδr l2l1 , will be presented below,
Sec. C 2.

It is worth noting that the collision integral for elastic
scattering does not contain Pauli blocking terms (which would
change the results in view of skew scattering). The reason
[73] is that, in contrast to the case of inelastic scattering, the
incoming and outgoing states l and l′ should be considered as
a single scattering state, and thus Pauli blocking factors [e.g.,
fl(1 − fl′)] are superfluous. This can also be understood in
the derivation of the Boltzmann equation from Schwinger-
Keldysh quantum field theory. Since elastic scattering is
evoked by a static disorder potential (it only couples to γcl in
Keldysh space), the collision integral in the quantum kinetic
equation �K − (�R ◦ F − F ◦ �A) contains only a single
Keldysh Green’s function/self-energy and thus only a single
distribution function.

The side-jump shift of the trajectory is expressed as

δr l2l1 = 〈
uξ2, p2

∣∣i∂ p2
uξ2, p2

〉 − 〈
uξ1, p1

∣∣i∂ p1
uξ1, p1

〉
− (

∂ p1
+ ∂ p2

)
arg

(
Vl2,l1

)
(C5)

even in the presence of smooth electromagnetic fields [we
denote by ei pr |uξ, p〉 the eigenstates to the B = 0 limit of
Hamiltonian (15)]. We will use the notation∑

l′
ωl′l (δr l′l) =

(
1 − qB�ξ

c

)
�ξε p
τ sj

, (C6)

with the mean side-jump time τ sj (εξ ). Here we introduced
the matrix representation of the 2D Levi-Civita symbol

(ε)ij = εij . We can diagonalize the equations of motion as
follows [122,123,155,156]:

(
ṙi

ṗi

)
=

(
v

(ξ )
i + ∑

l′ ωl′l (δr l′l)i − εij�ξqEj

εij

[
v(ξ ) + ∑

l′ ωl′l (δr l′l)
]
j

qB

c
+ qEi

)
1 − �ξ qB

c

. (C7)

At

1 = �ξqB

c
= −ζ�cl

c

mv2
0

2ε2
ξ

(C8)

the clean classical equations of motion correspond to pure
Hall response [156]. However, in parameter space this point
lies outside the region of validity of the Boltzmann equation.

[We introduced ζ�cl
c = v2

0qB

εξ c
, ζ = sgn(qBεξ ).]

It is worth noting that equations of motion (C7), which
contain the disorder-induced side jump terms, do not corre-
spond to a Hamiltonian flow. Without the side-jump terms,
these equations are perfectly Hamiltonian, but with a modified
Poisson bracket (we are not using canonical coordinates)
[156]. Therefore, the invariant phase space volume element
acquires an additional term [155]

dV =
(

1 − q�ξB

c

)
d2pd2x. (C9)

We hence deduce that in the Boltzmann equation and in the
equations determining current we need to use∑

l′

.=
∑
ξ ′

∫ (
dp′) (1 − qB�ξ ′

c

)
. (C10)

In the following, we employ polar coordinates determining
each momentum p by modulus of kinetic energy and angle
(ε,φ) with ε =

√
v2

0p
2 + (mv2

0)2. In this notation we write

p̂ = (cos φ, sin φ),êφ = (− sin φ, cos φ) = −εp̂ (C11)

and

∇ pfl = p̂
∂ε

∂p
∂εfl + êφ

p
∂φfl = v(ξ )∂εξ

fl + êφ

p
∂φfl. (C12)

2. The collision kernel and side step

As explained above, upon a scattering event l1 → l2 the
final state corresponds to a trajectory that is shifted as
compared to the initial state by

δr l2l1 � r l2 (t = 0) − r l1 (t = 0) . (C13)

If the scattering event takes place in an external electric (but
not magnetic) field, the kinetic energy is not conserved, as the
potential energy changes at the scattering event [73,74]

εδr l2 l1 � U
(
r l2

) − U
(
r l1

) = ∇Uδr l2l1 = −q Eδr l2l1 . (C14)

More generally (in the presence of both E and B fields),
we can say that there is a work to be performed at a scattering
event l1 → l2 with side jump. Energy conservation εinitial =
εfinal implies

ξ1ε( p1) = ξ2ε( p2) − W1→2, (C15)
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where W1→2 = Fδr l2l1 . A priori it is not clear whether one
should use F = ṗ1 or F = ṗ2. We will fix this question below,
Appendix C 4.

