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The spin-resolved nonequilibrium real-time electron transport through a double-quantum-dot (DQD)
Aharonov-Bohm (AB) interferometer with spin-orbit interaction (SOI) is explored. The SOI and AB interference
in the real-time dynamics of spin transport is expressed by effective magnetic fluxes. Analytical formulas for the
time-dependent currents, for initially unpolarized spins, are presented. In many cases, there appear spin currents in
the electrodes, for which the spins in each electrode are polarized along characteristic directions, predetermined by
the SOI parameters and by the geometry of the system. Special choices of the system parameters yield steady-state
currents in which the spins are fully polarized along these characteristic directions. The time required to reach this
steady state depends on the couplings of the DQD to the leads. The magnitudes of the currents depend strongly
on the SOI-induced effective fluxes. Without the magnetic flux, the spin-polarized current cannot be sustained
to the steady states, due to the phase rigidity for this system. For a nondegenerate DQD, transient spin transport
can be produced by the sole effects of SOI. We also show that one can extract the spin-resolved currents from
measurements of the total charge current.
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I. INTRODUCTION

Electron interference in nanoscale quantum transport
systems has long been a focus of intensive research. Of
particular interest are the Aharonov-Bohm (AB) [1] and the
Aharonov-Cahser (AC) [2] effects, associated with the two
fundamental degrees of freedom of an electron, namely, the
charge and the spin. By tuning externally applied fields,
one is able to modulate these interference effects and thus
affect the quantum transport properties. Interesting results of
coherence modulation have been found from the studies of
stationary properties of mesoscopic interferometer systems.
Dynamical responses of interference devices to periodically
applied driving fields have also caught attention, due to their
potential in applications. In addition, there is a rising interest
in the real-time dynamics of the charge and spin transport
in such devices. This is relevant to temporal operations of
quantum devices and also to the understanding of various
physical processes. More and more attention is thus paid
to the transient evolution of coherent electron transport.
Naturally, the effects of interference on the transient dynamics
of nonequilibrium transport is an important issue. In this paper,
we study the dynamical evolution of electron transport through
a double-quantum-dot (DQD) Aharonov-Bohm interferometer
with spin-orbit interaction (SOI).

Coherence of the electron’s orbital motion underlies the
conductance oscillation in the applied magnetic flux, enclosed
by low-dimensional electronic systems [3–6]. Studies of
AB oscillations in AB interferometers with quantum dots
have been realized in experiments [7–10]. Analogous to this
AB oscillation, systems where the SOI is present exhibit
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conductance oscillations in the SOI strength, known as AC
oscillations [11]. Signatures of the AC effects have also been
observed in experiments [12–15]. Besides interference effects
in ring-shaped structures, SOI in nanoelectronic systems in
general is known to have an important role in spintronics [16].
An important task in spintronics is to generate spin-polarized
currents.

An early initiative in spintronics is the proposal of the
spin-field-effect transistor by Datta and Das, that combined
the SOI with ferromagnets [17]. Optical spin injection into
ferromagnets for generating spin-polarized currents was ex-
perimentally implemented [18]. Electrical spin injection from
ferromagnets to semiconductors was also realized [19]. Spin-
polarized currents can also be generated using magnetic tunnel
junctions [20–23]. Impedance mismatch between ferromag-
nets and semiconductors hinders efficient operation of spin
injection [24], whose solution requires special techniques [25].
Generating spin-polarized currents without the use of fer-
romagnets, but with tunable SOI, is an alternative option.
There are two kinds of SOI in mesoscopic electronic structures
receiving special attention, namely, the Dresselhaus SOI [26]
and the Rashba SOI [27]. The former is a property of crystal
structures that lack inversion symmetry in their unit cells.
The latter, induced by the asymmetry in externally applied
confinement potential, can be controlled by tuning this external
electric field. The tunability of the Rashba SOI strength has
been demonstrated experimentally [12,13,28,29], making the
utilization of SOI for generating spin-polarized current viable.

The simplest system that exhibits both the AB and the
AC interference phenomena is a single loop. The loop is
threaded by a magnetic flux and an electron can flip its
spins as it tunnels along the loop. By attaching current
leads to the loop, transport properties can be investigated.
Spin interference effects on the electron transport through
this kind of structure have been widely investigated. Many
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papers consider generating spin-polarized currents in such
systems. These cover the modulation of conductance in one-
dimensional and also two-dimensional circular rings [30–33],
and the effects of the coupling between the DQD and the
leads on spin-dependent transport [34,35]. Alternative system
geometries, like polygons, have also been studied [36–38].
Instead of using just two leads, results from attaching three
leads to the ring, mimicking a Stern-Gerlach experiment,
have also been reported [39,40]. Diamondlike loops have
been found to exhibit fully polarized spin currents [41–43].
SOI in parallel DQD with interdot tunnel couplings have
been considered [44–47]. Though interference is mostly
effective at low temperatures, results from a high temperature
single-channel ring are also analyzed [48]. Furthermore,
electron-electron interactions have been studied in rings with
SOI [49,50]. Besides focusing on the time-independent aspect,
time-periodical varying SOI has attracted attention [51,52], as
spin pumping devices.

Apart from this, much effort has been poured into the re-
search of time-dependent electron transport through nanojunc-
tions. Experimentally, time-resolved transport measurements
have been implemented [53–55]. Theoretically, a multitude
of approaches, focusing on many different aspects, has been
devoted to understand the real-time electron dynamics in
quantum transport [56–68]. Real-time dynamics concerning
spin-resolved currents have also been reported. By solving
the time-dependent Schrödinger equation, the spin-resolved
time evolution of the electron wave function in a ring with
an oscillating SOI has been analyzed [52]. Time evolution
of the electron wave functions with different spins has also
been considered in quantum well structures [69]. Applying a
method for Green functions propagating in time [60], transient
spin-dependent currents through a single-level dot, without a
loop structure, have been studied [70].

In our previous papers [71,72], we have investigated the
transient electron dynamics in a spinless DQD AB interfer-
ometer, based on a master equation formalism [66,67]. An
earlier work had studied the steady states of a similar system
with spins and SOI [43]. Here we study the transient dynamics
of spin-dependent transport in such a system. There are clear
motivations to pursue such a study. First, spin-polarization
functions are closely related to functioning of flying spin
qubits [43]. The dynamics of polarization processes is thus
quintessential to the processing of quantum spin information
in real time. Moreover, to coordinate the clocking of integrated
spintronic circuits, the timing of the generation of spin-
polarized currents as part of the circuit is indispensable.
Closely examining the transient spin-resolved currents is an
initiative toward these matters. Second, the ability of the
targeted system to attain full spin filtering has been proved
in the steady state [43]. This makes it obviously worthy to
explore its spin transport dynamics. Third, the interferometer
possesses tunable coherent properties. It is therefore embedded
with rich interference phenomena involving both charge and
spin degrees of freedom.

In this paper, we address the following essential questions
that are common to many devices designated for the generation
of spin-polarized currents, a primary task in spintronics. These
questions are as follows. (i) What are the factors that determine
the spin polarization directions? How do they change in time?

FIG. 1. (Color online) Sketch of a DQD AB interferometer with
SOI. Each of the two dots contains one charge state with a spin. The
dots are placed in parallel between two leads L and R. A magnetic
flux threads through the loop formed by the two dots and the two
leads. The electron spin rotates as it tunnels along the loop, due to the
SOI. The angle between the two paths is 2β.

(ii) What are the factors that determine the magnitude of
currents of specific spins? (iii) How fast are the fully polarized
currents reached? How do we control this temporal pace?
Besides all of these about operating the device, there is still
an important question in terms of basic scientific research,
namely, (iv) what are the physical mechanisms that lie behind
the answers of the above questions?

The target system in this paper is illustrated in Fig. 1. We
apply the nonequilibrium Green function technique (NEGF)
for the calculation of spin-resolved real-time currents. We
adopt the prescription for spin transformation along electron
tunneling paths given in Ref. [73], and used in [43]. Fully
spin-polarized currents have been obtained in the steady-state
limit using the spin filter conditions given in Ref. [43] (see
Secs. II and III). The spin-independent real-time total charge
current is found to exhibit the universal behavior pointed out
in Ref. [74] for rings with SOI (see discussions in Sec. II). In
addition to discussing how different parameters of the system
affect transient spin transport processes, we also provide
instructions to extract the spin-polarized currents from the
experimentally more accessible spin-independent total charge
currents.

These investigations provide brief answers for our target
system to the questions proposed above. The polarization
directions of the currents in each of the two electrodes do
not change in time and are predetermined solely by the
SOI parameters of the system. These parameters include the
bonding geometry, adjustable in device fabrication, and the
Rashba SOI strength, controllable by the external electric field.
The applied magnetic flux, though found to be necessary in
sustaining the spin polarization of the currents in the steady-
state limit, plays no role in the determination of the polarization
directions. However, the effective fluxes, composed of the
applied magnetic flux and the SOI-induced phase, efficiently
modulate the magnitudes of the polarized currents throughout
the time. The couplings between the DQD and the electrodes
then largely determine the times to reach the final stable
polarizations. These consequences can be comprehended from
the simple picture of two-path spinless interference of the

165422-2



REAL-TIME DYNAMICS OF SPIN-DEPENDENT . . . PHYSICAL REVIEW B 90, 165422 (2014)

two-terminal setup, based on the connection between the
present spinful system and its spinless counterpart.

