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encapsulated in hexagonal boron nitride

Alessandro Principi,1,* Matteo Carrega,2,3 Mark B. Lundeberg,4 Achim Woessner,4 Frank H. L. Koppens,4

Giovanni Vignale,1 and Marco Polini2,5

1Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
2NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, Italy

3SPIN-CNR, Via Dodecaneso 33, I-16146 Genova, Italy
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Graphene sheets encapsulated between hexagonal boron nitride (hBN) slabs display superb electronic
properties due to very limited scattering from extrinsic disorder sources such as Coulomb impurities and
corrugations. Such samples are therefore expected to be ideal platforms for highly tunable low-loss plasmonics
in a wide spectral range. In this article we present a theory of collective electron density oscillations in a graphene
sheet encapsulated between two hBN semi-infinite slabs (hBN/G/hBN). Graphene plasmons hybridize with
hBN optical phonons forming hybrid plasmon-phonon modes. We focus on scattering of these modes against
graphene’s acoustic phonons and hBN optical phonons, two sources of scattering that are expected to play a
key role in hBN/G/hBN stacks. We find that at room temperature the scattering against graphene’s acoustic
phonons is the dominant limiting factor for hBN/G/hBN stacks, yielding theoretical inverse damping ratios of
hybrid plasmon-phonon modes of the order of 50–60, with a weak dependence on carrier density and a strong
dependence on illumination frequency. We confirm that the plasmon lifetime is not directly correlated with the
mobility: In fact, it can be anticorrelated.
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I. INTRODUCTION

Hexagonal boron nitride (hBN), a wide-bandgap insulator,
has recently emerged as a sort of “magic” substrate for
exfoliated graphene sheets. Early on, it was demonstrated [1]
that hBN is a much better substrate than SiO2—the ordinary
substrate [2] for much of the early work in graphene physics
and devices—because its surface is much flatter and because
it presents a much smaller number of charged impurities.
Exfoliated graphene sheets deposited on hBN (G/hBN) or
graphene sheets that are encapsulated in hBN (hBN/G/hBN)
have therefore much larger mobilities [1] than those that are
deposited on SiO2. Subsequently, vertical stacks [3] compris-
ing graphene and hBN have been used for proof-of-concept
devices such as field-effect tunneling transistors [4] and
fundamental studies of electron-electron interactions [5–7].
More recent experimental work [8–11] has demonstrated
that hBN substantially alters the electronic spectrum of the
massless Dirac fermion (MDF) [12] carriers hosted in a nearby
graphene sheet. Indeed, when graphene is deposited on hBN, it
displays a moiré pattern [13,14], a modified tunneling density
of states [8], and self-similar transport characteristics in a
magnetic field [9–11]. This spectral reconstruction of the
MDF energy-momentum dispersion relation is, however, only
relevant in the case of long-wavelength moiré superlattices
(superlattice period �10 nm), which occur when the twist
angle between the graphene and hBN crystals is small. Short-
wavelength superlattices yield changes of the MDF spectrum
at dopings that are not achievable by electrostatic gating.
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Finally, we would like to mention that the authors of
Ref. [15] have demonstrated that hBN/G/hBN samples, in
which the role of contact resistance is minimized by using
a suitable geometry, can display very large mobilities, which
are solely limited by scattering of electrons against graphene’s
acoustic phonons. According to Boltzmann-transport theory
[16], this scattering mechanism yields [17] a mobility μ that
decreases like ∼1/n with increasing carrier density n—in
good agreement with experimental data [15]—and, therefore, a
Drude dc transport scattering time τtr that decreases like 1/

√
n

in the same limit. We remind the reader that, in the same
theoretical framework and by virtue of screening, scattering
against charged impurities yields a mobility that increases with
increasing carrier density [16].

High-quality vertical heterostructures comprising graphene
and hBN crystals may have a large impact on the success of
graphene plasmonics [18], an emerging field of research that
has recently attracted a great deal of attention. The goal of
graphene plasmonics is to exploit the interaction of infrared
light with “Dirac plasmons” (DPs)—the self-sustained density
oscillations of the MDF liquid in a doped graphene sheet
[19]—for a variety of applications such as infrared [20] and
terahertz [21] photodetectors, strong light-matter interactions
[22], enhanced light absorption [23], and bio-sensing [24,25].
Interest in graphene plasmonics considerably increased after
two experimental groups [26,27] showed that the DP wave-
length is much smaller than the illumination wavelength,
allowing an extreme concentration of electromagnetic energy,
and that it is easily gate tunable.