The contribution of out-processes (l → l′) to the collision
integral is not altered. Contrary, for in-processes (l′ → l),
energy conservation implies

fl′ = f (ξ,ε − ξWl′→l ,φ
′) ≈ fl′ − ∂εξ

fl′Wl′→l . (C16)

Here we expanded the distribution function under the assump-
tion of small work W = Wl′→l = Fδr ll′ as compared to the
chemical potential. We will find below that this assumption is
justified; see Eq. (C57).

3. Full Boltzmann equation

Let us return to the Boltzmann equation presented above
(C3). It is worth splitting the contribution of ṗ∇ pf into two
terms, as follows:

ṗ∂ pf = ṗclean∂ pf + qB/c

1 − qB�/c
(∂ pf )ε

[∑
l′

ωl′lδrl′l

]
.

(C17)

Bringing the last term to the right-hand side of the
Boltzmann equation leads to

∂tf + ṙ∂rf + ṗclean∂ pf = St[f ]|full (C18)

with

St[f ]|full = St[f ]|(s) + St[f ]|(a) + St[f ]|WE
+ St[f ]|WB

,

(C19)

where

St[f ]|(s) = −
∑

l′
ω

(s)
l′l (fl − fl′ ) , (C20)

St[f ]|(a) = −
∑

l′
ω

(a)
l′l (fl + fl′ ) , (C21)

St[f ]|WE
= −

∑
l′

ωll′∂εξ
fl′δr ll′

q E

1 − qB�

c

, (C22)

St[f ]|WB
= −

∑
l′

ωll′∂εξ
fl′δr ll′

εṽ
qB

c

1 − qB�

c

− ṗsj ∂ pf

= −
∑

l′
ωll′∂εξ

fl′δr ll′
εṽ

qB

c

1 − qB�

c

−
∑

l′
ωl′l∂εξ

flδr l′l
εT v(ξ ) qB

c

1 − qB�

c

. (C23)

Here we have introduced the notation ω
(s)
l′l = (ωl′l + ωll′)/2

and ω
(a)
l′l = (ωl′l − ωll′)/2 and neglected accumulation of side-

jump and skew-scattering effects (higher orders in mv2
0/μ).

In the last line we used
∑

l′ ωl′lδrl′l ∝ εv and dropped terms
O(ω2

ll′). The velocity ṽ is a placeholder for v(ξ ) or v(ξ )′, because
at this point, it is unclear whether W = ṗδr ll′ or W = ṗ′δr ll′

should be chosen.

4. Conservation laws at E = 0

Clearly, for E = 0∑
l

St[f ]|full = 0 and
∑

l

ε( p) St[f ]|full = 0 (C24)

provided

δr ll′ε(ṽ − v(ξ )′) = 0. (C25)

Under the assumption that the side jump r ll′ contains only
terms proportional to p − p′ and ( p + p′) pε p′ [see Eqs. (C5)
and (C54) below] we find that the two solutions ṽ = −v(ξ ) and
ṽ = v(ξ )′ are legitimate. Both possible solutions lead to the
same collision integral St[f ]|full [see again Eq. (C25) for the
solution ṽ = −v(ξ )]. We will use ṽ = −v(ξ ); then

St[f ]|WB
= −

∑
l′

ω
(s)
ll′ δr ll′

εv(ξ ) qB

c

1 − qB�ξ

c

(
∂εξ

fl − ∂εξ
fl′
)
.