The paper is organized as follows. In Sec. II, we
analytically analyze the real-time transport through a DQD
AB interferometer with SOI. In Sec. II A, we first introduce
our model with a description of its SOI features. In Sec. II B,
we utilize the characteristic spinors of the SOI-induced unitary
spin rotations to show that the Hamiltonian of the target
system can be decomposed into two commuting components,
one for spin-up states and the other for spin-down states.
Based on this decomposition, in Sec. II C, we deduce the main
results about spin-polarization properties directly on the level
of the Hamiltonian. Obtaining fully spin-polarized currents
using the conditions given in Ref. [43] is also shown. In
Sec. II D, the nonequilibrium formalism based on the master
equation of the density matrix of the quantum-dot system is
applied to the target system of a DQD AB interferometer with
the SOI introduced in Sec. II A. For the purpose of tackling the
dynamics purely induced by SOI, the central area is initially
prepared with no excess electrons. In this case, the connection
of the present formalism with the standard Keldysh Green
function technique is explicitly provided. To demonstrate the
functioning of different physical factors behind spin-polarized
transport with concrete examples, we take the commonly
assumed wideband limit for specific calculations. In
Sec. III, we first take the steady-state limit to reassure
the reproduction of fully spin-polarized currents. We also
analyze the situation when the setup of the system deviates
from these conditions. This is followed by instructions
for extracting the spin-polarized transmission from the
spin-independent total transmission (which is much more
accessible experimentally). Section IV is divided into
three parts. In Sec. IV A, we focus on the dynamics of
getting fully spin-polarized currents. In Sec. IV B, general
parameters are explored to understand the transport of spins
under the influence of charge and spin interferences. In
addition, utilizing the results from Sec. III, we also devise
similar ideas for extracting the spin-polarized currents from
the spin-independent total charge currents in Sec. IV C.
Conclusions and a summary are given in Sec. V.

II. REAL-TIME TRANSPORT THROUGH A DQD AB
INTERFEROMETER WITH SOI

A. Model

The DQD interferometer which we consider here is
schematically presented in Fig. 1. It is composed of three
parts, the DQD, the two electron reservoirs on the left and
on the right, and the tunneling between the DQD and the
electrodes. The electron reservoirs are free from SOI. The
total Hamiltonian is then generally given by

H = HS + HE + HT. (1)

Here we focus only on SOI and ignore Zeeman splitting.
Explicitly, the central system Hamiltonian is specified to

HS =
∑

σ

2∑
i=1

Eia
†
iσ aiσ . (2)

The DQD system is spin-degenerate with Ei’s being the on-
site energies for the single-level charge state in dot i. The

Hamiltonian for SOI-free electron reservoirs, HE, is described
by

HE =
∑

α

Hα, (3a)

with

Hα =
∑

k∈α,σ

εαkc
†
αkσ cαkσ (3b)

where α = L, R labels the two leads and kσ denotes the states
in the leads with orbital quantum number k and spin σ . Here
a
†
iσ (aiσ ) and c

†
αkσ (cαkσ ) are the electron creation (annihilation)

operators for electronic levels iσ and kσ in the scattering area
and in the lead α, respectively. Due to the SOI, flipping of
the spin can occur when an electron tunnels forth and back
between the DQD and the leads. The tunneling Hamiltonian,

HT =
∑
iαk

∑
σσ ′

[Viσ,αkσ ′a
†
iσ cαkσ ′ + H.c.], (4)

is then specified by the tunneling amplitudes,

Viσ,αkσ ′ = Viαk〈σ |Uiα|σ ′〉, (5)

which contain two separate parts. The spatial part Viαk =
V̄iαke

iφiα embeds the AB phase. The phases are constrained
by the relation

φ = φL − φR, (6)

with φα = φ1α − φ2α for α = L,R. Here φ = 2π�/�0, where
� is the applied magnetic flux and �0 is the flux quantum. The
accompanying spin rotation due to the SOI is a unitary opera-
tion Uiα , determined by the underlying bonding geometry.

Specifically, if the system lies on the x-y plane, then these
rotations are [43,73]

Uiα = exp(iKiα · σ ), (7a)

where σ = σx x̂ + σy ŷ+σzẑ is the vector of Pauli matrices and

Kiα = (αR ĝiα · ŷ + αD ĝiα · x̂)x̂

− (αR ĝiα · x̂ + αD ĝiα · ŷ)ŷ. (7b)

We denote the position of the dot i by ri and that of the
connecting site on lead α by rα . They are separated by
a distance L. The unit vector pointing from dot i to the
connecting site on lead α is then denoted by ĝiα=(rα − ri)/L.
In Eq. (7b), αR,D = kR,DL, while kR and kD are the associated
coefficients for the Rashba and (linear) Dresselhaus SOI.

It is well known that an electron acquires a phase when
it moves around a loop in a region with SOI [2,73,74].
In our system the two dots and the two electrodes form a
loop. This SOI-induced phase is determined in the following
way. Consider the unitary operators UL ≡ UL1U 1RUR2U 2L,
U 1 ≡ U 1RUR2U 2LUL1, UR ≡ UR2U 2LUL1U 1R , and U 2 ≡
U 2LUL1U 1RUR2, where Uαi = (Uiα)†, which represent the
rotations of the spinors related to electrons that traverse
around the loop starting and ending at the sites L, 1, R, and
2, respectively. The phase ψso is obtained by diagonalizing
these spin rotations around the loop. The results are formally
given by

Ux = e−iψso |n̂x ; +〉 〈n̂x ; +| + eiψso |n̂x ; −〉 〈n̂x ; −| , (8)
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for x = L, R, 1, and 2. Here |n̂x ; +〉 and |n̂x ; −〉 are the
spinors for spin up and spin down in the direction n̂x defined
via n̂x · σ |n̂x ; ±〉 = ± |n̂x ; ±〉, where the n̂x’s are certain
real unit vectors in three dimensions. The phase ψso and
the characteristic directions n̂x’s are fully determined from
Eq. (7) and thus incorporate the full information about the
SOI-induced spin rotations around the loop. The authors of
Ref. [43] have shown that under the spin filter conditions (see
Eq. (29) and also discussions in Ref. [43]) electrons come
in with spinor |n̂L; ±〉 from the left and will go out with
spinor |n̂R; ±〉 on the right (and vice versa). There the explicit
dependencies of ψso as well as n̂α on the bonding geometry,
and on the Rashba and the Dresselhaus coefficients, have been
discussed in detail [75].

B. Correspondence to the spinless DQD AB interferometer

1. Decomposition into equivalent spinless systems

Utilizing the eigenspinors of the rotations around the loop,
|n̂x ; ±〉, in Eq. (8), the spin rotations along the sections of the
loop, Eq. (7), become

Uiα =
∑
ν=±

eiψν
iα |ni ; ν〉〈nα; ν|. (9)

Here the phases ψ±
iα’s are restrained by

±ψso = ψ±
L − ψ±

R , (10)

where ψ±
α = ψ±

1α − ψ±
2α for α = L,R. With the aid of the basis

transformation,

a
†
iσ =

∑
ν=±

〈n̂i ;ν|σ 〉 a
†
in̂i ;ν

, (11a)

c
†
αkσ =

∑
ν=±

〈n̂α;ν|σ 〉 c
†
αkn̂α ;ν, (11b)

for arbitrary spinor |σ 〉, the total Hamiltonian of the system
can be decomposed into two terms,

H = H+ + H−, (12a)

where

H± = H±
S + H±

E + H±
T , (12b)

in which

H±
S =

2∑
i=1

Eia
†
in̂i ;±ain̂i ;±, (12c)

H±
E =

∑
α

H±
α , (12d)

H±
α =

∑
k∈α

εαkc
†
αkn̂α ;±cαkn̂α ;±, (12e)

and

H±
T =

∑
iαk

[
V̄iαke

iϕ±
iα a

†
in̂i ;±cαkn̂α ;± + H.c.

]
, (12f)

with

ϕ±
iα = φiα + ψ±

iα. (12g)

Defining similarly ϕ±
α = ϕ±

1α − ϕ±
2α , one directly obtains from

Eqs. (6), (10), and (12g) that

ϕ± ≡ φ ± ψso = ϕ±
L − ϕ±

R . (13)

The ± subscript in ϕ± should not be confused with that on
the operator a

in̂i ;±. The former distinguishes between the two
phases in Eq. (13), while the latter denotes the spin polarization
along the dot-dependent direction n̂i .

The phase relation, Eq. (13), in comparison to Eq. (6),
reveals that the decomposed Hamiltonian, H±, Eq. (12), is
the Hamiltonian for a spinless DQD AB interferometer with
the flux replaced by ϕ± as the effective flux. Furthermore,
by the orthogonality, 〈n̂x ; ±|n̂x ; ∓〉 = 0, these two component
Hamiltonians commute with each other,

[H+,H−] = 0. (14)

It is therefore possible to relate the spin-resolved currents for
the target system to the currents for the effective spinless setup
described by H+ and H− separately.