These early experiments, based on scattering-type near-
field optical spectroscopy (s-SNOM), were not optimized to
minimize DP losses and therefore maximize the plasmon
inverse damping ratio. Microscopic calculations targeting the
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role of electron-electron interaction effects [28] beyond the
random phase approximation (RPA) and charged impurity
scattering [29] indicate that losses can be strongly reduced
by using hBN rather than SiO2 as a substrate. Indeed hBN has
both a larger static dielectric constant, thus suppressing the
strength of electron-electron interactions, and a much lower
impurity concentration than SiO2. The impact of electron-
phonon scattering on the lifetime of HPP modes was recently
addressed in Ref. [30], where the authors showed that the
inverse damping ratio of mid-infrared HPP modes is strongly
limited by scattering against optical phonons of both the SiO2

substrate and the graphene sheet. The HPP mode damping rate
was estimated by introducing a self-energy correction in the
local conductivity σ (q,ω) � σ (ω), which took into account
electron-impurity, electron-phonon, and edge scattering. The
contribution of electron-phonon interactions to the HPP
lifetime was assumed to be independent of momentum. The
dependence of the damping rate on momentum stemmed from
the contribution due to the scattering against the edges of the
sample.

In this article we present a theoretical study of the
performance of hBN/G/hBN stacks for applications in the
field of graphene plasmonics. More precisely, we present a
microscopic theory of the damping rate of HPP modes in a
graphene sheet encapsulated between two hBN semi-infinite
slabs. We focus on scattering of HPP modes in a graphene
sheet against (i) graphene’s acoustic phonons and (ii) hBN
optical phonons, two sources of scattering that are expected
to play a key role in limiting the lifetime of collective density
oscillations in hBN/G/hBN stacks. Besides achieving good
quantitative agreement with recent experimental work [31],
we confirm the important fact that the plasmon lifetime is not
necessarily correlated with the mobility [28,29] (i.e., with the
transport lifetime that controls the uniform dc conductivity).
More accurately, the plasmon lifetime is controlled by the
nonlocal conductivity σ (q,ωp(q)), where q is the wave vector
and ωp(q) is the plasmon frequency. In the present case,
retaining both the wave vector- and frequency dependence of
the nonlocal conductivity, we are able to show that the plasmon
lifetime is in fact anticorrelated with the transport mobility.
Indeed, while the mobility decreases with increasing carrier
density [17], the plasmon lifetime shows exactly the opposite
behavior.

This article is organized as follows. In Sec. II we introduce
the HPP mode inverse damping ratio Q and relate it to the
microscopic nonlocal dynamical conductivity σ (q,ω) of a
2D electron liquid embedded in a medium with a generic
frequency-dependent dielectric function εs(ω). In Sec. III we
present our microscopic theory of the HPP mode dispersion
relation and losses in hBN/G/hBN stacks due to electron-
phonon scattering. In Secs. IV and V we describe the details
of the electron-phonon interactions we have considered, i.e.,
scattering of 2D MDFs against graphene’s acoustic phonons
and hBN optical phonons, respectively. We find that at room
temperature the scattering against the acoustic phonons of
graphene is the dominant source of losses for HPP modes
in hBN/G/hBN stacks, yielding theoretical inverse damping
ratios which are weakly dependent on the carrier density.
Finally, in Sec. VI we report a summary of our main results and
conclusions. We have presented a number of relevant technical

details in four appendixes, with the aim of making our article
as self-contained as possible.

II. WEAK-SCATTERING THEORY
OF THE INVERSE DAMPING RATIO

In this section we briefly derive general expressions for the
inverse damping ratio Q of a self-sustained oscillation in the
density channel of an electron liquid [28,29].