(C26)

5. Back to the Boltzmann equation

The Boltzmann equation (C18) at zero E field is solved
by any isotropic function fl = f0. The physical solution is
the Fermi-Dirac distribution function. To access the static,
homogeneous nonequilibrium distribution function we restrict
ourselves to linear response and use the expansion in harmon-
ics:

fl =
∑

n

fne
inφ ↔ fn =

∫
dφ

2π
fle

−inφ. (C27)

The left-hand side of Eq. (C18) becomes (using E± = Ex ±
iEy)

ṗclean∂ pf =
∑

n

{
ei(n+1)φ

[(
ξv∂εξ

fn − nfn/p
)qE−

2

]

+ ei(n−1)φ

[(
ξv∂εξ

fn + nfn/p
)qE+

2

]
+ einφ

( − ζ�cl
c infn

)} 1

1 − qB�ξ

c

. (C28)

The right-hand side becomes

St[f ]|(s) = −
(

1 − qB�ξ

c

)∑
n

fn

τ
(s)
n

einφ (C29)

with

1

τ
(s)
n

=
∫

(dp′)ω(s)
l′l (1 − ein(φ′−φ)). (C30)

The first symmetric scattering rate 1
τ

(s)
1

is the transport rate
1

τ
(s)
1

= 1
τtr

.

The skew scattering contribution to the collision term is

St[f ]|(a) = −
(

1 − qB�ξ

c

)∑
n

i
fn

τ
(a)
n

einφ. (C31)
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It contains the skew-scattering rates

1

τ
(a)
n

= −i

∫
(dp′)ω(a)

l′l [ein(φ′−φ) + 1]. (C32)

The last term “+1” in the square bracket drops out in view of
the definition of ω

(a)
l′l .

The contribution of work by electrical field is (no accumu-
lation of skew scattering and side jump)

St[f ]|WE
= −

∑
n

∂εξ
fn

�ξp

τ
(n)
sj

iq

2

×(ei(n+1)φE− − ei(n−1)φE+). (C33)

Higher harmonics of the mean side-jump time τ
(n)
sj are defined

analogously to (C6):

∑
l′

ωl′l (δr l′l) ein(φ′−φ) =
(

1 − qB�ξ

c

)
�ξε p

τ
(n)
sj

, (C34)

and thus τ
(0)
sj = τ sj from Eq. (C6).

The last contribution is the side-jump work by the B field.
It reads

St[f ]|WB
=
∑

n

∂εξ
fne

inφ

(
1 − qB�ξ

c

) 〈
W

(B)
l′→l

〉
τ

(W )
n

.

(C35)

We introduced the averaged power〈
W

(B)
l′→l

〉
τ

(W )
n

=
∫

(d p′)ωll′δr ll′
ε(−v(ξ )) qB

c

1 − qB�ξ

c

(1 − ein(φ′−φ)).

(C36)

The subscript l′→l will be mostly omitted in the following.
In the linear response approximation, the Boltzmann

equation involves only the 0th and (±1)st harmonics:

τtrξvm1(
1− qB�ξ

c

)2

(− ∂εξ
f0
)qE−

2
= m−1

2 f1 − ∂εξ
f1

〈W (B)〉τtr

τ (W )
.

(C37)

In this equation, we introduced the complex functions m1,2 =
m1,2(εξ ) with

m1 =
[

1 + i

(
1 − qB�ξ

c

)
�ξk

τsj vξ

]
, (C38a)

m2 =
{

1 + i

[
τtr

τa

− ζ�cl
c τtr(

1 − qB�ξ

c

)2

]}−1

. (C38b)

For simplicity, we dropped the subscript 1 in all of the scatter-
ing rates, thus τ

(W )
1 = τ (W ), τ

(a)
1 = τa , and we introduced the

transport time τ (1)
s = τtr .

6. Solution of the Boltzmann equation

a. A representation of the delta function

For the solution of the kinetic equation, the following
broadened delta function will be needed:

δ̃(εξ ,ε
′′) = sgn

(
Re

[ 〈W (B)〉
τ (W )

])

× e
− ∫ ε′′

εξ

dε′
[〈W (B)〉m2τtr /τ (W ) ]|

ε′

[〈W (B)〉m2τtr/τ (W )]|ε′′

× θ

(
sgn

(
Re

[ 〈W (B)〉
τ (W )

])
(ε′′ − εξ )

)
. (C39)

As a function of εξ it is peaked at ε′′ and asymmetri-
cally exponentially decaying into the direction prescribed by
sgn(Re[〈W (B)〉/τ (W )]). It is assumed that this quantity is energy
independent within a given band ξ ; see Eq. (C57) below for
the case of Dirac electrons. Equation (C39) is applied to the
AHE; in the regime of applicability, 〈W (B)〉/τ (W ) is smooth on
the scale on which δ̃ decays; see Fig. 15.

