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Vacuum polarization of graphene with a supercritical Coulomb impurity:
Low-energy universality and discrete scale invariance
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We study massless Dirac fermions in a supercritical Coulomb potential with the emphasis on that its low-energy
physics is universal and parametrized by a single quantity per supercritical angular momentum channel. This
low-energy parameter with the dimension of length is defined only up to multiplicative factors and thus each
supercritical channel exhibits the discrete scale invariance. In particular, we show that the induced vacuum
polarization has a power-law tail whose coefficient is a sum of log-periodic functions with respect to the distance
from the potential center. This coefficient can also be expressed in terms of the energy and width of so-called
atomic collapse resonances. Our universal predictions on the vacuum polarization and its relationship to atomic
collapse resonances shed light on the longstanding fundamental problem of quantum electrodynamics and can
in principle be tested by graphene experiments with charged impurities.
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I. INTRODUCTION

Fate of vacuum in a strong Coulomb potential produced by
a heavy atomic nucleus is a fundamental problem of quantum
electrodynamics and has been the subject of a long study [1].
One of the physical quantities that have attracted particular
interest is the induced vacuum polarization [2–6]. It is well
known that there are two distinct regimes, subcritical Z < α−1

and supercritical Z > α−1, depending on the nuclear charge
Z relative to the reciprocal of the fine structure constant
α = e2/(4πε0�c) ≈ 1/137 [7]. Although the resulting physics
can be qualitatively different in the two regimes [6], intriguing
phenomena caused by the supercritical Coulomb potential
remain elusive because of the absence of such superheavy
atomic nuclei.

The situation has changed since 2004 when a graphene
was successfully isolated [8,9], which realizes massless Dirac
fermions in two dimensions with the Fermi velocity vF ≈
106 m/s [10]. Because the corresponding “fine structure
constant” is as large as e2/(4πε0�vF) ≈ 2, a cluster of charged
impurities placed on graphene can produce the supercritical
Coulomb potential and thus the resulting intriguing phenom-
ena are now within experimental reach [11–13]. Theoretically,
the vacuum polarization of graphene has been studied inten-
sively in both subcritical and supercritical regimes [14–23].
However, in our opinion, the vacuum polarization induced by
the supercritical Coulomb potential has not been understood
completely even without electron-electron interaction. The
objective of this paper is to shed light on this longstanding
fundamental problem.

Noninteracting massless Dirac fermions in two dimensions
subject to a Coulomb potential are described by the Dirac
equation: (

−i∂ · σ − g

r

)
�εj (r) = ε�εj (r). (1)

Here ∂ · σ ≡ ∂xσx + ∂yσy is the kinetic term, ε ≡ E/�vF is the
normalized energy, and g ≡ Ze2/(4πε0�vF) is the dimension-
less coupling constant with −e and Ze being the electron and
impurity charges, respectively. Because the Coulomb potential
is circularly symmetric, the wave function �εj (r) can be

chosen as an eigenfunction of the conserved total angular
momentum; j = ±1/2, ± 3/2, . . . [15,16]. Accordingly, the
vacuum polarization electron density is formally expressed as

n(r) = 1

2

∑
ε<0

∑
j

|�εj (r)|2 − 1

2

∑
ε>0

∑
j

|�εj (r)|2 (2)

assuming appropriate normalization and regularization [24].
While an explicit calculation will be performed below, the
functional form of n(r) can be deduced only from symmetry
and dimensional analysis. In particular, because of the absence
of intrinsic scale in the subcritical regime |g| < 1/2, the
induced electron density has to be in a scale invariant form
and the only possibility is

n(r) = N0δ(r). (3)

We note that another apparently possible form ∼1/r2 is
not compatible with the scale invariance because its Fourier
transform generates a logarithm which requires some scale
[17]. Therefore, the vacuum polarization induced by the
subcritical Coulomb potential is localized at the potential
center [15–17,19] and the analytical expression for the induced
electron number N0 was obtained in Ref. [19].

