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Experimental verification of reciprocity relations in quantum thermoelectric transport
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Fundamental symmetries in thermoelectric quantum transport, beyond Onsagers relations, were predicted
two decades ago but have to date not been observed in experiments. Recent works have predicted the
symmetries to be sensitive to energy-dependent, inelastic scattering, raising the question whether they exist in
practice. Here, we answer this question affirmatively by experimentally verifying the thermoelectric reciprocity
relations in a four-terminal mesoscopic device where each terminal can be electrically and thermally biased
individually. The linear-response thermoelectric coefficients are found to be symmetric under simultaneous
reversal of magnetic field and exchange of injection and emission contacts. We also demonstrate a controllable
breakdown of the reciprocity relations by increasing thermal bias, putting in prospect enhanced thermoelectric
performance.

DOI: 10.1103/PhysRevB.90.165428 PACS number(s): 72.20.Pa, 73.23.Ad, 85.80.Fi

I. INTRODUCTION

Symmetry relations are manifestations of fundamental
principles and constitute cornerstones of modern physics.
A prominent example is the Onsager relations [1] between
coefficients connecting thermodynamic fluxes and forces,
which derive from the principle of microreversibility. In the
quantum transport regime, Onsagers relations for electrical
resistance [2] have been observed in multiterminal mesoscopic
systems [3,4]. In addition to the Onsager relations, reciprocity
relations for thermoelectric (TE) transport coefficients were
predicted [5,6]: reversing the magnetic field and simulta-
neously exchanging the injection and emission contacts is
expected to leave the coefficients invariant.

In addition to their fundamental interest, the reciprocity
relations are of practical importance. On the one hand, the
existence of symmetry relations could simplify the theory of
improved, future TE materials, such as nanoscale, anisotropic
[7,8] or hybrid materials [9] where nonlocal effects may play
a role. On the other hand, the absence of symmetries could
be equally important: asymmetric thermopower was recently
shown to allow for improved TE performance [10–12] in the
maximum power regime.

However, to date the reciprocity relations have not been
tested experimentally, and the extent to which they can
be observed is unclear. Recent works [13–15] theoretically
investigated the robustness of magnetic field symmetries in the
thermopower, which are directly related to the thermoelectric
reciprocity relations. In contrast to Onsagers relations [16], it
was predicted that inelastic electron scattering (always present
at finite temperature), in combination with a breakdown
of the Wiedemann-Franz law can break the thermopower
symmetries. The Wiedemann-Franz law is known to break
down in low-dimensional structures due to their strongly
energy-dependent density of states [17]—the same property
that makes them interesting candidates for TE materials [18].

A fundamental question is thus: can TE reciprocity relations
be observed in practice and can they be controlled in
experiment? Such a test of the TE reciprocity relations requires

a multiterminal normal conductor where each terminal can be
electrically and thermally biased, individually, while subjected
to an applied magnetic field.

Here we present such an experimental test in a four-
terminal mesoscopic device (Fig. 1), and establish that the
TE reciprocity relations manifest themselves in real devices.
We also find evidence for a breakdown of the relations when
we increase the thermal bias, indicating that the symmetries
can be experimentally controlled, either by inelastic scattering
or by nonlinear thermal transport, analogous to the symmetry
breakdown in purely electronic transport at finite voltages in
mesoscopic systems [19–26]. This motivates further investi-
gations on the symmetry breaking properties and relative role
of inelastic scattering and nonlinear thermal transport.

II. SYSTEM AND METHOD

We first spell out the properties of the four terminal device.
It was defined by patterning the two-dimensional electron gas
(2DEG) formed in an InP/Ga0.23In0.77As heterostructure by
using electron-beam lithography and shallow wet etching (for
details, see Ref. [7]). The wafer has a carrier concentration
of n = 1.1 × 1012 cm−2 and an electron mobility of μ =
3.2 × 105 cm2/Vs at 4.2 K. Moreover, all measurements were
made in a He3 cryostat at a background temperature of
θ0 = 240 mK. To create a thermal bias, we used heating
voltages of typically VH = 400 μV (unless stated otherwise),
resulting in heating currents of less than 400 nA and an
estimated electric heating power of less than 0.1 nW delivered
to the heating area, resulting in an estimated temperature rise
θ < 1 K. The stray heating power due to thermal conductance
to neighboring heating pads was negligible. Moreover, we
checked carefully that the electric bias measurements were
in the linear-response regime (see Appendix A for details on
device properties).