The broadened delta function leads to the following
approximate convolutions for functions f (ε) which are smooth
on the scale of τtr〈W (B)〉/τ (W ):∫

dεξf (εξ )δ̃(εξ ,ε
′′) ≈ f (ε′′) − (f 〈W (B)〉m2τtr/τ

(W ))′ε′′,

(C40)∫
dε′′f (ε′′)δ̃(εξ ,ε

′′) ≈ f (εξ ) + (f 〈W (B)〉m2τtr/τ
(W ))′εξ

.

(C41)

b. General linear response solution

The general linear response solution for Eq. (C37) is

f1(εξ ) =
∫ ∞

−∞
dε′′

{[
τtr

(1 − qB�ξ/c)2
ξvm1m2(−∂ε′′f0)

]
ε′′

× δ̃(εξ ,ε
′′)
}

qE−
2

. (C42)

0

FIG. 15. (Color online) The broadened delta function entering
the general solution of the kinetic equation. In the inset, the same
function is shown in the vicinity of the chemical potential, where it
takes the value |τtr〈W (B)〉/τ (W )|−1.
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Formally, there is also an exponentially growing solution
which has been dropped for obvious physical reasons. In the
limit T � |〈W (B)〉| the approximate solution is

f1(εξ ) =
[

τtr(
1 − qB�ξ

c

)2 ξvm1m2
( − ∂εξ

f0
)]

εξ

qE−
2

+ [〈W (B)〉m2τtr/τ
(W )]εξ

× ∂εξ

[
τtr(

1 − qB�ξ

c

)2 ξvm1m2
( − ∂εξ

f0
)]

εξ

qE−
2

.

(C43)

This solution can also be obtained by iteratively solving
Eq. (C37). In the limit when temperature T is smaller than
all other scales, we can use the zero-temperature solution

f1(εξ ) = δ̃(εξ ,μ)

[
τtr(

1 − qB�ξ

c

)2 ξvm1m2

]
μ

qE−
2

. (C44)

When convoluted with a function f (εξ ) which is smooth on the
scale of the magnetic work (for example the current), f1(εξ )
will be approximated according to Eq. (C40). By comparison
with Eq. (C43) we see that the results for the current in the
limits |〈W (B)〉| 	 T 	 μ and T 	 |〈W (B)〉| 	 μ coincide.

7. Conductivity at T = 0 and μ � T � |〈W (B)〉|
a. Intrinsic contribution

As explained, the total current density also has a contribu-
tion of the filled bands (intrinsic AHE):

j intr =
∑

l

−�ξq
2ε E

1 − �ξ qB

c

f0,l = σ intr
xy ε E, (C45)

where in the case of Dirac fermions [124,157]

σ intr
xy = − q2

4π

[
sgn(m)θ

(
m2v4

0 − μ2
)

+ mv2
0

|μ| θ
(
μ2 − m2v4

0

)]
. (C46)

b. Nonequilibrium contribution

The longitudinal and transverse conductivity are

σxx = Re σ (μ) and σxy = Im σ (μ), (C47)

where the complex function σ (μ) is

σ (μ) =
[
σ (
B)

xx

m2
1m2(

1 − qB�ξ

c

)2

− ∂μ

(
σ (
B)

xx

〈W (B)〉
τ (W )ξv

m1m2

)
vξτtrm1m2(
1 − qB�ξ

c

)2

]
.

(C48)

In this expression we used the expression for the conductivity
in zero magnetic field:

σ (
B)
xx (μ) = q2ν(μ)

v2(μ)τtr (μ)

2︸ ︷︷ ︸
D(μ)

, (C49)

where ν(μ) is the density of states.

8. Evaluation for Dirac fermions

While the solution given in Eqs. (C45) and (C48) is a priori
general (not restricted to the situation of Dirac fermions) we
now return to the case of 3D TI surface states. The various
Fermi surface contributions are

m1 = 1 − i

(
1 + 1

2

mv2
0

μ

ζ�cl
c

μ

)
1

2

mv2
0

μ

1

μτsj

≈ 1 − i
1

2

mv2
0

μ

1

μτsj

. (C50)

The approximation ≈ keeps only the leading orderO(mv2
0

μ
,
�cl

c

μ
).