2. Relating the spin-resolved currents to the currents for the
spinless DQD AB interferometer

Consider an arbitrary spinor |n̂; ±〉, defined as the eigenstate
of n̂ · σ , where n̂ is an arbitrary three-dimensional unit vector,
by n̂ · σ |n̂; ±〉 = ± |n̂; ±〉. Taking |σ 〉 = |n̂; ±〉 in Eq. (A2),
the spin-resolved current on the lead α with the spinor |n̂; ±〉
is given by

Iαn̂;± (t) = − d

dt
trtot[Nα,n̂;±ρtot(t)]. (15)

Setting n̂ = n̂α in Eq. (15), with the help of the property,
Eq. (14), one is led to

Iαn̂α ;± (t) = trtot
[
Îαn̂α ;± (t) ρtot (t0)

]
, (16a)

where

Îαn̂α ;± (t) = eiH±(t−t0)Îαn̂α ;±e−iH±(t−t0) (16b)

is the Heisenberg representation of the current operator,

Îαn̂α ;± = −i
∑
k∈α

[
V̄iαke

iϕ±
iα a

†
in̂i ;±cαkn̂α ;± − H.c.

]
. (16c)

On the other hand, the current on lead α for the spinless
interferometer described by H± with the effective flux ϕ± is
defined by

I 0
α (ϕ±,t) = − d

dt
trtot

[
Nα,n̂α ;±ρ±

tot(t)
]
, (17)

where ρ±
tot(t) is the total density matrix for the spinless system

H±. Similarly, Eq. (17) can be rewritten as

I 0
α (ϕ±,t) = trtot[Î

±
α (t) ρ±

tot (t0)], (18a)

where

Î±
α (t) = eiH±(t−t0)Î±

α e−iH±(t−t0). (18b)

The current operator in Eq. (18b) is just

Î±
α = Îαn̂α ;±, (19)

which is given by Eq. (16c).
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Here we want to study the spin-polarization processes
induced by the intrinsic mechanisms of SOI, without the
inference of the polarization prepared in the initial states. We
hence set ρtot (t0) to describe an unpolarized interferometer
with the reservoirs in the thermal equilibrium states, namely,

ρtot (t0) = ρ (t0)
∏

α=L,R

ρα(t0), (20a)

where

ρα(t0) = exp[(Hα − μαNα)/kBTα]

tr exp[(Hα − μαNα)/kBTα]
, (20b)

and Nα = N
α,n̂;+ + N

α,n̂;−, for an arbitrary unit vector n̂, is
the total electron number operator in lead α. Here μα and
Tα are the chemical potential and the temperature for all spin
species in lead α. The initial state of the DQD does not possess
any polarization and assumes the product form ρ(t0) = ρσρσ̄ ,
where ρσ = ρ0 describes the state of a spinless DQD, for all
spins σ and their opposite σ̄ . Therefore, one can designate

ρ±
tot(t0) = ρ0

∏
α=L,R

exp[(H±
α − μαNα,n̂α ;±)/kBTα]

tr exp[(H±
α − μαNα,n̂α ;±)/kBTα]

(21)

to be the corresponding initial states for the effective spinless
systems, such that the following identity,

Iαn̂α ;± (t) = I 0
α (ϕ±,t), (22)

is held for all time t . The identification, Eq. (22), enables us
to discuss the spin-dependent transport in the present system
in terms of what has been discussed for the spinless DQD
AB interferometer previously [72]. In the steady-state limit,
where the initial preparation for the part of the DQD no longer
matters, the identity Eq. (22) with t → ∞ shall always be held.

The equality, Eq. (22), means that I 0
α (ϕ+,t) and I 0

α (ϕ−,t)
respectively are the currents in lead α for spin-up and spin-
down electrons in the characteristic direction n̂α . Using the
basis transformation, Eq. (11), with the identification, Eq. (22),
the spin-resolved current on lead α for an arbitrary spinor,
|n̂; ν〉, defined by Eq. (15), can be expressed as

Iαn̂;ν(t) =
∑
ν ′=±

|〈n̂α; ν ′|n̂; ν〉|2I 0
α (ϕν ′ ,t). (23)

The current formula, Eq. (23), shows that Iαn̂;ν (t) is a mixture
of the currents Iαn̂α ;±(t) weighted by the spinor projections
|〈n̂α; ±|n̂; ν〉|2. The arbitrary global phases embedded in |n̂; ν〉
and |n̂α; ±〉 are canceled in Eq. (23). From either Eq. (22) or
Eq. (23), we find that the spin-independent total current,

Iα(t) ≡ Iαn̂;+ (t) + Iαn̂;− (t)

= I 0
α (ϕ+,t) + I 0

α (ϕ−,t), (24)

is the sum of these two currents I 0
α (ϕ+,t) and I 0

α (ϕ−,t). This
is consistent with the analysis in Ref. [74].

C. Rise of spin-polarized transport

The main purpose of the present paper is to explore the
dynamical rise of the spin polarization in the currents. This is
intimately related to the dynamics of spin flows. The spin flow

from lead α is

IS
α (t) = − d

dt
trtot[Sαρtot(t)], (25a)

where the total spin operator for the electrode α (with � = 1)
is defined by

Sα =
∑
k∈α

∑
σσ ′

c
†
αkσ

(
1

2
σ

)
σσ ′

cαkσ ′ . (25b)

Comparing Eq. (25) with Eq. (15), the spin flow from lead α

is related to the spin-resolved currents there by

IS
α (t) = 1

2

3∑
i=1

x̂i

[
Iαx̂i ;+ (t) − Iαx̂i ;− (t)

]
, (26)

where {x̂1,x̂2,x̂3} = {x̂,ŷ,ẑ}. Using the identities
|〈n̂′; ±|n̂; ±〉|2 = (1 + n̂ · n̂′)/2 and |〈n̂′; ±|n̂; ∓〉|2 =
(1 − n̂ · n̂′)/2 for arbitrary directions n̂ and n̂′ in Eq. (23), we
can rewrite Eq. (26) as

IS
α (t) = n̂α

2

[
Iαn̂α ;+ (t) − Iαn̂α ;− (t)

]
. (27)

At the same time, Eq. (23) becomes

Iαn̂;± (t) = Iα(t)

2
± IS

α (t) · n̂. (28)

The factors behind the rise of spin-polarized transports can be
read from the expression Eq. (28). Without the SOI, ψso = 0
and consequently I 0

α (ϕ+,t) = I 0
α (ϕ−,t) = I 0

α (φ,t), Eq. (28)
reduces to Iαn̂;+ (t) = Iαn̂;− (t) = I 0

α (φ,t) for arbitrary n̂.
Therefore, without SOI it is not possible to have spin flow
in this system, as expected. Only when SOI is present, the
effective fluxes ϕ+ and ϕ− can be different. The expression,
Eq. (28), together with Eq. (22), manifests that because
spin-up electrons and spin-down electrons experience different
effective fluxes ϕ+ and ϕ−, it is possible to have IS

α (t) 
= 0.
This underlies the occurrence of a preferred spin direction in
the currents. Note that in the steady-state limit, t → ∞, the
two-terminal spinless interferometers are subjected to phase
rigidity, I 0

α (ϕ) = I 0
α (−ϕ). If there is no applied flux, φ = 0,

then ϕ± = ±ψso and therefore I 0
α (ϕ+) = I 0

α (ϕ−) and IS
α = 0.

This demonstrates the importance of the combined effect of
the flux and the SOI for maintaining spin polarization in the
currents to the steady-state limit. We will give also explicit
calculations showing this result in later sections.

A very important consequence of Eq. (28) is that whenever
there is a nonvanishing spin current IS

α (t) 
= 0, the current on
lead α is always polarized in the characteristic direction n̂α

for all time t , which is fixed by the SOI parameters of the
system. Henceforth, to obtain a fully spin-polarized current,
one requires either Iαn̂α ;+ (t) or Iαn̂α ;− (t) to vanish. The relation
of Eq. (22) indicates that such a task could be fulfilled by
making one of the currents for the effective spinless systems,
I 0
α (ϕ+,t) or I 0

α (ϕ−,t), diminish while the other remains finite.
Note that since generally n̂L 
= n̂R , the current on the left and
that on the right are polarized along different directions.

It is pointed out in Ref. [43] that such a system can give
rise to full spin polarization when two conditions are fulfilled.
The first condition is that the upper arm and the lower arm of
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the interferometer are symmetrically set up, namely,

V̄1αk = V̄2αk = V̄αk, (29a)

E1 = E2 = E. (29b)

The second condition is that the applied magnetic flux and the
underlying SOI parameters should be chosen to satisfy

cos(ϕ−) = −1. (29c)

These conditions were obtained from a scattering analysis
with a tight-binding modeling of the two leads. Indeed,
applying these conditions to the total Hamiltonian of the
target system, we confirm that their validity is independent
of the energy dispersion in the leads. We also find that the
rise of the fully spin-polarized transport is equivalent to
a completely destructive interference in the corresponding
spinless interferometer, described by H−. Such effects can
be seen by analyzing the component Hamiltonians H± in the
decomposition, Eq. (12).