On the other hand, in the supercritical regime |g| > 1/2,
the stronger singularity of the Coulomb potential at the origin
has to be regularized, for example, by allowing a finite size for
charged impurity [7]. However, as long as low-energy physics
is concerned, all different regularization can be parametrized
by a single quantity r∗

j per supercritical angular momentum
channel |j | < |g| through a boundary condition on the wave
function at the origin [25]. As we will find in Eq. (12b),
this low-energy parameter r∗

j with the dimension of length

is defined only up to multiplicative factors of eπ/
√

g2−j 2
. As a

consequence, each supercritical channel exhibits the discrete
scale invariance and the induced electron density now has a
form

n(r) = N0δ(r) +
∑

|j |<|g|

Fj (r/r∗
j )

r2
, (4)
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where Fj (r/r∗
j ) is an unknown but log-periodic function

satisfying Fj (r/r∗
j ) = Fj (enπ/

√
g2−j 2

r/r∗
j ) with n being an

arbitrary integer. Therefore, the vacuum polarization induced
by the supercritical Coulomb potential has a power-law tail
∼ 1/r2 [15,16] whose coefficient is a sum of log-periodic
functions with respect to the distance from the potential center.
Although the coefficient of the power-law tail was considered
to be a constant in Refs. [15,16], our explicit calculation
will show that Fj (r/r∗

j ) is the universal log-periodic function
presented in Eq. (27).

II. GREEN’S FUNCTION

In order to determine the coefficient of the power-law tail
in the induced electron density (4), it is more convenient to
employ a Green’s function method rather than directly dealing
with the wave function in Eq. (1) [2–6,19]. The single-particle
Green’s function G(ε; r,r ′) defined for an arbitrary ε ∈ C is a
solution to(

ε + i∂ · σ + g

r
− mσz

)
G(ε; r,r ′) = δ(r − r ′)1, (5)

where the mass term mσz is introduced to serve as an infrared
cutoff and will be set to zero at the end of calculations [3,19].
By substituting its partial-wave expansion

G(ε; r,r ′) =
∞∑

j=−∞

(
ei(j−1/2)θ 0

0 i ei(j+1/2)θ

)Gj (ε; r,r ′)

2π
√

rr ′

×
(

e−i(j−1/2)θ ′
0

0 −i e−i(j+1/2)θ ′

)
(6)

into Eq. (5) as well as the polar coordinate representation of the
δ function [26], we find the radial Green’s function Gj (ε; r,r ′)
to satisfy(

ε + g

r
− m −∂r − j

r

∂r − j

r
ε + g

r
+ m

)
Gj (ε; r,r ′) = δ(r − r ′)1, (7)

where j = ±1/2, ± 3/2, . . . is the total angular momentum
quantum number.

The analytical expression forGj (ε; r,r ′) can be obtained in a
similar way to the corresponding problem in three dimensions
[2,4,6]. We first set

Gj (ε; r,r ′) = θ (r − r ′)ψ>
εj (r)[ψ<

εj (r ′)]T

+ θ (r ′ − r)ψ<
εj (r)[ψ>

εj (r ′)]T (8)

with ψ>
εj (r) = [ψ>

εj↑(r),ψ>
εj↓(r)]T and ψ<

εj (r) =
[ψ<

εj↑(r),ψ<
εj↓(r)]T being solutions to the radial Dirac

equation: (
ε + g

r
− m −∂r − j

r

∂r − j

r
ε + g

r
+ m

)
ψεj (r) = 0. (9)

These two solutions have to be normalized as
ψ>

εj↑(r)ψ<
εj↓(r) − ψ>

εj↓(r)ψ<
εj↑(r) = 1 (10)

to satisfy Eq. (7) and, in addition, have to be chosen so that
the radial Green’s function Gj (ε; r,r ′) satisfies appropriate
boundary conditions at r → ∞ and r → 0 with r ′ fixed. It
is obvious from its expression (8) that the long-distance limit
is controlled by ψ>

εj (r) which has to be bounded at r → ∞:

lim
r→∞ |ψ>

εj (r)| < ∞. (11)

On the other hand, the short-distance limit is controlled by
ψ<

εj (r) whose boundary condition at r → 0 requires different
treatment for subcritical and supercritical angular momentum
channels [15,16].