Note that the imaginary part (the side-jump contribution) is
small in 1/kF l. Next,

m2 =
1 − i

[
τtr

τa
− ζ�cl

c τtr(
1− qB�ξ

c

)2

]

1 +
[

τtr

τa
− ζ�cl

c τtr(
1− qB�ξ

c

)2

]2

≈ 1 + iζ�cl
c τtr

1 + (
�cl

c τtr

)2

[
1 + 2

ζ�cl
c τtr

1 + (
�cl

c τtr

)2

τtr

τa

]

−i

τtr

τa

1 + (�cl
c τtr )2

. (C51)

a. Scattering rates in leading approximation:
Short-range impurities

The symmetric scattering matrix element is

ω
(s)
ll′ = 2πniV

2
0 δ(εξ ( p) − εξ ( p′))

×
[

cos2

(
φ − φ′

2

)
+
(

mv2
0

εξ

)2

sin2

(
φ − φ′

2

)]
,

(C52)

where ni and V0 are concentration respectively strength of
short-ranged impurities. The transport rate evaluated at the
chemical potential immediately follows,

1

τtr

=
∫

(dp′)ω(s)
ll′ [1 − cos(φ′ − φ)]

= 2πniV
2

0 ν
1 + 3

(mv2
0

μ

)2

4
. (C53)

According to Ref. [124] the side jump is

δr l′l = �ξε( p − p′)
| 〈uξ, p|uξ, p′ 〉 |2 (C54)
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and thus the side-jump rate follows to be

1

τ sj
= 2πniV

2
0 ν. (C55)

This is the same as the quantum rate in a normal material (the
quantum rate is different for the Dirac problem). We also refer
to Ref. [124] for the skew scattering rate, which is

1

τa

= πν(μ)

2

[
niV

3
1 m

(
μ2 − m2v4

0

)
2μ2

+
(
niV

2
0

)2(
3m

(
μ2 − m2v4

0

))
4μ3

]
. (C56)

Both terms in the square bracket are manifestly beyond the
Born approximation (the first term involves the third moment
of the disorder potential V 3

1 ).
The power provided by the B field is

〈W (B)〉
τ (W )

= 2πniV
2

0 ν

qB�ξ

c

1 − qB�ξ

c

ξvp
3

2

= 3v2
0p

2

2μτsj

⎛⎝−
1
2

mv2
0

μ

ζ�cl
c

μ

1 + 1
2

mv2
0

μ

ζ�cl
c

μ

⎞⎠ . (C57)

In the case of short-range impurities we can omit the
contribution of 〈W (B)〉 to the conductivity since

〈W (B)〉
τ (W )

τtr

μ
∼ v2

0p
2

μ2

τtr

τsj

mv2
0

μ

�cl
c

μ
≈ 0 (C58)

is beyond leading order in O(mv2
0

μ
,
�cl

c

μ
).

APPENDIX D: MAGNETIC MIRROR CHARGE FOR A
DOUBLE QH STRUCTURE

In this Appendix we consider the image magnetic monopole
effect for a double QH structure (a double domain wall of
E · B states). We consider the setup as in Fig. 16 and define
the following three regions in real space:

1© = {r ∈ R3|0 < z},
2© = {r ∈ R3| − d � z � 0},
3© = {r ∈ R3|z < −d}.

Region 2© might correspond to the 3D TI; its surfaces should
be characterized by a QH state with σxx = 0 and definite

FIG. 16. (Color online) Sketch of three different scenarios for
the setup discussed in Appendix D. The left and right scenarios
correspond to case I, the middle one to case II.

σxy . Equivalently, one can can describe the three regions a ∈
{ 1©, 2©, 3©} by definite bulk ϑa . In addition, localized charges
might contribute to nontrivial εa and μa .

1. Positions of the mirror charges

Let z0 > 0 denote the position of the actual charge. We
will need the quantity z̃0 = { z0

2d
} × 2d (curly brackets denote

the fractional part of a real number). We have to consider two
separate cases:

(I) Let z0 ∈ [2kd, (2k + 1) d] with k ∈ N0.
We define, according to Fig. 16, z0 ≡ z̃0 < d.