To highlight the role played by the effective flux, we
perform a gauge transformation to the Hamiltonians H±,
yielding

H±
S =

2∑
i=1

Eid
†
in̂i ;±din̂i ;±, (30a)

H±
E =

∑
αk

εαkb
†
αkn̂α ;±bαkn̂α ;±, (30b)

and

H±
T =

∑
k

[(
V̄1Lke

iϕ±/4d
†
1n̂1;± + V̄2Lke

−iϕ±/4d
†
2n̂2;±

)
bLkn̂α ;±

+ (
V̄1Rke

−iϕ±/4d
†
1n̂1;± + V̄2Rke

iϕ±/4d
†
2n̂2;±

)
bRkn̂R ;±

]
+ H.c., (30c)

where the newly defined operators and amplitudes are

d
†
1n̂1;± = eiχ±/2a

†
1n̂1;±, d

†
2n̂2;± = e−iχ±/2a

†
2n̂2;±,

bLkn̂L;± = eiδθ±cLkn̂L;±, bRkn̂R ;± = e−iδθ±cRkn̂R ;±, (31a)

and

V̄iαk = V̄iαke
iθ̄± , (31b)

in which the free gauges are

χ± = (ϕ±
L + ϕ±

R )/2,

δθ± = (θL − θR)/4, (31c)

θ̄± = (θL + θR)/4,

with θα = ϕ±
1α + ϕ±

2α .
Applying the condition, Eq. (29a), the tunneling parts in

the Hamiltonians H+ and H− can be written as

H±
T = HL±

T + HR±
T , (32a)

where

Hα±
T =

[∑
k∈α

V̄αkd̃
†
α±bαkn̂α ;± + H.c.

] √
2, (32b)

FIG. 2. (Color online) Illustration of the effective spinless con-
figuration mapped from the case of having fully polarized transport
current. (a) Two separate systems, each of which is a single-level dot
coupled to a reservoir. (b) A single-level dot coupled to two reservoirs.

with

d̃
†
L± = (eiϕ±/4d

†
1n̂1;± + e−iϕ±/4d

†
2n̂2;±)/

√
2,

(32c)
d̃
†
R± = (e−iϕ±/4d

†
1n̂1;± + e+iϕ±/4d

†
2n̂2;±)/

√
2 ,

where the factor 1/
√

2 is for normalization. This shows that for
H± the left and the right electrodes respectively couple to the
modes |L±〉 = d̃

†
L±|0〉 and |R±〉 = d̃

†
R±|0〉, where |0〉 denotes

the empty state of the DQD. The overlap between them is

〈L±|R±〉 =
√

cos(ϕ±) + 1

2
. (32d)

When ϕ− satisfies Eq. (29c), these two modes become
orthogonal. By further setting the on-site energies of the DQD
to be degenerate, Eq. (29b), the effective spinless system
described by H− is actually split into two separate systems,
each of which is a single-level dot coupled to a reservoir [see
Fig. 2(a)]. The current on lead α, I 0

α (ϕ−,t), in this disconnected
setup will eventually reach zero. This picture of disconnected
electrodes underlies the completely destructive interference
for the spinless interferometer. This effect in turn gives the
vanishing steady-state current,

Iαn̂α ;− (t → ∞) = 0, (33)

for the spinor |n̂α;−〉 in lead α.
By the same token, the effective configuration for the

connection between the two reservoirs for H+ is controlled by
the value of ϕ+. As long as ϕ+ does not satisfy cos(ϕ+) = −1,
the two electrodes for H+ stay connected, supporting a
nonvanishing current,

Iαn̂α ;+ (t → ∞) 
= 0, (34)

provided that a nonzero bias is applied. Noticeably, when
ϕ+ = 2mπ with m being an arbitrary integer, then the overlap
between the two modes, |L+〉 and |R+〉, becomes unity. This
means that, at degeneracy, the transport only goes through one
mode, which is a linear combination of the original two QD’s
charge states of equal weights. This opposite limit is contrasted
in Fig. 2(b).

The difference between the effective configurations for H−
and H+ has led to the different dependencies of the dynamical
evolutions of the currents Iαn̂α ;−(t) and Iαn̂α ;+(t) on the target
system’s parameters. The configuration of Fig. 2(a) implies
that the current carrying the characteristic spinor |n̂α; −〉
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in lead α is only affected by the parameters concerning
the reservoir α and its coupling to the DQD, whereas the
opposite reservoir ᾱ exerts no influence. On the contrary,
for H+, the connected configuration asserts that Iαn̂α ;+(t)
is affected by couplings to both of the reservoirs and their
respective structures, Fig. 2(b). Explicit calculations of these
spin-resolved currents demonstrating such effects will be given
in later sections.

D. Real-time spin-dependent currents in terms of the
Green functions

In order to investigate the current polarization dynamics
purely induced by the SOI, we let the central area initially
contain no excess electrons. As we showed in Secs. II B
and II C, the spin-dependent currents in the target system
can be discussed in terms of the currents of the corre-
sponding spinless systems with effective fluxes. The transient
dynamics of these spinless interferometers have been studied
before [71,72]. To make comparisons with our previous results
easier and also to facilitate the readers familiar with standard
NEGF [57,76], the notations of Keldysh NEGF are translated
to those used in Ref. [72] as

�r
α(t,τ ) = −igα(t − τ ), (35a)

�<
α (t,τ ) = i g̃α(t − τ ), (35b)

for the self-energies and

Gr (τ,t0) = −iu(τ ), (36a)

Ga(τ,t) = i ū(τ ), (36b)

G<(τ,t) = iv(τ ), (36c)

for the Green functions [67]. The spin-resolved real-time
current in terms of Keldysh NEGF is summarized in the
Appendix.

The current for the effective spinless interferometer reads [72]

I 0
α (ϕ±,t)

= 2 Re Tr
∫ t

0
dτ (g̃±

α (t − τ ) ū± (τ ) − g±
α (t − τ ) v± (τ )).

(37)

The Green functions for the effective spinless system satisfy
the equations

∂τ u± (τ ) + iEu± (τ ) +
∫ τ

t0

dτ ′g±(τ − τ ′)u± (
τ ′) = 0

(38a)

and

v± (τ ) =
∫ τ

t0

dτ1

∫ t

t0

dτ2u± (τ − τ1) g̃± (τ1 − τ2) ū± (τ2) ,

(38b)
with ū± (τ ) = u± (t − τ + t0)† and the boundary condition
u± (0) = 1 is imposed. The self-energies for the effective spin-
less system are g± (τ ) = ∑

α g±
α (τ ) and g̃± (τ ) = ∑

α g̃±
α (τ )

with

[g±
α (τ )]ij = [ḡα(τ )]ij e

i(ϕ±
iα−ϕ±

jα ), (39a)

[g̃±
α (τ )]ij = [ ˜̄gα(τ )]ij e

i(ϕ±
iα−ϕ±

jα ), (39b)

and

ḡα(τ ) =
∫

dω

2π
�̄α(ω)e−iωτ , (39c)

˜̄gα(τ ) =
∫ ∞

−∞

dω

2π
fα(ω)�̄α(ω)e−iωτ , (39d)

in which

[�̄α(ω)]ij = 2π
∑
k∈α

V̄iαkV̄
∗
jαkδ(ω − εαk). (39e)

Here E = (E1 0
0 E2

) is the on-site energy matrix for the DQD.
Explicitly, the matrices of the effective self-energies are

g± (τ ) =
(

[ḡL (τ )]11 + [ḡR (τ )]11 eiχ± ([ḡL (τ )]12 eiϕ±/2 + [ḡR (τ )]12 e−iϕ±/2)

e−iχ± ([ḡL (τ )]21 e−iϕ±/2 + [ḡR (τ )]21 eiϕ±/2) [ḡL (τ )]22 + [ḡR(τ )]22

)
, (40)

where χ± is an arbitrary gauge phase given in Eq. (31c).
Straightforwardly, solving Eq. (38a) by Laplace transforma-
tion and substituting the solution into Eq. (37), we found
the current, as a physical observable, is independent of the
arbitrary gauge phase χ± that appears in Eq. (40). By taking
n̂ = n̂α in Eq. (23), together with Eq. (37), one immediately
verifies Eq. (22).

The Green functions, Eq. (38), together with the current
expression, Eq. (37), and the identity, Eq. (22), form the basis
of exploring the spin-dependent electron transport described
by Eq. (28). The self-energies g±(τ ), g̃±(τ ) and the Green
functions u±(τ ), v±(τ ) are respectively g(τ ), g̃(τ ) and u(τ ),
v(τ ) found through the replacement of φ in Ref. [72] by ϕ±.

For explicit calculations, we take the commonly assumed
wideband limit. The effective self-energy functions, Eq. (40),

become

g± (τ ) = δ (τ )

(
� eiχ±m±

e−iχ±m∗
± �

)
, (41)

where m± = (�Leiϕ±/2 + �Re−iϕ±/2). The broadening due to
the coupling to electrode α is �α and � = �L + �R . The
explicit expressions of the Green functions as well as the
spinless currents under the wideband assumption can be found
in Ref. [72].

III. SPIN-DEPENDENT CURRENT IN THE STEADY STATE

Before we proceed to investigate the dynamical processes,
we first take the steady-state limit. We examine the conditions
for generating spin-polarized current. We reproduce known
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results about spin polarization. We also discuss other possibil-
ities of spin dependence of the steady-state currents. In the end
of this section, we investigate how to extract the spin-polarized
transmission from the spin-independent total transmission at
various electric and magnetic fields.