In a subcritical angular momentum channel |j | > |g|, the
radial Dirac equation (9) admits regular and singular solutions
ψ<

εj (r) → r±γ̄ (j ± γ̄ ,g)T at r → 0 with the real exponent γ̄ ≡√
j 2 − g2. Because low-energy physics is dominated by the

regular solution, the relevant boundary condition is to impose

lim
r→0

ψ<
εj (r) ∝ rγ̄

(
j + γ̄

g

)
. (12a)

On the other hand, in a supercritical angular momentum
channel |j | < |g|, the above two solutions become oscilla-
tory ψ<

εj (r) → r±iγ (j ± iγ,g)T at r → 0 with the imaginary

exponent iγ ≡ i
√

g2 − j 2. Because both solutions are now
equally important to low-energy physics, the general solution
becomes their superposition which is uniquely specified by
imposing the boundary condition:

lim
r→0

ψ<
εj (r) ∝

(
r

r∗
j

)iγ (
j + iγ

g

)
−

(
r

r∗
j

)−iγ (
j − iγ

g

)
.

(12b)

We thus find that the solution in each supercritical channel is
parametrized by a single quantity r∗

j > 0 with the dimension
of length. An important point, which seems not to be fully
appreciated in previous studies, is that the emergent low-
energy parameter r∗

j is defined only up to multiplicative
factors of eπ/γ , i.e., enπ/γ r∗

j with n being an arbitrary integer
corresponding to the same physics. As a consequence, each
supercritical channel exhibits the discrete scale invariance,
which also emerges in nonrelativistic one-body [25], two-
body [27], and three-body [28] problems and can be viewed
as a manifestation of the quantum scale anomaly and the
renormalization group limit cycle [29,30].

It is then straightforward to construct ψ>
εj (r) and ψ<

εj (r)
satisfying the above required conditions (10)–(12) from the
following two linearly independent solutions to the radial
Dirac equation (9) [31]:

ψ
(1,2)
εj (r) =

⎛
⎝

√
m + ε

[
u

(1,2)
εj (r) + v

(1,2)
εj (r)

]
sgn(m)

√
m − ε

[
u

(1,2)
εj (r) − v

(1,2)
εj (r)

]
⎞
⎠ (13)

with

u
(1)
εj (r) = g ε

κ
+ γ̄

2κ

�
(
1 − g ε

κ
+ γ̄

)
�(1 + 2γ̄ )

×(2κr)γ̄ e−κrM

(
− g

ε

κ
+ γ̄ ,1 + 2γ̄ ,2κr

)
,

(14a)

v
(1)
εj (r) = j − g m

κ

2κ

�
(
1 − g ε

κ
+ γ̄

)
�(1 + 2γ̄ )

×(2κr)γ̄ e−κrM

(
1 − g

ε

κ
+ γ̄ ,1 + 2γ̄ ,2κr

)

(14b)
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and

u
(2)
εj (r) = −1

j − g m
κ

(2κr)γ̄ e−κrU

(
− g

ε

κ
+ γ̄ ,1 + 2γ̄ ,2κr

)
,

(15a)

v
(2)
εj (r) = (2κr)γ̄ e−κrU

(
1 − g

ε

κ
+ γ̄ ,1 + 2γ̄ ,2κr

)
. (15b)

Here κ ≡ √
m2 − ε2 is introduced, M(a,b,z) and U (a,b,z)

are the confluent hypergeometric functions of the first and
second kind [32], respectively, and γ̄ for |j | > |g| should be
understood as γ̄ = iγ when |j | < |g|. By setting

ψ>
εj (r) = ψ

(2)
εj (r) (16)

and

ψ<
εj (r) = ψ

(1)
εj (r) + Cεjψ

(2)
εj (r), (17)

the normalization condition (10) and the long-distance bound-
ary condition (11) are satisfied. The so far arbitrary prefactor
Cεj is chosen to satisfy the short-distance boundary condition
(12), which leads to Cεj = 0 for a subcritical angular momen-
tum channel |j | > |g| and

Cεj =
− j−g m

κ

2κ

j−g m+ε
κ

−iγ

(2κr∗
j )−iγ

�(1−g ε
κ
+iγ )