To connect our theoretical results to the observables in s-
SNOM experiments [27,32], we assume the mode frequency
to be a purely real quantity, which is fixed by the illumination
frequency ω. The mode damping rate γp is encoded in the
imaginary part of the complex collective mode momentum
qp ≡ q1 + iq2. More precisely, we define γp as

γp ≡ q2

q1
. (1)

The inverse damping ratio Q is the inverse of the damping
rate, i.e., Q = γ −1

p .
On the general grounds of linear response theory [33,34],

the dispersion of HPP modes is calculated by solving the
equation,

1 − V (qp,ω)χ̃nn(qp,ω) = 0, (2)

where

V (q,ω) = vq

εs(ω)
(3)

is an effective electron-electron interaction screened by a
suitable substrate dielectric function εs(ω) and χ̃nn(qp,ω) is
the proper density-density linear response function [33]. In
Eq. (3) vq = 2πe2/q is the 2D Fourier transform of the bare
Coulomb interaction. The precise functional dependence of
εs(ω) on the illumination frequency ω is not specified in this
section. We stress that qp ≡ qp(ω) is defined as the solution of
Eq. (2) at fixed illumination frequency ω, while q is hereafter
a generic wave vector.

The causal (i.e., retarded) density-density response function
χnn(q,ω) can be expressed in terms of the nonlocal frequency-
dependent conductivity σ (q,ω) as follows [33,34]:

χnn(q,ω) = q2

ie2ω
σ (q,ω). (4)

In the long-wavelength q/kF � 1 limit and in two spatial
dimensions [33], χ̃nn(q � kF,ω) = χnn(q � kF,ω). Here, kF

is the Fermi wave number.
Since we are interested in describing scattering of collective

modes against weak disorder, we approximate the nonlocal
conductivity in the following generalized Drude form [28,29]:

σ (q,ω) � D0/π

−iω + 1/τ (q,ω)
. (5)

In the spirit of the RPA [33,34], D0 is the Drude weight of a
system of noninteracting 2D MDFs, D0 = 4εFσuni, with εF =
�vFkF the MDF Fermi energy, σuni = Nfe

2/(16�) the universal
optical conductivity [35], and Nf = 4 the number of fermion
flavors [35] in graphene. Corrections beyond RPA to the Drude
weight, stemming from the lack of Galilean invariance of the
2D MDF model, have been worked out in Refs. [36,37] and
will be neglected in this work for the sake of simplicity.
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Using Eq. (4) in Eq. (2) and solving for qp we get

qp = iεs(ω)ω

2πσ (qp,ω)
. (6)

In the limit q2 � q1 and neglecting terms containing the
product Im[εs(ω)]Re[σ (q1,ω)], Eq. (6) allows us to write

γp = Im[εs(ω)]

Re[εs(ω)]
+ Re[σ (q1,ω)]

Im[σ (q1,ω)]
, (7)

or, equivalently,

Q = 1
Im[εs(ω)]

Re[εs(ω)]
+ Re[σ (q1,ω)]

Im[σ (q1,ω)]

. (8)

Equation (8) is the most important result of this section.
The first term on the right-hand side of Eq. (7),

r−1(ω) ≡ Im[εs(ω)]

Re[εs(ω)]
, (9)

encodes the contribution to the damping rate that is solely
controlled by the dissipative component of the substrate di-
electric function εs(ω) evaluated at the illumination frequency.
The processes that are responsible for this dissipation have
nothing to do with the presence of the graphene layer. On
the other hand, the second term on the right-hand side of
Eq. (7), can be considered as an intrinsic damping rate, which
involves electronic processes in the graphene layer. Indeed,
expanding the right-hand side of Eq. (5) in the weak-scattering
ωτ (q,ω) � 1 limit, we immediately find

R(q,ω) ≡ Re[σ (q,ω)]

Im[σ (q,ω)]
� 1

ωτ (q,ω)
, (10)

and

Q � r(ω)

1 + r(ω)

ωτ (q,ω)

. (11)

Any microscopic theory of the collective mode damping
rate requires the calculation of the quantity τ (q,ω). Combining
Eqs. (4) and (5) we find that, in the weak-disorder ωτ (q,ω) �
1 limit,

1

τ (q,ω)
� −πe2ω3

D0q2
Im[χnn(q,ω)]. (12)

This is a very convenient expression [28,29] that will be
used below to calculate damping rates due to electron-phonon
scattering.