A. Spin-polarized currents in the steady state

The spin-resolved current, Iαn̂;±(t), along an arbitrary
direction, n, involves both the currents I 0

α (ϕ+,t) and I 0
α (ϕ−,t).

As seen from Ref. [72], each of these currents may require
a different time to approach its steady state, determined from
the rates

γ ±
ϕ± = 1

2 (� ± �ϕ± ), (42a)

depending on the effective flux, ϕ±, through

�ϕ± =
√

�2
L + �2

R + 2�L�R cos(ϕ±) − δE2, (42b)

where δE = E1 − E2. When γ −
ϕ± is nonzero, the time for

I 0
α (ϕ±,t) to reach its steady state must be larger than 1/Re[γ −

ϕ±].
When δE = 0 and the effective flux ϕ± is an even multiple
of π , then γ −

ϕ± = 0 and γ +
ϕ± = �. In this case, as discussed

previously [72], only a single decay channel is present and
the corresponding decay rate is just �. The time to reach the
steady state in this situation must be larger than 1/�.

Taking the steady-state limit of Eq. (28), Iαn̂;±(t → ∞) =
I∞
αn̂;±, the current from the lead α carrying spinor |n̂; ±〉

becomes

I∞
αn̂± = 1

2

[
(1 ± n̂α· n̂)I 0

α (ϕ+) + (1 ∓ n̂α· n̂)I 0
α (ϕ−)

]
, (43a)

where

I 0
α (ϕ±) =

∫
dω

2π
[fα(ω) − fᾱ(ω)]T 0(ϕ±,ω), (43b)

in which ᾱ = R if α = L and vice versa. Here the linear
response of the effective spinless system with effective flux
ϕ± is given by the transmission,

T 0(ϕ±,ω) = 4�L�R

ω2 cos2(ϕ±/2) + (
δE
2 sin(ϕ±/2)

)2

(ω2 + (γ +
ϕ± )2)(ω2 + (γ −

ϕ±)2)
.

(43c)

Due to charge conservation, the steady-state currents for the
spinless DQD AB interferometer are subjected to

I 0
L(ϕ±) = −I 0

R(ϕ±). (44)

Using Eq. (22), we immediately find that

I∞
Ln̂L± = −I∞

Rn̂R±. (45)

This indicates that the current for spinor |n̂L; ±〉 leaving the left
side is converted to the current for |n̂R; ±〉 in the right side. It
also reveals the effects of SOI when electrons are transferred
across the DQD from one lead to the other. Directly from
Eq. (45) or more generally from Eq. (43), we have the total
current conversation,

IL = −IR. (46)

Applying the conditions for realizing the full spin polariza-
tion in Eq. (29) to Eq. (43) results in

I∞
αn̂α ;− = 0, (47a)

I∞
αn̂α ;+ 
= 0. (47b)

Therefore the current on lead α is polarized to carry only
the spinor |n̂α; +〉, while that for the opposite spinor |n̂α; −〉
vanishes. Equations (47), obtained in the wideband limit, are
the same as Eqs. (33) and (34), deduced independently of the
form of the level-broadening function given in Sec. II C. Our
results here thus reproduce the findings in Ref. [43].

Given that the two conditions for full polarization are
satisfied, the polarized current on lead α is described by

I∞
αn̂α ;+ = 4�L�R

∫
dω

2π
[fα(ω) − fᾱ(ω)]

× ω2 cos2(ϕ+/2)

(ω2 + (γ +
ϕ+ )2)(ω2 + (γ −

ϕ+)2)
. (48)

Setting μL = −μR = eV/2 at zero temperature, the integral
in the above equation can be done explicitly, yielding

I∞
αn̂α ;+ = ± 4�L�R

π��ϕ

cos2(ϕ+/2)

×
[
γ +

ϕ+ tan−1

(
eV

2γ +
ϕ+

)
− γ −

ϕ+ tan−1

(
eV

2γ −
ϕ+

)]
,

(49)

where the overall sign ± on the right-hand side takes + for
α = L and − for α = R. This shows that the magnitude of the
fully polarized currents sensitively depends on the effective
flux ϕ+ mainly through the term cos2(ϕ+/2).

Opposite to the fully spin-polarized current is the randomly
polarized current, namely, Iαn̂;+ = Iαn̂;−, for any direction
n̂. There are two possibilities for such unpolarized transport
to occur. The first is the trivial situation where the SOI is
switched off. The currents remain unpolarized not only in the
steady-state limit but also throughout the time, as shown in the
previous discussion below Eq. (28). The second circumstance
is that there is no applied magnetic flux, φ = 0. In this
case, we have ϕ± = ±ψso and I 0

α (ψso) = I 0
α (−ψso) due to

phase rigidity because the effective spinless interferometer is
a two-terminal system [see also Eqs. (43b) and (43c)]. Putting
this into Eq. (43a), one immediately obtains Iαn̂;+ = Iαn̂;−,
for all directions n̂. This result exemplifies the discussion
about the steady-state limit below Eq. (28) in Sec. II C. The
currents in the steady-state limit are unpolarized but they may
be transiently polarized (see the later discussion in Sec. IV B).
When one is away from either of the two conditions for full
spin polarization, one cannot reach T 0(ϕ−,ω) = 0 for all ω.
Therefore in general both Iαn̂α− and Iαn̂α+ are nonzero and the
currents are only partially polarized.

B. Extracting spin-resolved transmission from measurement
of total transmission

In the absence of the magnetic flux, the line shape of
the spin-independent total transmission depends solely on the
SOI-induced phase. Therefore one can extract ψso from the
total transmission. This in turn can be used to map out
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the relations between the values of the transmission for the
underlying spinless system and the effective fluxes, T 0(ϕ,ω).

The spin-independent total charge transport current is
defined by

I = 1
2 (IL − IR). (50)

Using Eq. (43) with Eq. (24), the charge transport current,
Eq. (50), in the steady-state limit becomes

I =
∫

dω

2π
[fL (ω) − fR (ω)] T (φ,ψso,ω) , (51a)

where the total charge transmission, T (φ,ψso,ω), is

T (φ,ψso,ω) = T 0(ϕ+,ω) + T 0(ϕ−,ω). (51b)

The zero bias charge conductance at low temperature, as the
linear response, is simply given by T (φ,ψso,ω) in Eq. (51).
By turning off the magnetic flux, the total charge transmission
becomes

T (φ = 0,ψso,ω) = 2T 0(ψso,ω), (52)

where we have utilized T 0(ψso,ω) = T 0(−ψso,ω).
We discuss separately the cases with δE = 0 and with δE 
=

0. By tuning the on-site energies such that δE = 0, with ψso =
2nπ , where n is an arbitrary integer, Eq. (43c) becomes a
Lorentzian line shape,

T 0 (2nπ,ω) = 4�L�R

(ω2 + �2)
, (53)

as shown by the most front plot in the left panel of Fig. 3.
For ψso 
= 2nπ , the single-peak profile splits into two peaks,
as shown by the other plots in the left panel of Fig. 3. The
separation of the two peaks is given by

�ω =
√

2�L�R[1 − cos(ψso)]. (54)

For ψso = (2n − 1)π , the transmissions vanish, as shown by
the most rear plot on the left panel of Fig. 3.

With δE 
= 0, T 0 (ψso,ω) for ψso = 2nπ shows split peaks
and its value at ω = 0 equals zero. This is the most front plot
on the right panel of Fig. 3. The separation between the two

FIG. 3. (Color online) Transmission for the effective spinless
DQD AB interferometer with the flux set at ϕ = ψso. The left panel
is for δE = 0 and the right panel is for δE = 0.5�. The couplings are
�L = �R = �/2 for both panels. These series of stacked plots show
T 0(ψso,ω) versus ω at some specific values of ψso, as labeled in the
figure.

peaks in this case becomes

�ω =
√

2|δE|. (55)

For ψso 
= 2nπ , the line shape of the transmission may exhibit
two peaks or a single peak profile, depending on the relations
between ψso and the nonzero value of δE. From Eq. (43c), we
find that if

γ̄ (ψso) ≡ 4
(
γ +

ψso
γ −

ψso

)2
cos2 (ψso/2)

− [(
γ +

ψso

)2 + (
γ −

ψso

)2]
δE2 sin2 (ψso/2) > 0 (56)

is satisfied, then there emerges a profile with two peaks, as
exemplified by the second most front plot on the right panel
of Fig. 3. The separation between these two peaks is given by

�ω =
⎧⎨⎩− δE2

2 sin2 (ψso/2)

2 cos2 (ψso/2)

+
√[

δE2

2 sin2 (ψso/2)
]2 + γ̄ (ψso) cos2(ψso/2)

2 cos2(ψso/2)

⎫⎬⎭
1/2

.

(57)

When the condition, Eq. (56), is not fulfilled, the transmission
line shape has a single peak, but it is not a Lorentzian profile
(see the plots on the right panel behind the second most front
one in Fig. 3). The single peak occurs at ω = 0 with the height

T 0 (ψso 
= 2nπ,ω = 0) = 16�L�RδE2 sin2 (ψso/2)

[δE2 + 4�L�R sin2 (ψso/2)]2
.