�(2iγ )

j−g m+ε
κ

+iγ

(2κr∗
j )iγ

�(1+2iγ )
�(1−g ε

κ
+iγ ) − j−g m+ε

κ
−iγ

(2κr∗
j )−iγ

�(1−2iγ )
�(1−g ε

κ
−iγ )

(18)

for a supercritical angular momentum channel |j | < |g|.
Accordingly, the single-particle Green’s function (6) is com-
pletely determined. For later use, we decompose the radial
Green’s function into two parts as

Gj (ε; r,r ′) = G0
j (ε; r,r ′) + δGj (ε; r,r ′) (19)

with

G0
j (ε; r,r ′) ≡ θ (r − r ′)ψ (2)

εj (r)
[
ψ

(1)
εj (r ′)

]T

+ θ (r ′ − r)ψ (1)
εj (r)

[
ψ

(2)
εj (r ′)

]T
(20)

and

δGj (ε; r,r ′) ≡ Cεjψ
(2)
εj (r)

[
ψ

(2)
εj (r ′)

]T
, (21)

where the low-energy parameter r∗
j with the dimension of

length appears only in the latter through Cεj .

III. VACUUM POLARIZATION

We are now ready to evaluate the vacuum polarization
electron density (2), which is expressed in terms of the
single-particle Green’s function (6) as

ñ(r) =
∞∑

j=−∞

∫ i∞

−i∞

dε

2πi

Tr[Gj (ε; r,r)]

2πr
, (22)

where the contour of the integration over ε is deformed
to coincide with the imaginary axis [2–6,19]. This formal
expression contains divergence which has to be renormalized.
In order to separate out the divergent part from the convergent
part, we use the decomposition (19) to rewrite the bare electron

density (22) as ñ(r) = ñ0(r) + ∑
|j |<|g| δñj (r) with

ñ0(r) ≡
∞∑

j=−∞

∫ i∞

−i∞

dε

2πi

Tr
[
G0

j (ε; r,r)
]

2πr
(23)

and

δñj (r) ≡
∫ i∞

−i∞

dε

2πi

Tr[δGj (ε; r,r)]

2πr
, (24)

which have to be treated separately. The first part ñ0(r)
is divergent and thus needs the renormalization by requir-
ing the total induced electron number to vanish [2,3,5,19].
Technically, this renormalization can be performed by con-
sidering the Fourier transform of the bare electron density
ν̃0(k) = ∫

d r e−ik·r ñ0(r) with an ultraviolet cutoff |ε| < �

and then introducing the renormalized quantity by ν0(k) =
lim�→∞ [ν̃0(k) − limk→0 ν̃0(k)] to satisfy the required neu-
trality condition ν0(0) = 0. Because the mass m is the only
dimensionful parameter existing in G0

j (ε; r,r), the resulting
dimensionless function ν0(k) can depend only on the ratio
k/m. Accordingly, it becomes just a constant in the massless
limit, limm→0 ν0(k) = N0 [17,19], whose inverse Fourier
transform gives the cutoff (m,�) independent renormalized
electron density n0(r) = ∫

dk/(2π )2eik·r limm→0 ν0(k) as

n0(r) = N0δ(r), (25)

which does not contribute to the power-law tail.
On the other hand, the second part δñj (r) is convergent and

thus does not need the renormalization because its integrand
δGj (ε; r,r) decreases exponentially at κr → ∞ [see Eq. (15)].
Accordingly, its contribution to the induced electron density
δnj (r) = limm→0 δñj (r) can be directly evaluated by taking
the massless limit and is found to have the power-law form

δnj (r) = Fj (r/r∗
j )

r2
(26)

with the dimensionless coefficient given by

Fj (r/r∗
j ) = γ

2π2
Re

∫ ∞

0
dz

�(1 − ig + iγ )�(1 − ig − iγ )

�(1 + 2iγ )�(1 − 2iγ )

×
⎡
⎣1 + (j−ig+iγ )�(1+2iγ )�(1−ig−iγ )

(j−ig−iγ )�(1−2iγ )�(1−ig+iγ )

(
r

zr∗
j

)2iγ

1 − (j−ig+iγ )�(1+2iγ )�(1−ig−iγ )
(j−ig−iγ )�(1−2iγ )�(1−ig+iγ )