(II) Let z0 ∈ [(2k − 1) d,2kd] with k ∈ N.
In this case, by definition and according to Fig. 16, z0 ≡
2d − z̃0 < d.

In both cases, the position of (mirror) charges is thus given
by (see again Fig. 16)

z±
m ≡ 2md ± z0 (m ∈ Z). (D1)

By convention, the defining tuples (m,s) (with m ∈ Z and
s = ±) are ordered by the order implied of zs

m [e.g., since
z−

2 < z+
2 the following inequality holds: (2,−) < (2,+)].

Clearly, depending on their (m,s) values, the charges reside
in the following regions:

1©: (m,s) � (0,+),
2©: (m,s) = (0,−),
3©: (m,s) � (−1,+).

In case I, the actual charge sits at z0 = z+
� z0

2d � while for case

II z0 = z−
� z0

2d � follows. The symbols �. . . � and �. . . � denote

floor and ceiling functions.

2. Solution of the image charge problem for the thin film

Following Karch [88], we use the unified description in
terms of the vector (D,2αB) which is connected to E and H
via (

D
2αB

)
= M

(
2αE

H

)
(D2)

with the matrix

M = 2α

c2ε

(
ϑ2

4π2 + (
cε
2α

)2 − ϑ
2π

− ϑ
2π

1

)
in each of the three regions a ∈{ 1©, 2©, 3©}. We make the
following ansatz for the potential � = (�E,2α�M ) with
(D,2αB) = −∇�:

� 1© =
∞∑

n=−∞

∑
s=±

A(s)
n∣∣x − z

(s)
n êz

∣∣ , (D3)

� 2© =
∞∑

n=−∞

∑
s=±

B(s)
n∣∣x − z

(s)
n êz

∣∣ , (D4)

� 3© =
∞∑

n=−∞

∑
s=±

C(s)
n∣∣x − z

(s)
n êz

∣∣ . (D5)

In order to fulfill the Poisson/Laplace equation the series of
(mirror) charges [defined each as A = (AE,2αAM ), etc.] has
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the form (
B(s)

n

) = (. . . B−
−1,B

+
−1; 0; B+

0 ,B−
1 , . . . ), (D6)

(
C(s)

n

) = (. . . ,0,0; C−
0 ; C+

0 ,C−
1 , . . . ). (D7)

Further, in case I(
A(s)

n

) = (. . . A−
−1,A

+
−1; A−

0 ; 0, . . . ,0,A+
� z0

2d
�,0, . . . ) (D8)

while in case II(
A(s)

n

) = (. . . A−
−1,A

+
−1; A−

0 ; 0, . . . ,0,A−
� z0

2d
�,0, . . . ). (D9)

In these sequences, elements left of the first semicolon are
associated with region 3©, the element in between the two
semicolons resides in region 2©, while elements on its right
are associated to charges in the positive half plane, region 1©.
Clearly A+

� z0
2d � and A−

� z0
2d � are given by the “bare” (actual) value

of the charge Q placed close to the interface.

a. Derivation of recursion relations

The position of mirror charges is constructed such that a
reflection at the interface 1©- 2© implies z(s)

m → z
(−s)
−m and at a

reflection at the interface 2©- 3© z(s)
m → z

(−s)
−(m+1) (−s = ∓ for

s = ±). Then the continuity of perpendicular components of
(D,2αB) and parallel components of (2αE,H) yields the
following infinite series of conditions:

A(s)
n − A

(−s)
−n = B(s)

n − B
(−s)
−n , (D10a)

M−1
1

(
A(s)

n + A
(−s)
−n

) = M−1
2

(
B(s)

n + B
(−s)
−n

)
, (D10b)

with (n,s) ∈ 1©, and

B(s)
n − B

(−s)
−(n+1) = C(s)

n − C
(−s)
−(n+1), (D11a)

M−1
2

(
B(s)

n + B
(−s)
−(n+1)

) = M−1
3

(
C(s)

n + C
(−s)
−(n+1)

)
, (D11b)

with (n,s) ∈ 1© ∪ 2©. In this region C
(−s)
−(n+1) = 0 and therefore

(D11a) and (D11b) lead to

0 = (
1 + M3M−1

2

)
B+

−1, (D12a)