In the remainder of this article we set � = 1.

III. MICROSCOPIC THEORY OF LOSSES DUE TO
ELECTRON-PHONON SCATTERING

A. Model Hamiltonian

We consider the following model Hamiltonian:

Ĥ = Ĥ0 + Ĥee + Ĥph + Ĥe−ph. (13)

The first term in Eq. (13) describes π electrons in graphene at
the level of a one-orbital tight-binding (TB) model. To keep

the model as simple as possible, we set to zero all the hopping
parameters but the nearest-neighbor one. The low-energy MDF
limit will be taken only at the very end of the calculation,
after carrying out all the necessary algebraic manipulations. As
extensively discussed in Refs. [28,29], this procedure allows
us to avoid problems associated with the introduction of a rigid
ultraviolet cutoff, which breaks gauge invariance [36,37]. The
noninteracting TB Hamiltonian reads

Ĥ0 =
∑

k∈BZ,α,β

ψ̂
†
k,α( f k · σ αβ)ψ̂k,β , (14)

where the field operator ψ̂
†
k,α (ψ̂k,α) creates (annihilates) an

electron with Bloch momentum k, belonging to the sublattice
[12] α = A,B. The quantity f k is defined as [12]

f k = −t

3∑
i=1

(Re[e−ik·δi ],−Im[e−ik·δi ]). (15)

Here t ∼ 2.8 eV is the nearest-neighbor tunneling amplitude,
while δi (i = 1, . . . ,3) are the vectors which connect an atom
to its three nearest neighbors, i.e., δ1 = a

√
3x̂/2 + a ŷ/2,

δ2 = −a
√

3x̂/2 + a ŷ/2, and δ3 = −a ŷ. Here a ∼ 1.42 Å is
the carbon-carbon distance in graphene. The sum over k in
Eq. (14) is restricted to the first Brillouin zone (BZ) and
the Pauli matrices σ i

αβ (i = x,y,z) operate on the sublattice
degrees of freedom.

The TB problem posed by the Hamiltonian (14) can
be easily solved analytically [12]. One finds the following
eigenvalues εk,λ = λ| f k|, with λ = ±. These two bands touch
at two inequivalent points (K and K ′) in the hexagonal BZ. The
low-energy MDF model is obtained from Eq. (14) by taking
the limit a → 0, while keeping the product ta constant. In
this limit f K+k → vFk, where vF = 3ta/2 ∼ 106m/s is the
density-independent Fermi velocity. It turns out to be more
convenient to work in an eigenstate representation, in which
the TB Hamiltonian reads

Ĥ0 =
∑
k,λ

εk,λĉ
†
k,λĉk,λ, (16)

where ĉ
†
k,λ (ĉk,λ) creates (annihilates) an electron in the single-

particle eigenstate with eigenvalue εk,λ = λ| f k|, with λ = ±.
The second term in Eq. (13) represents long-range Coulomb

interactions between electrons. In the same representation as
in Eq. (16), the Coulomb Hamiltonian reads [33]

Ĥee = 1

2

∑
q

vq n̂q n̂−q, (17)

where the density operator is

n̂q =
∑

k,λ,λ′
Dλλ′(k − q/2,k + q/2)ĉ†k−q/2,λĉk+q/2,λ′ ,

(18)

and vq is the 2D discrete Fourier transform of the real-
space Coulomb interaction, which is a periodic function of
the reciprocal-lattice vectors. Finally, in Eq. (18) we have
introduced the “density vertex,”

Dλλ′(k,k′) = ei(θk−θk′ )/2 + λλ′e−i(θk−θk′ )/2

2
, (19)

165408-3



ALESSANDRO PRINCIPI et al. PHYSICAL REVIEW B 90, 165408 (2014)

with θk = Arg[fk,x + ifk,y]. Here {fk,i ,i = x,y} denotes the
Cartesian components of the vector f k. In the low-energy
MDF limit, θK+k → ϕk, where ϕk is the angle between k and
the x̂ axis.

Note that in writing Eq. (17) we have neglected the one-
body operator proportional to the total number of particles,
which avoids self-interactions [33], since it has no effect on
the calculations that we will carry out below.

