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Magnetoresistance induced by rare strong scatterers in a high-mobility two-dimensional electron gas
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We observe a strong negative magnetoresistance at nonquantizing magnetic fields in a high-mobility two-
dimensional electron gas. This strong negative magnetoresistance consists of a narrow peak around zero magnetic
field and a huge magnetoresistance at larger fields. The peak shows parabolic magnetic field dependence and is
attributed to the interplay of smooth disorder and rare strong scatterers. We identify the rare strong scatterers as
macroscopic defects in the material and determine their density from the peak curvature.
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The quality and the mobility of two-dimensional electron
gases (2DEGs) have improved continuously since the first
observation of the fractional quantum Hall effect (FQHE)
[1,2]. This improvement has not only allowed the observation
of new effects but also has led to the emergence of new
questions. One problem is the characterization of the sample
quality which is usually reflected by the electron mobility
μe determined from the resistivity at zero magnetic field.
Sometimes, FQHE features are observed for a variety of
mobilities but not in the highest-mobility samples. It follows
that the electron mobility alone cannot serve as a reliable
indication for the quality of high-mobility samples. Therefore,
one has to look for more specific effects to characterize
the sample quality. The quality of high-mobility samples
depends on various types of disorder. The remote donors are
normally assumed to be the main source of disorder. Other
sources, e.g., the scattering on interface roughness and on
residual impurities in the quantum well, become important
with increased spacer width. Here, we consider macroscopic
defects in the sample as an additional source of disorder. These
so-called oval defects are seen as randomly distributed defects
on the material surface. In this paper we show that a negative
magnetoresistance around zero magnetic field is induced by
such macroscopic defects.

A recent work reported on a strong negative magnetore-
sistance at nonquantizing magnetic fields [3] which consists
of a peak around zero magnetic field and a huge negative
magnetoresistance at larger magnetic fields. In Ref. [3] the
focus was on the huge magnetoresistance while the peak was
considered as a geometry effect. In the present paper, we
analyze the peak around zero magnetic field in more detail and
observe that the peak is induced by the interplay of two types
of disorder, smooth disorder due to remote ionized impurities
and rare strong scatterers due to the presence of macroscopic
defects. The density of macroscopic defects is deduced from
the peak considering the theory developed in Refs. [4,5].

Various ungated and gated samples of two different mate-
rials (samples A and B) were used for the magnetotransport
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measurements. The behavior of the strong negative magnetore-
sistance was always similar. The 2DEG of both materials is
realized in a GaAs/AlGaAs quantum well grown by molecular-
beam epitaxy. The quantum well has a width of 30 nm and is Si
doped from both sides with spacers of 70 nm. Only the electron
density and the electron mobility are slightly different for
both materials (ne,A ≈ 3.1 × 1011 and ne,B ≈ 3.3 × 1011 cm−2,
and μA ≈ 11.9 × 106 and μB ≈ 10.9 × 106 cm2/(V s), respec-
tively). The specimens are Hall bars with a total length of
1.8 mm, a width of w = 200 μm, and a potential probe
spacing of l = 300 μm. The Hall bars were defined by
photolithography and wet etching. The magnetotransport
measurements were performed in a dilution refrigerator with
a base temperature of 20 mK. All measurements were carried
out by using a low-frequency (13-Hz) lock-in technique.

Figure 1 shows a typical measurement of the strong negative
magnetoresistance at |B| < 100 mT for two different tem-
peratures. We divide the negative magnetoresistance into two
distinct sections with parabolic magnetic field dependencies.
The huge magnetoresistance at larger magnetic fields (green
parabola) depends strongly on the temperature, while the
narrow peak around zero magnetic field (red parabola) is left
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FIG. 1. (Color online) The longitudinal resistivity ρxx vs mag-
netic field B for two temperatures T . The strong negative magnetore-
sistance is divided into two sections fitted by parabolic magnetic field
dependence. The huge magnetoresistance (green parabola) depends
strongly on the temperature, while the narrow peak around zero
magnetic field (red parabola) is left unchanged.

1098-0121/2014/90(16)/165434(5) 165434-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.165434


L. BOCKHORN et al. PHYSICAL REVIEW B 90, 165434 (2014)

0

1

2

3

4

5

B (mT)

xx
)

(

85°
89°

(a)

50250-25

ne = 2.3 10 cm11 -2.

85°

89°

(b)

50250-25
B (mT)T

ne = 2.3 10 cm11 -2.