(
1 − M3M−1

2

)
B(s)

n = (
1 + M3M−1

2

)
B

(−s)
−(n+1), (D12b)

where (n,s) ∈ 1©. We can plug this knowledge of B’s back into
(D10a) and (D10b) leading to the following final relations:

“Initial conditions”:

R+
21A

−
0 = R−

21A
+
0 , (D13a)

R+
21A

+
−1 = R−

21A
−
1 . (D13b)

“Recursive relations” [(n,s) ∈ 1©]:

R−
32R

−
21A

(−s)
−n + R+

32R
+
21A

(−s)
−(n+1)

= R−
32R

+
21A

(s)
n + R+

32R
−
21A

(s)
n+1. (D14)

Here we have defined R±
ab = 1 ± MaM−1

b .

b. Solution of recursion relations

The general solution of these relations for a charge sitting
at z(s0)

n0
is

A(s0)
n0

= Q, (D15a)

A(s0)
n = 0 ∀n 
= n0, (D15b)

A(−s0)
n = 0 ∀n > −n0, (D15c)

A
(−s0)
−n0

= (R+
21)−1(R−

21)Q, (D15d)

A
(−s0)
−(n0+l) = (−)l−1 [(R+

21)−1(R+
32)−1(R−

32)(R−
21)]l

× [(R−
21)−1(R+

21) − (R+
21)−1(R−

21)]Q ∀l � 1.

(D15e)

c. Limits and checks

Two simple checks of the correctness of the result are in
order.

(1) Let (ε2,μ2,ϑ2) = (ε3,μ3,ϑ3). Then R−
23 = 0. It follows

that the only nontrivial mirror charge is

A
(−s0)
−n0

= (R+
21)−1(R−

21)Q

= (
M1M−1

2 + 1
)−1 (M1M−1

2 − 1
)
Q, (D16)

in accordance with Ref. [88].
(2) Let (ε1,μ1,ϑ1) = (ε2,μ2,ϑ2). Then R−

21 = 0 and R+
21 =

2. It follows that the only nontrivial mirror-charge is

A
(−s0)
−(n0−1) = (R+

32)−1(R−
32)Q, (D17)

in accordance with the previous limit and Ref. [88].

d. The potential and its Fourier transform

We can thus write

� 1© (x,z0) = 1

|x − z0êz|Q

+ 1

|x + z0êz| (R+
21)−1(R−

21)Q

−
∞∑
l=1

[−(R+
21)−1(R+

32)−1(R−
32)(R−

21)]l

|x + (z0 + 2ld) êz|
× [(R−

21)−1(R+
21) − (R+

21)−1(R−
21)]Q.

In Fourier space (Fourier transform only with respect to x and
y coordinates) � 1© simplifies:

� 1© (q,z,z0) = 2π

q
{e−|z−z0|q + e−(z+z0)qTeff}Q.

We introduced the matrix

Teff = (R+
32R

+
21e

dq + R−
32R

−
21e

−dq )−1

× (R+
32R

−
21e

dq + R−
32R

+
21e

−dq). (D18)
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In view of 2D rotational invariance, the potential only depends
on q = |�q| (in this Appendix 2D vectors are denoted by
arrows). One can exploit this formula and Fourier transform
back to real space:

� 1© (x,z0) =
∫ ∞

0
dq

q

2π
� 1© (q,z,z0) J0 (qρ) , (D19)

where J0 (qρ) is the zeroth Bessel function and ρ = |�x| is the
norm of the 2D component of x perpendicular to êz.

This concludes the derivation of Eq. (60) of the main text.

e. Further limits and checks

With the help of � 1© in Fourier space and the matrix Teff ,
one can easily check the d → ∞ and d → 0 limits. First
consider d → ∞. As expected, we obtain a single mirror
charge at z = −z0 with charge

(
R+

21

)−1
R−

21Q. Now consider
d → 0. After a bit of algebra exploiting the definition of
R±

ab, we obtain the expected result: a single mirror charge
at z = −z0 with charge (R+

31)−1R−
31Q (the same result as if

region 2© never existed).
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