We proceed by defining the thermoelectric coefficients
and their expected symmetry, and describe how they can
be determined in experiments. The linear response of the
electrical current flowing in the αth terminal, Iα , of a
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FIG. 1. (Color online) Scanning electron micrograph of a device
identical to the one measured on here, featuring a junction of four
ballistic microchannels (terminals) in a cross configuration, with an
asymmetric scatterer in the central junction. The eight surrounding
contacts, {A,B,. . . ,H}, are used to apply a thermal or electrical bias.
Four probes are used to measure the terminal voltages: {V1,V2,V3,V4}.
The regions between contact pairs, tinted red, can be electrically
heated to thermally bias the junction. In the configuration shown, the
channel between contacts A and B are heated through two out-of-
phase heating voltages, ν±

H (see Appendix A). (Inset) Close up image
of the central region.

multiterminal, mesoscopic junction is

Iα =
∑
β �=α

[Gαβ(Vα − Vβ) + Lαβ(θα − θβ)], (1)

where Vα and θα are the voltage and temperature, respectively,
at terminal α, and Gαβ and Lαβ are the electrical conduc-
tance and thermoelectric coefficients, respectively, between
terminals α and β. The Lαβ are directly related to the
thermopower, or Seebeck coefficientsSαβ ≡ (Vα − Vβ)/(θα −
θβ)|I=0, through Lαβ = −∑

γ GαγSγβ , where the sum runs
over all terminals [5].

The transport properties in open mesoscopic systems can
conveniently be described by the scattering approach. The
conductance coefficients, see Eq. (1), are given by [2]

Gαβ(B) = 2e2

h

∫
dE

(
−df (E)

dE

)
Tαβ(E,B) , (2)

for α �= β, where Tαβ(E,B) is the transmission function
describing scattering of particles at energy E from terminal β

to α, B is the magnetic field, and f (E) is the equilibrium Fermi
distribution function. Correspondingly, the thermoelectric
coefficients are given by [5]

Lαβ(B) = 2e

hθ0

∫
dEE

(
−df (E)

dE

)
Tαβ(E,B), (3)

where we have set the background chemical potential to zero.
Microreversibility demands that the transmission function

obeys the magnetic-field symmetry Tαβ(E,B) = Tβα(E, −
B). The resulting symmetry for the conductance, Gαβ(B) =
Gβα(−B), has been thoroughly investigated over the last few
decades [2–4]. Since the thermoelectric coefficients depend
directly on the transmission function, Lαβ should obey the

same symmetry properties as Gαβ . This gives, writing out the
diagonal and off-diagonal relations separately,

Lαα(B) = Lαα(−B), Lαβ(B) = Lβα(−B) . (4)

To experimentally test these symmetries, we first determine
Gαβ through electric bias measurements with no thermal bias
(�θαβ = 0) (see Appendix B). Thereafter, the thermoelectric
coefficients are investigated by thermally biasing the system
under zero-electric-current conditions (with floating termi-
nals), measuring the resulting potentials in all reservoirs, and
using Eq. (1) as explained in the following.