(58)

The height of the peak depends on δE and on ψso. In particular,
when δE = 0 then Eq. (53) yields the height 4�L�R/�2.

Therefore by observing the zero bias conductance profile at
given electric field without applying the magnetic flux, one can
extract the SOI-induced phase ψso from Eqs. (54)–(58) at that
electric field. The other way around, one can also fix the electric
field at which ψso = 2nπ , and find out the value of φ at a given
magnetic field through a similar procedure by the property,
T (φ,ψso = 2nπ,ω) = 2T 0(φ,ω). Using these results, one can
map out the dependence of T 0(ϕ,ω) on the effective flux ϕ.
Together with the knowledge on how φ and ψso depend on the
directly tunable magnetic and electric fields, the transmission
for polarized current, namely, T 0(ϕ+,ω) − T 0(ϕ−,ω), at given
electric and magnetic fields can be found. In particular, when
the full polarization conditions are met, the total transmission
shall satisfy T (φ,ψso,ω)|ϕ∓=(2n−1)π = T 0(ϕ±,ω).

IV. DYNAMICS OF SPIN-DEPENDENT TRANSPORT

In this section, we discuss the time evolutions of the
spin-dependent transport. In the first subsection we study
the real-time evolution towards a full spin polarization in the
currents, when the two conditions given above are fulfilled. In
the second subsection, we turn to the more general situation to
investigate the interplay between the AB and AC interference
effects on the dynamics of spin currents. In the third subsection,
we discuss how one can obtain the spin-resolved currents from

165422-9



TU, AHARONY, ZHANG, AND ENTIN-WOHLMAN PHYSICAL REVIEW B 90, 165422 (2014)

the total charge currents, using approaches similar to those
mentioned in a previous section.

A. Time evolution of full spin polarization in currents

We have discussed the requirements for generating polar-
ized currents in the steady state. However, even when those
requirements are satisfied, the currents during the transient
processes for both of the orthogonal spinors are generally
nonvanishing. Using Eq. (22), we explicitly study how the
currents for opposite spins along the characteristic directions in
each of the electrodes, Iαn̂α ;−(t) and Iαn̂α ;+(t), change in time.

The real-time polarization process is mainly manifested
through the evolution of the current Iαn̂α ;−(t), that will
eventually decay to zero. The requirement Eq. (29) with
Eq. (37) and Eq. (22) leads to

Iαn̂α ;−(t) = 4�α

∫
dω

2π
fα (ω)

× e−�αt (�α cos ωt + ω sin ωt) − �αe−2�αt

ω2 + �2
α

.

(59)

According to the analysis in Sec. II C, under the condition
Eq. (29), the corresponding spinless interferometer, whose
current is related to the current carrying the spinor |n̂α; −〉,
has a disconnected effective configuration as that depicted in
Fig. 2(a). The result that Eq. (59), as the current for spinor
|n̂α; −〉 on lead α, is not affected by anything from the other
lead ᾱ, verifies the conclusion in Sec. II C.

In contrast to the decay of the currents Iαn̂α ;−(t) toward zero,
the time evolution of the currents Iαn̂α ;+ (t) generally depends
on parameters from both of the leads. At the optimal point
ϕ+ = 2mπ leading to �ϕ+ = �, a similar substitution as used
for obtaining Eq. (59) results in

Iαn̂α ;+(t)

= 4�α

∫
dω

2π

{
fα (ω)

� + [ω sin (ωt) − � cos (ωt)] e−�t

ω2 + �2

−
∑

α′=L,R

�α′fα′ (ω)
[1 + e−2�t − 2 cos (ωt) e−�t ]

ω2 + �2

}
.

(60)

For this part, the corresponding effective spinless configuration
discussed in Sec. II C is a single-level dot coupled to two
reservoirs, as shown in Fig. 2(b). From Eq. (60), one can also
see that Iαn̂α ;+(t → ∞) 
= 0 with nonzero bias, as expected
from previous discussions.

Equation (59) indicates that the time for Iαn̂α ;−(t) to reach
its steady-state value is mainly determined by the term e−�αt .
The smaller �α is, the slower the full spin polarization of the
current in lead α is reached. On the other hand, one finds from
Eq. (60) that the time for Iαn̂α ;+(t) to reach its steady-state value
is dominated by the term e−�t . Therefore it is insensitive to the
specific values taken by the individual couplings �L and �R

for a fixed � = �L + �R . However, the coupling geometry still
affects the magnitude of the full spin-polarized current. In the
steady states, Eqs. (48) and (49) show that the spin-polarized
current can be enhanced by having larger value of �L�R . Note

FIG. 4. (Color online) Time evolutions of the currents Iαn̂α ;−(t)
and Iαn̂α ;+(t) under the conditions of full spin polarizations.
In (a1), (a2), (b1), and (b2), the blue dashed lines are for
(�L,�R) = (0.1,0.9)�, the black long-dashed lines are for (�L,�R) =
(0.25,0.75)�, the red solid lines are for (�L,�R) = (0.5,0.5)�, the
magenta short-dashed lines are for (�L,�R) = (0.75,0.25)�, and the
green dash-dot lines are for (�L,�R) = (0.9,0.1)�. In plots (a1)
and (a2), ILn̂L ;−(t) and IRn̂R ;−(t) are shown for various coupling
geometries, respectively. The plots (b1) and (b2) respectively are for
ILn̂L ;+(t) and IRn̂R ;+(t) at the optimal point ϕ+ = 2π . In (c1) and (c2),
the time evolutions of the currents ILn̂L ;+(t) and IRn̂R ;+(t) are plotted
for various ϕ+ with a fixed coupling geometry (�L,�R) = (0.5,0.5)�.
The red solid lines are with ϕ+ = 2π , black long-dashed lines are
with ϕ+ = 2 1

4 π , blue dashed lines are with ϕ+ = 2 1
2 π , and the

magenta short-dashed lines are with ϕ+ = 2 3
4 π . In all plots, we

have set δE = 0, as one of the polarization conditions, and a bias
μL = −μR = 1.25� is applied at temperature kBT = �/20. This set
of bias and temperature is also assumed in the following figures.
The instantaneous rising of the currents to finite values immediately
after t = 0 in these plots is a direct consequence of the wideband
limit [77].

that Eq. (48) is invariant under the exchange of the couplings,
�L ↔ �R .

In Figs. 4(a1,a2) and 4(b1,b2), we demonstrate the effects of
the coupling geometry discussed above, specified by different
values of (�L,�R), on the time evolution of the spin-resolved
currents. The curves in these four plots with the same line
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styles are with the same pair of couplings (�L,�R), subject to
�L + �R = �. In Figs. 4(a1) and 4(a2), we illustrate the time
evolution of Iαn̂α ;−(t). It shows that a smaller �α leads to a
slower decay of the current Iαn̂α ;−(t), thus a slower process of
spin polarization (see the insets for a clearer view). Since we
have set μL > μR , more electrons are involved in the left than
in the right lead. At later times, this results in generally bigger
magnitudes of currents in the left [comparing the magnitudes
in the insets of Figs. 4(a1) and 4(a2)].

In Fig. 4(b1,b2), the time evolutions of Iαn̂α ;+(t) with
ϕ+ = 2mπ are inspected. It shows that different coupling
geometries result in similar times for Iαn̂α ;+(t) to reach the
corresponding steady-state values. The merging of the curves
(blue medium-dashed line merged with green dash-dotted line
and black long-dashed line merged with magenta short-dashed
line) occur after a time of about 2.5�−1, reaching steady-state
values proportional to �L�R . The maximized spin-polarized
current is found with �L = �R = �/2. Comparing Fig. 4(b)
with Fig. 4(a) insets, one finds that Iαn̂α ;+(t) reaches a stable
value generally faster than the full spin polarization is arrived.
This is because the rate for the former, � = �L + �R , as a sum
of two couplings, is larger than the rate for the latter, �L or
�R . The different dependencies of the dynamical processes
of the currents Iαn̂α ;−(t) and Iαn̂α ;+(t) on the couplings to
the reservoirs, discussed in Sec. II C, is then illustrated
here.

We further investigate the behavior of Iαn̂α ;+(t) when the
system is set away from the optimal point ϕ+ = 2mπ . In
Fig. 4(c1,c2), the time evolution of Iαn̂α ;+(t) with different
effective fluxes ϕ+ are plotted. When ϕ+ is placed away from
2mπ toward (2m + 1)π , the steady-state value of this current,
proportional to cos2(ϕ+/2), as inspected from Eq. (48),
decreases. Figure 4(c1,c2) also shows that the value of ϕ+
does not obviously affect the time to approach the steady state
but it influences the overall magnitudes of Iαn̂α ;+(t) throughout
the time evolution. Note that different values of ϕ+ are realized
by applying different magnetic fluxes and SOI parameters. As
long as the choices of the magnetic fluxes and SOI parameters
are subjected to Eq. (29c), the time dependence of Iαn̂α ;−(t)
remains the same as described by Eq. (59).