(
r

zr∗
j

)2iγ

⎤
⎦

× e−zU (−ig + iγ,1 + 2iγ,z)

×U (1 − ig − iγ,1 − 2iγ,z). (27)

By summing up all the contributions from Eqs. (25) and (26),
we obtain the renormalized electron density as

n(r) = n0(r) +
∑

|j |<|g|
δnj (r), (28)

which establishes the form of the induced electron density pre-
sented in Eq. (4). In particular, we find that the coefficient of the
power-law tail (27) is log-periodic Fj (r/r∗

j ) = Fj (enπ/γ r/r∗
j )

as it must be because enπ/γ r∗
j with n being an arbitrary

integer corresponds to the same physics [see Eq. (12b)] and
also universal in the sense that all microscopic details are
parametrized by the single quantity r∗

j > 0 per supercritical
angular momentum channel |j | < |g|. Figure 1 shows the
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0.8

0.9
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1.2
2π2Fj ρ γ

FIG. 1. (Color online) Universal log-periodic function
2π 2Fj (ρ)/γ obtained in Eq. (27) as a function of ln(ρ). One period in
a range 0 � ln(ρ) � π/γ ≈ 2.55 is shown for j = 1/2 and g = 4/3.
Dots are the exact result and the solid curve is a fit with a single sine
function; 2π 2Fj (ρ)/γ � 1 − 0.142 sin[2γ ln(ρ) + 0.821].

obtained universal log-periodic function in the normalized
form 2π2Fj (r/r∗

j )/γ by taking j = 1/2 and g = 4/3 as an
example. Its mean value can be extracted by replacing the
whole expression in the square bracket of Eq. (27) with sgn(g),
which leads to

Fj (r/r∗
j ) = γ

2π2
sgn(g) (29)

in agreement with the constant coefficient of the power-law
tail considered in Ref. [16]. While Fj (r/r∗

j ) and its mean value
(29) coincide in the limit |g| → ∞, they significantly deviate
especially when |g| � |j |. We also note that Fj (r/r∗

j ) is odd
with respect to g → −g and F−j (r/r∗

−j ) is essentially the same
function as Fj (r/r∗

j ) because their apparent difference can be
absorbed by redefining r∗

−j .
The phase of the log-periodic oscillation in Eq. (27) is

fixed by the nonuniversal parameter r∗
j which depends on

microscopic physics and thus cannot be determined from our
perspective of low-energy effective theory. However, it can
be related to other physical quantities such as the energy and
width of so-called atomic collapse resonances [12]. Although
bound states cannot be formed in the massless limit, it was
theoretically shown that an infinite family of resonances
emerges in each supercritical angular momentum channel
|j | < |g| [15,33,34]. Their energy and width are determined by
poles of the single-particle Green’s function (6) in the second
Riemann sheet of the complex ε plane, which can arise only as
poles of the prefactor Cεj obtained in Eq. (18). By substituting
κ → −√

m2 − ε2 and taking the massless limit m → 0, we
find an infinite family of complex poles at

ε∗
j = i

2r∗
j

[
(j − ig + iγ )�(1 + 2iγ )�(1 − ig − iγ )

(j − ig − iγ )�(1 − 2iγ )�(1 − ig + iγ )

] 1
2iγ

(30)

with multiplicative factors of eπ/γ , which leads to

E
(n)
j − i

2
�

(n)
j = �vFe

−nπ/γ ε∗
j (31)

as the energy and width of the nth atomic collapse resonance.
Therefore, if r∗

j for a given system is determined through the

1 2 5 10 20 50 100
r
a

0.0

0.1

0.2

0.3

0.4

0.5
r2n r

FIG. 2. (Color online) Induced electron density n(r) for the tight-
binding Hamiltonian on a honeycomb lattice as a function of r in
units of the lattice parameter a. Connected dots are numerical data
for g = 4/3 obtained in Ref. [15] by the exact diagonalization with
1242 lattice sites. The solid curve is a fit based on our prediction
(33) with the mean value 2γ /π 2 ≈ 0.25 indicated by the horizontal
dashed line.

energy or width of an atomic collapse resonance (31), we
then have an unambiguous prediction for the power-law tail of
the vacuum polarization electron density (27), and vice versa.
Furthermore, the complex expression in the square bracket of
Eq. (27) can be greatly simplified by using the complex energy
in Eq. (31) as

[· · · ] =
⎡
⎣1 + ( 2ε∗

j r

iz

)2iγ

1 − ( 2ε∗
j r

iz

)2iγ

⎤
⎦ , (32)

which model-independently relates the two intriguing phe-
nomena caused by the supercritical Coulomb potential, i.e.,
the vacuum polarization and the atomic collapse resonances.