The induced temperature increase at terminal α can
be written as a Fourier sum, �θα(t) ≡ θα(t) − θ0 =∑

n=0 �θ (n)
α sin(nωt), where ω is the frequency of the heating

current. This allows us to write the different Fourier compo-
nents of the linear-response current expression in Eq. (1) as

0 =
∑

β

[
GαβV

(n)
αβ + Lαβθ

(n)
αβ

]
, (5)

where V
(n)
αβ ≡ V (n)

α − V
(n)
β , and θ

(n)
αβ ≡ θ (n)

α − θ
(n)
β = �θ (n)

α −
�θ

(n)
β . When using Joule heating (quadratic in heating current),

one expects the second harmonic to give the strongest
contribution to the thermoelectric response. Indeed, in our
experiment we find that n = 2 gives the largest signal and
provides the clearest data to determine the range of the
linear-response regime; in the following, we only consider
the second harmonics in Eq. (5). Heating the γ th terminal,
and making the assumption that the unheated terminals remain
cold, we can make use of the relation

∑
α Lαβ = ∑

β Lαβ = 0,
which follows from the unitarity of the scattering matrix [5],
and write

Lαγ �θ (2)
γ =

∑
β

GαβV
(2)
αβ . (6)

Here, V
(2)
αβ represents the measured values when heating

terminal γ . Since the Gαβ elements depend weakly on
magnetic field up to B ∼ 50 mT (see Appendix B), we can
use Eq. (6) and Gαβ to test the magnetic-field symmetries of
Lαγ �θ (2)

γ directly by analyzing the B-field dependence of the

measured V
(2)
αβ . In the following, we also assume that �θ (2)

γ

is independent of B, so that all of the B-field dependence in
Lαγ �θ (2)

γ comes from Lαγ .

III. THERMOELECTRIC RECIPROCITY RELATIONS

The symmetry relations predicted by Eq. (4) are clearly
visible in the representative magnetic field traces for Lαγ �θ (2)

γ

presented in Figs. 2(b) and 2(c). We also find that there
is no significant symmetry relation between Lαβ(B) and
Lγδ(−B) for αβ �= γ δ [see Fig. 2(d) for an example]. The
Lαγ �θ (2)

γ typically oscillate around zero, a signature of
quantum interference effects [27–29].

To quantify the degree of symmetry, we make use of the
correlation coefficient [30] between Lαβ(B) and Lγδ(−B) (see
Appendix C). We first introduce the normalized thermoelectric
coefficients

Lαβ (B) ≡ Lαβ(B) − 〈Lαβ(B)〉√〈[Lαβ(B)]2〉 − 〈Lαβ(B)〉2
, (7)
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FIG. 2. (Color online) (a) Representative four-terminal resis-
tances Rαβ,γ δ(B) as a function of magnetic field. The symmetry
Rαβ,γ δ(B) = Rγδ,αβ (−B) is clearly visible; small deviations are
discussed in Appendix B. Note that the resistance R24,24(B) depends
weakly on magnetic field for −50 mT < B < 50 mT. (b)–(d) Mag-
netic field traces of the thermoelectric coefficient Lαβ (B). Each panel
also displays the corresponding quantitative symmetry parameter

αβ,γ δ [Eq. (8)] calculated for the range −50 mT < B < 50 mT, for
the respective pair of traces shown. The symmetry of the diagonal
terms Lαα(B) = Lαα(−B) is clearly visible in (b), as well as that of
the off-diagonal terms Lαβ (B) = Lβα(−B), in (c). For comparison,
an example of the expected absence of symmetries, here between
L14(B) and L23(−B), is illustrated in (d) and manifested by a 
14,13

value near zero. The green and red curves in (a)–(c) are offset for
clarity. All measurements were performed at a cryostat temperature
of θ0 = 240 mK.

where 〈· · · 〉 denotes the average over magnetic fields from
−50 to 50 mT. This magnetic field range was chosen to avoid

the onset of classical commensurability effects. We calculate
Eq. (7) using Lαβ�θ (2) in place of Lαβ , since we have assumed
that �θ (2) is independent of B and thus cancels out. We then
define the symmetry parameter as


αβ,γ δ ≡ 〈Lαβ (B)Lγ δ(−B)〉 . (8)

Note that 
αβ,γ δ goes from +1 for complete symmetry, to
−1 for complete antisymmetry. We stress that 
αβ,γ δ is well
suited to quantify the overall symmetry of functions which,
like the ones in Fig. 2, display rapid oscillations on top
of a smooth, slowly oscillating background. The need for a
quantitative symmetry measure becomes apparent when com-
paring Figs. 2(b) and 2(c); while the corresponding symmetry
parameters are essentially identical, 
44,44 ≈ 
24,42, to the
bare eye the curves in Fig. 2(b) appear more symmetric than the
ones in Fig. 2(c). We have analyzed all combination of curves
αβ,γ δ and also compared the results to another potential
symmetry measure, the magnitude of the fluctuation of the
difference, 〈[Lαβ(B) − Lγ δ(−B)]2〉. The result (not presented
here) firmly establishes that 
αβ,γ δ is a reliable symmetry
measure.