B. Dynamics of spin currents

In the last subsection, we have concentrated on the dynam-
ics under the conditions of reaching fully polarized currents
in the steady-state limit. In general when the system deviates
from these conditions, both the spin-up and the spin-down
components of the currents are nonzero and full spin-polarized
currents are not attained. In this case, instead of studying
separately the currents for spin up and spin down in some
specific direction, it is more interesting to simply focus on the
spin currents IS

α (t).

1. Spin currents due to SOI without the magnetic flux

We first consider the situation with no applied magnetic
flux, namely, φ = 0. The effective fluxes are then given
by ϕ± = ±ψso. In this case, Eq. (27) becomes [upon the
use of Eqs. (19) and (21) with the aid of d

dt
N0(ϕ±,t) =

I 0
L(ϕ±,t) + I 0

R(ϕ±,t) in Ref. [72] through the identity

Eq. (22)]

IS
α (t) · n̂α

= −2�L�RδE sin (ψso)

×
∫

dω

2π

{
f− (ω)

1∣∣�ψso

∣∣2

d

dt
[|up (t,ω) |2]

∓f+(ω)

[
Re

(
u∗

0 (t,ω) up (t,ω)

�ψso

)
− �

∣∣∣∣up(t,ω)

�ψso

∣∣∣∣2]}
,

(61)

where f± (ω) = fL (ω) ± fR (ω). Here u0,p (t,ω) =∫ t

0 dτ eiωτu0,p (ψso,τ ), where u0,p (ψso,τ ) is equal to
u0,p(τ ) of Eq. (16) in Ref. [72] with φ there replaced by ψso.
The upper sign is for α = L and the lower sign is for α = R.
Equation (61) shows that if we set δE = 0, then the spin
currents remain zero for all time t . To generate a nonvanishing
spin current, one has to lift up the degeneracy. From Ref. [72],
one finds that δE = 0 leads to I 0

α (ψso,t) = I 0
α (−ψso,t)

for α = L,R and phase rigidity is kept for the underlying
spinless system throughout the time. Therefore, generating
spin currents by lifting up the degeneracy is equivalent to the
temporary breaking of phase rigidity in the spinless DQD
interferometer, as pointed out in Ref. [72]. Besides the energy
splitting, Eq. (61) also explicitly reveals the necessity of
the presence of SOI for the existence of the spin currents,
through the term sin (ψso). When SOI is absent, ψso = 0, then
sin (ψso) = 0, directly leading to IS

α (t) = 0. Equation (61)
also shows that the spin currents IS

α (t) will approach zero at
long times. The nonvanishing spin currents can thus only be
sustained transiently.

The above discussions show that the magnitudes of the
transient spin currents are mainly determined by δE and
sin (ψso). In Fig. 5(a1,a2), we study the effects of various δE’s
on the time evolutions of the spin currents. The results show
that splitting the degeneracy generally enhances the transient
spin flow (compare the curves for smaller and bigger δE),
as indicated by Eq. (61). Since bigger δE also implies faster
relaxation, we observe a shorter span of nonzero spin flow
with bigger energy splitting. The dependencies of the spin
currents on SOI, through the SOI-induced phase ψso, are
presented in Fig. 5(b1,b2). The transient magnitudes increase
with increasing values of sin (ψso).

2. Spin currents due to SOI with the magnetic flux

The above discussions have shown that it is not possible to
generate spin currents at degeneracy purely by the act of SOI.
Even when the degeneracy between the on-site energies of the
DQD is lifted up, the spin currents only survive transiently. The
magnetic flux is thus indispensable to sustain nonvanishing
spin currents in the long time limit.

The versatility of the combination of the AB effect and
the SOI for attaining various spin currents is demonstrated
in Fig. 6 for both δE = 0 and δE 
= 0. The values of φ are
so chosen that one can attain various distinct results for the
spin current. In Fig. 6(a1,a2), we illustrate that, at δE = 0,
spin currents can be generated and sustained in the steady
states by simultaneously setting φ 
= 0 and sin(ψso) 
= 0. The
solution Eq. (27) implies that one can reverse the sign of the
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FIG. 5. (Color online) Time evolutions of the spin currents. The
couplings are set to �L = �R = �/2 here. In plots (a1) and (a2)
all curves are with ψso = 0.5π . The red solid lines are for δE = 0,
the black long-dashed lines are for δE = 0.15�, the blue dashed
lines are for δE = 0.5�, and the magenta short-dashed lines are
for δE = 2�. In plots (b1) and (b2) we fix δE = 0.5�. The red
solid lines are for ψso = 0.125π , the black long-dashed lines are for
ψso = 0.25π , the blue dashed lines are for ψso = 0.5π , the magenta
short-dashed lines are for ψso = 0.75π , and the green dash-dot lines
are for ψso = 0.875π .

spin currents by just adjusting the flux φ, without altering
the SOI parameters leading to the changes of n̂α and ψso.
At degeneracy, the currents I 0

α (ϕ±,t) for the effective spinless
system depend on the effective flux ϕ± only through the term
cos ϕ± (see Ref. [72]). Therefore, for all times t , the sign of
IS
α (t) · n̂α|φ=nπ+�φ and that of IS

α (t) · n̂α|φ=nπ−�φ , for n being
an arbitrary integer and �φ being nonzero, are opposite to
each other, as indicated in Fig. 6(a1,a2). By lifting up the
degeneracy, the dependence of I 0

α (ϕ±,t) on ϕ± appears from
both of the terms cos ϕ± and sin ϕ±. As a result, the spin
currents with δE 
= 0 are not perfectly antisymmetric with
respect to φ = nπ , as shown by Fig. 6(b1,b2).

C. Deduction of the spin-resolved currents from the
spin-independent total charge current

In Sec. III B, we have discussed how one can extract the
values of ψso and φ at given electric and magnetic fields. With
this knowledge in mind, by applying similar procedures, we
can also obtain the magnitude of the spin current, IS

α (t) · n̂α ,
from the values of the spin-independent total charge current.
Explicitly, the spin-independent total charge current, Eq. (24),
at given electric and magnetic fields is

Iα(φ,ψso,t) = I 0
α (ϕ+,t) + I 0

α (ϕ−,t). (62)

From Eqs. (19) and (21) in Ref. [72], the current on lead α for
the effective spinless DQD system with flux ϕ can be split into

FIG. 6. (Color online) Various magnetic flux values are tested for
fixed SOI strength. In all plots we let ψso = 0.5π . In plots (a1) and
(a2), we set δE = 0. The red solid lines for φ = 0 and the dark
green dash-dash-dot-dot-dot lines for φ = π are overlapped. The
black-dashed lines for φ = 0.4π and the black dash-dot-dot lines for
φ = 1.6π differ by a sign. The blue short-dashed lines for φ = 0.8π

and the blue dash-dot lines for φ = 1.2π also differ by a sign. In plots
(b1) and (b2), the degeneracy is lifted as δE = 0.5� and the same
choices of φ used in (a1) and (a2) are used also here.

two terms,

I 0
α (ϕ,t) = Ī 0

α (ϕ,t) + δE sin (ϕ) Ī γ
α (ϕ,t) , (63a)

where Ī 0
α (ϕ,t) and Ī

γ
α (ϕ,t) satisfy

Ī 0
α (ϕ,t) = Ī 0

α (−ϕ,t) , Ī γ
α (ϕ,t) = Ī γ

α (−ϕ,t) . (63b)

Setting zero magnetic field φ = 0 in Eq. (62) with the
property given by Eq. (63), the dependence of the total charge
current on ψso becomes

Iα(φ = 0,ψso,t) = 2Ī 0
α (ψso,t) . (64)

The dependence of Ī 0
α (ψso,t) on various ψso’s can thus be

found from the total current Iα(φ = 0,ψso,t) under different
applied electric fields with zero magnetic flux. The dependence
of Ī

γ
α (ϕ,t) on ϕ can be found through the following approach.

By fixing the electric field at ψso = 2nπ , this part of the current
is related to the total current and to the part that is already
known, Ī 0

α (ϕ,t), via the relation

2δE sin (φ) Ī γ
α (φ,t) = Iα (φ,ψso = 2nπ,t) − 2Ī 0

α (φ,t) .

(65)

The values of Ī
γ
α (φ,t) for different φ’s can thus be deduced

from the total current and Ī 0
α (φ,t) by applying the corre-

sponding magnetic fields. Knowing I 0
α (ϕ,t) at various effective

fluxes ϕ, one can deduce the spin-resolved current by the virtue
of Eq. (22).
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V. SUMMARY AND CONCLUSION

In this paper, we have explored the real-time dynamics
of spin-dependent electron transport through a DQD AB
interferometer with SOI. We have obtained the real-time
evolution of the spin-resolved currents, Eq. (28), and the
subsequent spin currents, Eq. (27). These expressions fully
describe the dynamical evolution of the spin polarizations in
the electron transport from initially completely unpolarized
interferometers. We have particularly investigated the real-
time evolution of the currents towards fully spin-polarized
transport. We have also explored the interplay between the
SOI and AB interferences in the dynamics of spin flows. Out
of these studies, we draw the following conclusions.

(1) The effects of SOI on the transport currents are attributed
to the SOI-induced phase ψso and the characteristic directions,
n̂L and n̂R . They are fully determined respectively as the
eigenvalue and eigenvectors of the unitary spin rotations
around the loop. Spin polarizations of currents in each lead are
only developed along their characteristic directions throughout
all times. In general, n̂L 
= n̂R .