FIG. 2. (Color online) (a) The strong negative magnetoresistance
vs total magnetic field B for different angles. The angle is increased
from 0◦ to 90◦ in steps of 5◦. (b) The strong negative magnetoresis-
tance vs perpendicular magnetic field B⊥ for the same angles. The
huge magnetoresistance shows a tilt-angle dependence, while the
peak is left unchanged.

unchanged for low temperatures [3,6], which is a sign for the
absence of weak localization. Also common models of the
electron-electron interaction correction [7,8] can be neglected
due to the temperature independence of the narrow peak. The
crossover between the peak and the huge magnetoresistance
is seen as a shoulder in the longitudinal resistance around
Bc = ±12 mT.

In order to understand the nature of the different types
of magnetoresistances, we examine the effect of an in-plane
magnetic field component on the strong negative magnetore-
sistance. The in-plane magnetic field is introduced by tilting
the sample with respect to the magnet axis. In Fig. 2(a) the
longitudinal resistivity ρxx is shown vs total magnetic field B

for different tilt angles. The tilt angle is increased in steps of
5◦ from 0◦ to 90◦. The width of the peak and the width of the
huge magnetoresistance increase with tilt angle. To test the
two-dimensionality of the observed effect, Fig. 2(b) shows
the longitudinal resistance ρxx vs perpendicular magnetic
field B⊥ for the corresponding tilt angles. The curvature of
the huge magnetoresistance is constant until 60◦. Above 60◦
the curvature decreases by increasing the tilt angles as also
observed in Ref. [6]. Therefore, the huge magnetoresistance
shows a tilt-angle dependence which hints towards an influence
of the three-dimensionality of the sample material. More
specifically, in the presence of a parallel component of
magnetic field the scattering of the electrons with the lattice
increases. Consequently, the scattering rate rises and the huge
magnetoresistance vanishes [9].

In contrast the peak around zero magnetic field is left
unchanged for all tilt angles as a function of perpendicular
magnetic field. The tilt-angle independence of the peak means
that it is a purely two-dimensional effect.

In the following part we analyze the behavior of the peak in
more detail. The peak is characterized by two quantities, the
height of the peak and its curvature. The height of the peak
�ρxx = ρ0 − ρxx(Bc) is given by the difference between the
resistivity ρ0 at zero magnetic field and the value of the shoul-
der ρxx(Bc). The curvature of the peak is determined by fitting
a parabola to the experimental data. Figure 3 shows the value of
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FIG. 3. (Color online) The value of ρxx(Bc) and the height of the
peak, �ρxx , vs electron density ne using a log-log scale. Both ρxx(Bc)
and �ρxx decrease with increasing electron density.

ρxx(Bc) and the corresponding height of the peak �ρxx vs elec-
tron density ne for both materials. Both ρxx(Bc) and the height
of the peak, �ρxx , decrease with increasing electron density.
Note that the shoulder in the longitudinal resistivity shows
a stronger power-law dependence on the electron density,
ρxx(Bc) ∝ n

−5/2
e , than the height of the peak, �ρxx ∝ n

−1/2
e .

The dependence of ρxx(Bc) ∝ n
−5/2
e on electron density

is characteristic of scattering by smooth disorder. In a 2DEG
with a smooth random potential the corresponding transport
scattering time is given by

τ−1
L ∼ vF

d

(
U

EF

)2

(1)

with d the correlation radius and U the amplitude of the
potential, vF the Fermi velocity, and EF the Fermi energy. The
subscript L in Eq. (1) emphasizes the long-range character of
this type of disorder in contrast to the short-range disorder.
For the model of smooth disorder created by remote donors
the correlation radius d of the smooth disorder is determined
by the spacer width, i.e., d � 70 nm. The resulting trans-
port scattering time τ−1

L = π ni �/[4m∗ (kF d)3] depends on
electron density as n

−3/2
e [10,11]. Here ni is the effective

two-dimensional density of donors, kF is the Fermi wave
vector, and m∗ is the effective mass. If the resistivity is
dominated by smooth disorder, one expects the following
dependence on electron density:

ρxx = m∗

e2neτL

∝ n−5/2
e . (2)