Deviations from the perfect symmetries predicted in Eq.
(4) are seen in our measurements. To rule out noise as the
cause of the limited symmetries, we verified that two traces
measured almost two weeks apart showed very high correlation
(see Appendix C), demonstrating the high repeatability of
these fluctuations. We attribute the limited symmetry in Figs.
2(b) and 2(c) mainly to the same mechanisms that limit
the observed conductance symmetry. In addition, however,
we offer two other possible mechanisms: (i) the unheated
terminals do not remain cold, which would modify Eq. (6), and
(ii) inelastic scattering, which at finite temperature can lead to
asymmetries in the thermopower even in the linear-response
regime [13–15].

IV. SYMMETRY BREAKDOWN

One can expect the symmetry of Lαβ to break down for finite
heating voltage, analogous to the well-established breakdown
of symmetries in the differential conductance [20,21] observed
at finite bias voltage in mesoscopic systems [19,22–26]. In
Fig. 3, all ten symmetry relations defined by Eq. (4) are plotted
as a function of heating voltage VH . At low VH , all symmetries
described by Eq. (4) manifest themselves, with 
αβ,βα � 0.5.
As VH is increased though, the trend in the diagonal elements,
α = β, is towards decreased symmetry, while the off-diagonal
elements, α �= β, remain fairly symmetric with a slight trend
to decrease.

The overall tendency is for the B-field symmetries of
Lαβ to be suppressed with increasing thermal bias. From
further analysis of our measured data (see Appendix D), we
establish that the linear-response regime extends to about
VH ≈ 1 mV. The decreasing symmetry observed in Lαα ,
Fig. 3(a), is then consistent with symmetry breaking due
to nonlinear thermoelectric behavior [31–33], analogous to
nonlinear electronic effects. Increased inelastic scattering due
to heating effects may also play a role.

Further theoretical as well as experimental investigations
are needed to explain the observed difference in symmetry
between diagonal and off-diagonal elements of Lαβ for
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FIG. 3. (Color online) Heating voltage dependence of the sym-
metries described in Eq. (4) for the (a) diagonal, α = β, and (b)
off-diagonal, α �= β, elements of Lαβ . In (a), a clear trend for
decreasing symmetry with increasing thermal bias is seen for the
diagonal elements. This same trend is only present in three of the six
curves in (b).

VH � 1 mV, see Fig. 3. In particular, in contrast to linear-
response theory [5], existing nonlinear theory [31–33] does not
predict any simple relations between diagonal and off-diagonal
elements.

V. CONCLUSION

In conclusion, we have verified that the TE reciprocity
relations predicted more than 20 years ago [5] manifest
themselves in a mesoscopic device in the linear-transport
regime. The relations were observed at low temperatures,
where inelastic scattering (predicted to suppress the symme-
tries [13–15]) can be expected to be small. At finite thermal
bias we observe a breakdown of the reciprocity relations,
tentatively due to a combination of inelastic scattering and
nonlinear thermal transport. Further investigations are needed
to quantify the robustness of the reciprocity relations with
respect to these mechanisms. Of particular interest will be
the role of sharp features in the transmission function or
density of states commonly used for energy filtering to enhance
thermoelectric performance, for example, in low dimensional

coolers [34,35] and highly efficient thermoelectric generators
[36,37]. The possibility to experimentally control the absence
or presence of the TE symmetry relations opens for exciting
and fundamentally new opportunities in increasing TE energy
efficiency [10–12].
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APPENDIX A: MEASUREMENT OF TRANSPORT
COEFFICIENTS