Finally, the third and fourth term in Eq. (13) represent the
bare phonon Hamiltonian and the electron-phonon interaction
Hamiltonian, respectively. These are given by

Ĥph =
∑
q,ν

ωph,ν(q)â†
q,ν âq,ν , (20)

and

Ĥe−ph =
∑
q,ν

uq,ν n̂q⊥(â−q,ν + â†
q,ν). (21)

Here â
†
q,ν (âq,ν) is the creation (annihilation) operator of

a phonon belonging to the branch ν, with momentum q
measured from the BZ center, and energy ωph,ν(q). Here
ωph,ν(−q) = ωph,ν(q). Note that Eq. (20) is completely general
and can be used to describe either graphene’s intrinsic phonons,
which are bound to the 2D graphene plane, or 3D phonons
traveling in hBN. In the former (latter) case the phonon
momentum q is a 2D (3D) vector. In the 3D case we write
q ≡ (q⊥,q‖), where q⊥ represents the projection of the 3D
vector q on the graphene plane, while q‖ is the component of
q perpendicular to it.

In Eq. (21) we defined the electron-phonon interaction
vertex uq,ν , which will be specified later in Secs. IV and V. We
stress again that also in Eq. (21) the vector q can be either 2D
or 3D, according to the phonon modes of interest. In the case
of optical phonons in the hBN substrate, only the component
of the momentum along the graphene plane is conserved in the
electron-phonon interaction.

In what follows we concentrate on a doped graphene sheet.
For the sake of definiteness, we assume the system to be n

doped. As usual, results for a p-doped system can be easily
obtained by appealing to the particle-hole symmetry of the
model defined by Eq. (13).

B. HPP modes in hBN/G/hBN stacks

As bulk graphite, hBN is a layered material: Its response
to electric fields is therefore highly anisotropic. Let ẑ be the
axis perpendicular to the hBN planes, while x̂ and ŷ denote
two orthogonal directions parallel to the hBN plane. The hBN
dielectric tensor in this basis is diagonal and has the following
uniaxial form [38],

ε̂(ω) =

⎛⎜⎝εx(ω) 0 0

0 εx(ω) 0

0 0 εz(ω)

⎞⎟⎠ . (22)

The dependence on frequency of the components εx,εz of the
dielectric tensor of bulk hBN is usually parametrized in the
following form [39]:

ε�(ω) = ε�,∞ + ε�,0 − ε�,∞
1 − (

ω/ωT
�

)2 − iγ�ω/
(
ωT

�

)2 , (23)

TABLE I. The parameters entering the bulk hBN dielectric
functions in Eq. (23). These values have been extracted from
Ref. [40].

� = x � = z

ε�,0 6.41 3.0
ε�,∞ 4.54 2.5
γ�(meV) 0.82 0.23
ωT

� (meV) 168.0 94.2
ωL

� (meV) 199.6 103.2

with � = z,x. The parameters entering in Eq. (23) are listed in
Table I and have been taken from recent measurements [40]
on high-quality bulk hBN. Here ε�,0 and ε�,∞ are the static
and high-frequency dielectric constants, respectively, while
ωT

� is the bulk transverse optical phonon frequency in the
direction �. The bulk longitudinal optical phonon frequency
ωL

� satisfies the Lyddane-Sachs-Teller (LST) relation [39]
ωL

� = ωT
�

√
ε�,0/ε�,∞.

Electron-electron interactions in graphene are strongly
modified when graphene is embedded between two half-spaces
filled with hBN. As shown in Appendix A, the bare Coulomb
potential vq = 2πe2/q is replaced by the dressed interaction
in Eq. (3) with

εs(ω) =
√

εz(ω)εx(ω). (24)

The resultant effective electron-electron interaction includes
screening due to the hBN optical phonons only. We have not
considered the renormalization of electron-electron interac-
tions due to intrinsic acoustic phonons in graphene. Since the
matrix element of the electron-acoustic phonon interaction
vanishes in the long-wavelength q → 0 limit (see Sec. IV),
intrinsic acoustic phonons in graphene do not affect the
dispersion of the collective modes—see Fig. 2(a)—in the limit
q � kF and vFq � ω � 2εF. In Fig. 1 we plot the ratio r(ω)
defined in Eq. (9) with εs(ω) given by Eq. (24).