The same dependence is observed in Fig. 3 for the value of the
shoulder ρxx(Bc) in the longitudinal resistivity. Therefore, it is
natural to assume that the main scattering mechanism govern-
ing the resistivity in fields higher than Bc is provided by smooth
disorder. To verify this statement we compare the quantum
relaxation time τq with the transport scattering time τL. The
quantum relaxation time τq is calculated from the magnitude of
the Shubnikov–de Haas oscillations following Coleridge et al.
[12]. For an electron density of ne = 3.2 × 1011 cm−2 the trans-
port scattering time deduced at Bc (τL = 4.9 × 10−10 s) is much
larger than the quantum relaxation time τq = 1.8 × 10−12 s.
The large ratio of τL/τq ∼ 270 shows the dominance of
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small-angle scattering at remote ionized impurities and is close
to the theoretically expected ratio of (2kF d)2. This implies that
the main scattering mechanism in our samples is not due to
background (short-ranged) impurities [13]. On the other hand,
the height of the peak �ρxx does not scale as n

−5/2
e and hence

an additional type of disorder has to play a role.
In Ref. [3] it was assumed that the peak around zero

magnetic field is given by scattering at the edges in the ballistic
regime, similar to the quenching of the Hall effect [14,15]. Our
analysis of the strong negative magnetoresistance for different
length-to-width ratios shows that the peak is independent of
the geometry [16], in contrast to the recent observation [17]
for similar samples. In particular, we would also expect the
peak to be larger for higher electron densities if it would
depend on the ratio between classical cyclotron orbit and
geometry. Instead, the combination of our observations can
be consistently described within the model of the interplay of
two types of disorder as discussed in Refs. [4,5].

Specifically, Ref. [4] calculated a negative magnetoresis-
tance induced by an interplay of smooth disorder and rare
strong scatterers. The combination of both types of disorder
induces a mechanism of negative magnetoresistance due to
memory effects leading to a peak around zero magnetic field.
This negative magnetoresistance is followed by a saturation
of the longitudinal resistivity ρxx(B) at a value determined by
smooth disorder. This is in agreement with our observations of
the scaling of ρxx(Bc) above. In stronger magnetic fields the
effect of rare strong scatterers is negligible. Other mechanisms
of magnetoresistance become more efficient with further
increased magnetic field, so that instead of the saturation one
observes a dependence of ρxx on magnetic field characterized
by different scales.

On a quantitative level, the interplay of a long-range
smooth random potential and strong scatterers is governed
by the ratio of the corresponding mean free paths. The mean
free path due to scattering by smooth disorder is �L = vF τL

with the transport relaxation time τL = m∗/[e2neρxx(Bc)] and
vF = �kF /m∗ the Fermi velocity. The mean free path due to the
randomly distributed strong scatterers is �S = vF τS ∼ nSaS ,
where τS is the transport scattering time due to scattering by
strong scatterers, nS is the density of the rare strong scatterers,
and aS is the radius of the strong scatterers. We assume τL ∼ τS

in the situation of high-mobility samples. Within the model of
Ref. [4], there is a crossover from ρ0 = (m∗/e2ne)(τ−1

L + τ−1
S )

to ρxx(Bc) = m∗/(e2neτL) which takes places around the
“percolation threshold” Bc. Below the percolation threshold
Bc electrons move in rosettelike trajectories around the strong
scatterers. For larger magnetic fields B > Bc this rosettelike
movement of the electrons is precluded by other scattering
events. In Fig. 1 we observe a saturation of the longitudinal
resistivity around ±12 mT; this shoulder marks the percolation
threshold Bc.

In our measurements the height of the peak �ρxx is given
by ρ0 − ρxx(Bc) = m/(e2neτS). From Fig. 3 we can conclude
that τS ∼ n

−1/2
e . We find that τL and τS have the same order

for the considered range of electron densities. This is clearly
seen from the comparison of the magnitudes of the peak and
huge magnetoresistance in Fig. 3, suggesting roughly τS ∼ 3 τL

to 5 τL. The observed dependence on electron densities of

τL ∝ n
3/2
e and τS ∝ n

−1/2
e confirms the different natures of the

narrow peak and the huge magnetoresistance [3]. The peak is
then expressed by

ρxx

ρ0
= 1 − ω2

c

2πnSv
2
F

f (x), (3)

where ωc = eB/m∗ is the cyclotron frequency,

f (x) = 2

x + 1

∫ ∞

0
dq

q J 2
1 (q)

x q2 + 2
[
1 − J 2

0 (q)
] (4)

with x = τS/τL, and J0,1(q) are Bessel functions. It is a
generalization of the result which was derived in Ref. [4] in
the limit x 	 1.

The mixed-disorder model [4] was also used by Dai et al.
[18] to describe a negative magnetoresistance. In Ref. [18] no
distinct shoulder (seen as a two-scale negative magnetoresis-
tance) was observed. Unfortunately, Ref. [18] did not report on
the temperature dependence of the magnetoresistance which
in our case serves as an important tool to distinguish between
different mechanisms.