(2) The currents carrying electrons with spins along the
characteristic directions are equal to the currents of the
effective spinless system with the flux replaced by the effective
fluxes, as described by Eq. (22). Such connections explicitly
reveal that it is the difference between the effective fluxes,
ϕ± = φ ± ψso, caused by the SOI, that gives rise to the spin
polarizations.

(3) When fully polarized currents for spin-up electrons
occur, the effective spinless system underlying the spin-down
current corresponds to a disconnected configuration, as shown
in Fig. 2(a). Therefore, the decay dynamics of spin-down
current in one lead is independent of that in the other lead.
In contrast, the dynamics of building spin-up current in one
electrode is correlated with that in the other electrode. This
essential picture can serve to discern the occurrence of full spin
polarization. One could test it by monitoring the spin-resolved
currents in one side while changing parameters of the other
side.

(4) The realization of full spin polarization has received
considerable attention, as it supplies spin-polarized electron
sources and allows the manipulation of flying spin qubits.
Therefore it is important to know how to implement fast full
spin polarization and attain the polarized currents of tunable
magnitudes. At full polarization condition, we found that in-
creasing the coupling strength to the leads effectively increases
the pace toward full spin polarization. As an interferometer,
the magnitude of the resulting currents is largely controlled
by the interference phase, which is determined here by the
effective fluxes. They are tunable via the magnetic flux and the
electric field, affecting the SOI-induced phase.

(5) The connection between the spin-polarized currents
and the currents of the effective spinless system provides
the underlying physical picture for the working of the spin
transport in this DQD AB interferometer. Due to the phase
rigidity of the effective spinless system as a two-terminal setup,
SOI alone cannot give rise to steady-state spin currents. The
indispensable role of the magnetic flux in maintaining nonzero
spin currents to the steady-state limit reflects the essence of
the interplay between charge and spin interferences. This can

be tested by comparing the steady-state spin currents with and
without the applied magnetic flux.

(6) Spin-independent total charge currents are readily
measurable in experiments. We have shown how one can
extract currents of characteristic spins in this system from
measurements of the total charge currents at properly chosen
electric and magnetic fields. Such measurements can thus be
used for testing the properties of the spin-resolved transport
concluded above.

The model we considered in this paper could be constructed
from gate-defined QDs made of materials of high carrier den-
sity, providing large screening of Coulomb interactions such
that electrons are effectively noninteracting. With sufficient
orbital level spacing and applying a bias less than such spacing,
one can make only a single orbital in each dot participate
in the transport. The QDs could be connected to electron
reservoirs via gated quantum wires to implement the SOI
tunable by the gate electric field. An ongoing experimental
issue concerns the possibility to detect spin-polarized electrical
currents using only electrical means [78–81]. Modulating
electron transport via interference in ringlike structures with
the AB effect [82,83] and spin interference [12–15] are of
much experimental interest. The analysis of the time evolution
of spin-resolved transport for this DQD interferometer could
add momentum to this progressing research direction.
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APPENDIX: NEGF FORMALISM FOR TIME-DEPENDENT
TRANSPORT CURRENTS

Here we summarize formulations for studying nonequi-
librium electron transport through a class of nanoelectronic
structures. In order to consider spin-dependent dynamics, here
we label both the charge and the spin degrees of freedom
explicitly. We also assume that electron reservoirs are free
from SOI. The Hamiltonian of the total system is then given by
Eq. (1), where the Hamiltonian of the central area is generally

HS =
∑
ij,σσ ′

Eiσ,jσ ′a
†
iσ ajσ ′ (A1)

with i,j labeling orbital states and σ,σ ′ denoting the spins. The
Hamiltonian for sum of electron reservoirs is Eq. (3), with α
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running over all considered electrodes. The tunneling between
the central system and the leads is described by Eq. (4). In all
the above equations, the spins are quantized along an arbitrary
direction.

The spin-resolved transient current at time t is defined by

Iασ (t) = − d

dt
trtot[Nα,σ ρtot(t)], (A2a)

where

Nα,σ =
∑
k∈α

c
†
αkσ cαkσ (A2b)

is the total particle number operator for spin σ in lead α and
ρtot(t) is the total density matrix of the central system plus the
electron reservoirs at time t . Here trtot denotes the trace over
the total system.

As usual, we assume [84] that at the initial time t = t0, the
central system is decoupled from the leads, and the leads are
at thermal equilibrium with the chemical potential μασ and
the temperature Tασ for electron with spin σ in lead α, whose
Fermi distribution function is given by

fασ (ω) = 1/[e(ω−μασ )/kBTασ + 1], (A3)

where kB is the Boltzmann constant. If the central area
initially contains no excess electrons, then the real-time current
carrying electrons of spin σ from lead α in terms of Keldysh
NEGF reads [57,76]

Iασ (t) = − 2 Re Tr
∫ t

t0

dτ
{
�r

ασ (t,τ )G<(τ,t)

+ �<
ασ (t,τ )Ga(τ,t)

}
. (A4)

Throughout the paper, we use units in which � = e = 1. One
can also derive the same current formula through a density
matrix formalism [67], as used in Sec. II D, and the two
expressions can be identified via Eqs. (35) and (36). The
retarded and the lesser self-energies are

�r
ασ (t,τ ) = −iθ (t − τ )

∫
dω

2π
�ασ (ω)e−iω(t−τ ), (A5a)

�<
ασ (t,τ ) = i

∫
dω

2π
fασ (ω)�ασ (ω)e−iω(t−τ ), (A5b)

respectively, with θ being the step function. They are defined
via the level-broadening function,

[�ασ (ω)]iσ ′,jσ ′′ = 2π
∑
k∈α

Viσ ′,αkσV ∗
jσ ′′,αkσ δ(ω − εαk).

(A5c)

The retarded and the advanced Green functions are defined
by

[Gr (t,τ )]iσ,jσ ′ = −iθ (t − τ )〈{aiσ (τ ),a†
jσ ′(t)}〉, (A6a)

[Ga(τ,t)]iσ,jσ ′ = iθ (t − τ )〈{aiσ (τ ),a†
jσ ′ (t)}〉. (A6b)

They are related by Ga(τ,t) = [Gr (t,τ )]†. The retarded Green
function follows the equation

[i∂t − E]Gr (t,τ ) −
∫ t

τ

dτ ′�r (t,τ ′)Gr (τ ′,τ ) = δ(t − τ ),

(A6c)
and the lesser Green function is given by

G<(τ,t) =
∫ ∞

t0

dτ ′
∫ ∞

t0

dτ ′′Gr (τ,τ ′)�<(τ ′,τ ′′)Ga(τ ′′,t).

(A7)

Here E is the energy matrix of the central system while

�r (τ,τ ′) =
∑
ασ

�r
ασ (τ,τ ′), (A8a)

�<(τ,τ ′) =
∑
ασ

�<
ασ (τ,τ ′) (A8b)

are sums of individual self-energies induced by coupling to
each of the leads. In the definitions Eqs. (A6) and (A7), the
time-dependent field operators are those in the Heisenberg
picture and the bracket denotes the average over the initial
state, 〈·〉 = trtot(·ρtot(t0)).

By specifying the level-broadening function, Eq. (A5c), and
therefore the self-energies, Eq. (A5), one can substitute them
into Eqs. (A6) and (A7) for solving the Green functions in the
time domain. The real-time currents can then be found by sub-
stituting these Green functions and self-energies into Eq. (A4).
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[39] P. Földi, O. Kálmán, M. G. Benedict, and F. M. Peeters, Phys.

Rev. B 73, 155325 (2006).
[40] F. Chi and J. Zheng, Appl. Phys. Lett. 92, 062106 (2008).
[41] N. Hatano, R. Shirasaki, and H. Nakamura, Phys. Rev. A 75,

032107 (2007).
[42] S.-H. Chen and C.-R. Chang, Phys. Rev. B 77, 045324 (2008).
[43] A. Aharony, Y. Tokura, G. Z. Cohen, O. Entin-Wohlman, and

S. Katsumoto, Phys. Rev. B 84, 035323 (2011).
[44] F. Chi, J.-L. Liu, and L.-L. Sun, J. Appl. Phys. 101, 093704

(2007).
[45] F. Chi, X. Yuan, and J. Zheng, Nanoscale Res. Lett. 3, 343

(2008).
[46] H.-T. Yin, X.-J. Liu, L.-F. Feng, T.-Q. Lu, and H. Li, Phys. Lett.

A 374, 2865 (2010).

[47] K.-W. Chen, Y.-H. Su, S.-H. Chen, C.-L. Chen, and C.-R. Chang,
Phys. Rev. B 88, 035443 (2013).

[48] P. M. Shmakov, A. P. Dmitriev, and V. Yu. Kachorovskii, Phys.
Rev. B 85, 075422 (2012); ,87, 235417 (2013).

[49] M. Pletyukhov, V. Gritsev, and N. Pauget, Phys. Rev. B 74,
045301 (2006).

[50] A. M. Lobos and A. A. Aligia, Phys. Rev. Lett. 100, 016803
(2008).

[51] R. Citro and F. Romeo, Phys. Rev. B 73, 233304
(2006).
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