We individually use electric or thermal biases to determine
the elements of the electrical conductance matrix, Gαβ , and
the thermoelectric matrix, Lαβ , respectively. Electric biases
are generated by applying a 37-Hz drive current between
any two of the four central terminals. The measured Gαβ are
discussed below. A representative circuit configuration used
for thermal-bias measurements is shown to the left in Fig. 1
in the main text. The thermal bias is generated by individually
heating one terminal by applying two 180◦ out-of-phase,
37-Hz voltages, denoted by ν±

H , to the two channel contacts
(in Fig. 1, main text, contacts A and B are used to heat
terminal 1). This heating configuration is designed to eliminate
any electric bias of the terminal due to the heating current.
Additionally, a dc shift was applied to the thermal bias to cancel
out residual dc offsets measured at the respective terminal’s
voltage probe. We note that only one terminal is heated at
a time, and that negligible electric current is drawn through
the junction during thermovoltage measurements. For further
details on the thermal bias measurements, see Ref. [7]. Under
each type of bias, all four-terminal voltages, {V1,V2,V3,V4},
were simultaneously measured using lock-in detection.

For thermal biasing, one pad was electrically heated using
ac heating currents of between 300–400 nA at a frequency
of 37 Hz. The externally measured, two-terminal resistance of
heating pads was between 1000–1400 �, such that 1 k� is
a reasonable upper limit of the resistance of the heating pad
itself. This gives an upper limit of the electric heating power
delivered to a heating pad of about 0.1 nW. Finite-element
simulations (COMSOL) that use the actual device geometry and
take into account heat leaks to the surrounding 2DEG (but
neglect additional heat leaks to the phonons) predict an upper
limit of a temperature rise θ ≈ 0.5–1 K. Using the upper limit
θ = 1 K, and estimating the thermal conductance between two
heating pads (based on the electrical resistance between two
pads of typically 1 k� and using the Wiedemann-Franz law),
and again neglecting other heat leaks such as electron-phonon
coupling, an upper limit for the resulting heating power to
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FIG. 4. (Color online) The induced voltages Vαβ between all pair
of terminals α and β, as a function of an electrical current bias between
terminal 1 and 3.

neighboring heat pads is about 6 × 10−3 nW, about 100 times
smaller than the intentional heating.

APPENDIX B: CONDUCTANCE MEASUREMENTS

To determine the conductance coefficients at B = 0,
three different biasing configurations were utilized; each had
the 37-Hz bias current injected at terminal 1, which was
then extracted at terminals 2, 3, and 4 for the three biasing
configurations. The rms amplitude of the bias current, I , was
varied from 4 to 980 nA to check for linearity in the current-
voltage characteristics, see Fig. 4 for a set of representative
curves.

We stress that for the entire bias current range used here,
the deviations from a linear-in-current voltage response are
negligibly small, three orders of magnitude smaller than the
linear response.

In the linear-response regime, only the first harmonic of the
voltage response is significant, and we can write the current as

I (1)
α =

∑
β �=α

GαβV
(1)
αβ , V

(1)
αβ = V (1)

α − V
(1)
β , (B1)

where I (1)
α = +(−)I at the injection (extraction) terminal and

zero at the two floating terminals; and the superscript denotes
the harmonic of the drive voltage frequency. Due to current
conservation and gauge invariance, the conductances obey
the sum rules

∑
α Gαβ = ∑

β Gαβ = 0. Measurements of the
1ω voltage responses, V (1)

α , at B = 0 for each of the three
biasing configurations, together with the sum rules, allow us
to determine all 16 elements Gαβ of the conductance matrix
G. Our analysis gives

G(B = 0) = 2e2

h

⎛
⎜⎝

−21.3 11.7 1.5 8.1
11.5 −25.3 10.5 3.3

1.6 10.4 −20.1 8.1
8.1 3.2 8.1 −19.5

⎞
⎟⎠ .

(B2)

All conductance coefficients obey Gαβ > 2e2/h, demonstrat-
ing that electron transport is in the open regime.