In about 10 % of all measured contact pairs we observe
a giant narrow peak. Figure 4(a) shows the longitudinal
resistivity ρxx vs magnetic field around zero magnetic field
for two different pairs of Ohmic contacts of the same Hall bar.
We observe the typical peak (black) around zero magnetic
field as discussed before and a giant peak (red) in the
same Hall bar. The height and the curvature of the giant
peak are clearly different from the typical peak. The strong
negative magnetoresistances with a giant peak can also be
separated in two distinct sections. The giant peak shows
similar dependencies on various conditions as before the
typical peak, e.g., temperature and tilt-angle independence.
Since we attributed the typical peak to the interplay of smooth
disorder with rare strong scatterers, we can conclude that
the distribution of the rare strong scatterers seems to be
inhomogeneous across the sample.

We get further confirmation of an inhomogeneous distri-
bution by determining the density of strong scatterers nS

for both types of peaks. Figure 4(b) shows the density of
strong scatterers nS for the giant peak (red circles) and
for the typical peak (black squares) vs electron density ne.
The density of strong scatterers nS is determined by using
Eq. (3) with the experimental data for the height of the peak
�ρxx = ρ0 − ρxx(Bc) and its curvature. The density of strong
scatterers, nS , as a function of electron density is nearly
constant for both types of peaks. On the basis of the density
nS and the mean free path �S we deduce the average radius of
the strong scatterers aS = (2nS�S)−1 ∼ 19 μm (aS ∼ 15 μm
for the giant peak). Figure 4(b) also shows that the density
of strong scatterers, nS , is higher for the giant peak than for
the typical peak. The differences in the density of the strong
scatterers, nS , for both types of peaks are signatures of an
inhomogeneous distribution of rare strong scatterers between
some Ohmic contacts.

On the basis of these observations we identify the
strong scatterers as macroscopic defects in the material. Our
observations fit to the randomly distributed oval defects on
the material surface as observed in Fig. 4(c). The low density
nS and the large radius aS also confirm oval defects as strong
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FIG. 4. (Color online) (a) The longitudinal resistivity ρxx vs mag-
netic field B for two different Ohmic contacts at ne = 2.7 × 1011 cm−2.
We assume for the giant peak the influence of local strong scatterers
between two Ohmic contacts marked in red. (b) The density of strong
scatterers, nS , vs electron density ne for the typical peak (black
square) and for the giant peak (red circle) on a log-log scale. (c)
The macroscopic defects on the surface are so-called oval defects
which are caused by Ga droplets anywhere in the material.

scatterers. We count on average 28 oval defects in the range
of the geometry. The corresponding density of oval defects
is 1.3 × 104 cm−2, which nicely compares with the average
density of strong scatterers, nS = 1.1 × 104 cm−2, in Fig. 4(b).
In some rare cases oval defects apparently “condense” in some
spatial regions of the sample and the giant peak is observed
[see the inset in Fig. 4(a)].

Oval defects as seen in Fig. 4(c) arise from the growth
process by molecular beam epitaxy. Many proposals concern
the formation of oval defects, e.g., Refs. [19–23]. The common
origin of oval defects is attributed to oxides in the Ga melt.
During the growth process Ga oxides act as a nucleation site
for unbounded Ga atoms, and Ga droplets arise. These Ga
droplets lead to locally faster growth of the crystal and cause
the formation of oval defects. Ga droplets occur anywhere in
the material. The size of the macroscopic defects observed
on our samples varies from a few up to 40 μm, which is
comparable to the size of strong scatterers as deduced from the
peak. Figure 4(c) also shows a schema of the layer structure
around the quantum well. Ga droplets around the quantum
well influence the high-mobility 2DEG and are observed as
oval defects. The angle independence of the peak (see Fig. 2)
confirms antidot behavior of oval defects which agrees with
the assumption for strong scatterers [4].

In conclusion, we have observed a strong negative mag-
netoresistance at nonquantizing magnetic fields with a peak
around zero magnetic field. We have argued that the peak is
induced by an interplay of smooth disorder and macroscopic
defects while the shoulder next to the peak is dominated by
smooth disorder. The macroscopic defects can be observed on
the material surface as oval defects.
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Rev. Lett. 87, 126805 (2001).
[5] D. G. Polyakov, F. Evers, A. D. Mirlin, and P. Wölfle, Phys.
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