Finally, it is worthwhile to compare our prediction with
the induced electron density computed for the tight-binding
Hamiltonian on a honeycomb lattice whose low-energy
physics is described by two valley species of massless Dirac
fermions [35,36]. Figure 2 shows numerical data for g = 4/3
obtained in Ref. [15] by the exact diagonalization with 1242

lattice sites in units of the lattice parameter a. In addition to
rapid oscillations presumably caused by the lattice cutoff, there
seems to be a slow oscillation which should be contrasted with
the predicted log-periodic oscillation. Because only j = ±1/2
channels are supercritical for g = 4/3, our prediction (4)
reduces to r2n(r) = 2

∑
j=±1/2 Fj (r/r∗

j ) including the factor
two due to the valley degeneracy. Here the universal log-
periodic function Fj (r/r∗

j ), as seen in Fig. 1, can be excellently
approximated by a single sine function with a relative error less
than 0.01%. Accordingly, our prediction for the power-law tail
of the induced electron density is expressed as

r2n(r) � 2γ

π2
− A sin

[
2γ ln

(
r

a

)
+ ϕ

]
, (33)

where the amplitude A and the phase ϕ are related to the
unknown two low-energy parameters r∗

±1/2/a. We find in Fig. 2
that the lower envelope of numerical data in the intermediate
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region a � r � 50a between the lattice cutoff and the system
radius is well fitted by choosing A ≈ 0.11 and ϕ ≈ 1.85, which
supports the validity of our prediction.

IV. CONCLUDING REMARKS

In this paper, we studied massless Dirac fermions in a
supercritical Coulomb potential with the emphasis on that its
low-energy physics is universal and each supercritical angular
momentum channel exhibits the discrete scale invariance. In
particular, we showed that the induced vacuum polarization
has a power-law tail whose coefficient is a sum of log-periodic
functions with respect to the distance from the potential center.
This coefficient can also be expressed in terms of the energy
and width of so-called atomic collapse resonances. While
these universal features are explicitly demonstrated only in two
dimensions [see Eqs. (26)–(32)], it is straightforward to extend
our present analysis to three dimensions as well. Therefore,
qualitatively the same features are indeed expected in the
vacuum polarization caused by a superheavy atomic nucleus
with Z > α−1 as long as ultraviolet and infrared cutoffs
(i.e., nuclear charge radius and electron Compton wavelength,
respectively) are well separated compared to log-periodic
oscillations, which shed light on the longstanding fundamental
problem of quantum electrodynamics. Furthermore, because
low-energy physics of graphene is described by massless
Dirac fermions in two dimensions, our universal predictions
on the vacuum polarization and its relationship to observed

atomic collapse resonances [12] can in principle be tested
experimentally by measuring the induced electron density with
scanning probe microscopy techniques [37].

While the electron-electron interaction has been neglected
in our present analysis, our finding on the vacuum polarization
may be useful to develop further insight into the screening
of the supercritical Coulomb impurity in the presence of the
electron-electron interaction. One possible approach is to write
down the self-consistent renormalization group equation in the
same spirit as Ref. [16]:

dZeff(R)

d ln R
= −2π

⎡
⎣ ∑

|j |<|g|
Fj (R/r∗

j )

⎤
⎦

Z→Zeff (R)

, (34)

where Zeff(R) ≡ Z − ∫
|r|<R

d r n(r) multiplied by e is the total
charge within the radius R. Because the right hand side of
Eq. (34) is negative, the total charge decreases as the radius
increases until the right hand side vanishes, i.e., |geff(R)| →
1/2, which leads to the screening of the supercritical charge
down to the critical value [16]. Detailed analysis of the solution
to our self-consistent renormalization group equation (34)
shall be deferred to a future work.
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