Equation (B2) clearly shows that Gαβ ≈ Gβα , as ex-
pected from the fundamental symmetry of G. However,
microreversibility predicts a complete symmetry. To further
investigate the small asymmetry apparent in Eq. (B2) we plot
in Fig. 2(a) in the main text the four-terminal resistances
Rαβ,γ δ(B) = V

(1)
αβ /Iγ δ , with γ (δ) representing the current

injection (extraction) terminal, as a function of magnetic
field, B. The fluctuations observed in these traces are due
to wave interference effects typical for open mesoscopic
conductors. We see that the required symmetry relation
Rαβ,γ δ(B) = Rγδ,αβ (−B) is slightly violated, in particular at
the lower fields, |B| � 50 mT, consistent with the slightly
asymmetric conductance coefficients Gαβ observed in Eq (B2).
The origin of this asymmetry is not clear. We can rule out
noise and nonlinear effects [38] as the cause by comparing
to a second measurement taken at much higher bias current,
which essentially shows the same asymmetry. A magnetic
sample holder can also be ruled out, as care was taken to use
nonmagnetic materials. Leakage currents due to the voltage
probes are also found to be negligibly small. We speculate that
magnetic impurities may play a role.

The typical magnitude of the magnetic field dependent
oscillations of Gαβ can be qualitatively estimated from
corresponding fluctuations of the longitudinal four-terminal
resistance R24,24 in Fig. 2 in the manuscript (similar results
obtained for other Rαβ,αβ , not presented). In the magnetic field
range −50 < B < 50 mT, the fluctuations are of the order
of a few percent, to be expected [39] from a mesoscopic
system in the open transport regime with a typical conductance
Gαβ ∼ 10e2/h, see Eq. (B2).

APPENDIX C: SYMMETRY MEASURE AND
REPRODUCIBILITY

To quantify the degree to which the two data sets Lαβ and
Lγδ obey the symmetry relation Lαβ(B) = Lγδ(−B), we make
use of Pearsons product-moment correlation coefficient, or r-
correlation coefficient [30], between Lαβ (B) and Lγδ(−B), our
Eqs. (7) and (8) in the main text. The r-correlation coefficient is
a well established measure to quantify the correlation between
two data sets. Importantly, the r-correlation coefficient is
known to be a reliable measure of correlation in the absence

-100

0

100

L 44
Δθ

4 (
pA

)

-40 0 40
B (mT)

Σ44,44 = 0.96+

FIG. 5. (Color online) Magnetic field traces of the thermoelectric
coefficient L44(B) taken almost two weeks apart. The modified
symmetry parameter 
+

44,44 (see text), calculated for the range
−50 < B < 50 mT, gives a value close to unity, demonstrating a
high degree of repeatability. The measurements were performed at a
cryostat temperature of θ0 = 240 mK.
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of outliers, i.e., extreme, isolated measurement points. We
carefully investigated our data to rule out such extreme points.

To investigate the repeatability of the magnetic field traces
Lαβ(B), two traces measured almost two weeks apart are
shown in Fig. 5. The degree of correlation between the
two traces is quantified by the modified symmetry parameter

+

αβ,γ δ = ∑
B Lαβ(B)Lγ δ(B), reaching 1 for perfect correla-

tion Lαβ(B) = Lγ δ(B).

APPENDIX D: LINEAR THERMAL BIAS RESPONSE

To establish the range over VH where we expect a linear-
in-temperature response, we used the solution of the quasi-
one-dimensional heat diffusion equation [34] to estimate the

temperature rise in the heated channel, labeled below as the
α’th terminal, as a function of VH ,

θα = θ0

√
1 +

(
VH

VC

)2

cos2(ωt) , (D1)

where VC is a heating channel dependent parameter. Using
Eq. (D1), we can estimate the predicted Fourier components
of Lαγ �θ (2)

γ and compare them to our measured data,∑
β GαβV

(2)
αβ . In this way, we have clearly established that the

linear-response regime extends to about VH ≈ 1 mV, which
corresponds to �θ (2)

γ /θ0 ≈ 0.21 to 0.75 depending on which
terminal is heated.
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