Self-sustained oscillations of the 2D MDF liquid in a
graphene sheet embedded between two half-spaces filled with
hBN can be found by solving the following RPA equation,

ε(q,ω) ≡ 1 − V (q,ω)χ (0)
nn (q,ω) = 0, (25)

FIG. 1. The quantity r(ω) as defined in Eq. (9) with εs(ω) given
in Eqs. (23) and (24). The parameters used in this plot are given in
Table I.
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FIG. 2. (Color online) (a) The RPA dispersion relation ωp(q) of
the HPP mode in hBN/G/hBN, as obtained from the solution of
Eq. (25). Units are clearly indicated in the axes. Note the three
branches of the HPP collective mode and the two reststrahlen bands
(shaded regions). (b) Illustrates the same quantity in the limit in
which one neglects the uniaxial anisotropy of hBN by forcing
εx(ω) → εz(ω) in Eq. (24) for all values of the illumination frequency
ω. In this case we see only two HPP branches.

where V (q,ω) is the effective electron-electron interaction in
Eq. (3) with εs(ω) as in Eq. (24) and χ (0)

nn (q,ω) is the well-
known density-density response function of a noninteracting
2D MDF fluid [19].

In Fig. 2(a) we plot the solution of Eq. (25), as found
by setting the hBN phonon damping rates γz,γx to zero in
Eq. (23). We clearly see that hybridization between the
ordinary DP mode [18,19] in a doped graphene sheet and hBN
optical phonons yields three HPP branches [41]. Furthermore,
we note the presence of two forbidden regions, which are
denoted by shaded areas in Fig. 2(a). These correspond to
the so-called hBN “reststrahlen bands.” The lower (upper)
reststrahlen band is defined by the inequalities ωT

z < ω <

ωL
z (ωT

x < ω < ωL
x ). In these spectral windows, the product

εx(ω)εz(ω) takes negative values and the substrate dielectric
function (24) becomes imaginary. Indeed, as discussed earlier
in the literature [40,42], hBN is a natural hyperbolic material
[43]. As shown in Appendix A, in the reststrahlen bands the
HPP collective mode “deconfines” from the graphene sheet
and propagates as a phonon inside bulk hBN.

In Fig. 2(b) we show what happens to the solution of
Eq. (25) when the uniaxial anisotropy of hBN is neglected
by forcing, for example, εx(ω) → εz(ω) at all frequencies.
Showing results for an isotropic εx = εz polar material allows
us to make contact with earlier literature [44,45] on different
heterosystems such as graphene on SiO2 or SiC. The necessary
parameters for εz(ω) are listed in the last column of Table I. In
this case, the effective dielectric function εs(ω) is always real—
since εz(ω)εx(ω) = ε2

z (ω) > 0—and the HPP mode displays

only two branches as in earlier work on HPP modes in graphene
on SiO2 or SiC [44,45].

In the long-wavelength q → 0 limit the lowest-energy
branch behaves like ω1(q → 0) = √

Nfe2εFq/(2εz,0), display-
ing a predominant 2D plasmon character. In the same limit the
second branch ω2(q) is gapped and behaves as ω2(q → 0) →
ωL

z , displaying a predominant longitudinal-phonon character.
The two branches show an avoided crossing and switch
their character in the short-wavelength q → ∞ limit. The
lower branch tends to a constant, ω1(q → ∞) → ωT

z , while
ω2(q → ∞) follows the DP dispersion of an isolated graphene
sheet.

C. Evaluation of the scattering rate due
to electron-phonon interactions

We now proceed to calculate τ (q,ω) as from Eq. (12).
To this end, we evaluate χnn(q,ω) on the right-hand side
of Eq. (12) to second order in the strength of electron-
phonon interactions. Following Refs. [28,29], we focus our
attention on the longitudinal current-current response function
χL(q,ω), which is related to χnn(q,ω) by the following exact
identity [33],

Im[χnn(q,ω)] = q2

ω2
Im[χL(q,ω)], (26)

which holds for an isotropic, rotationally invariant electron
liquid [33]. As explained in Refs. [28,29], Eq. (26) applies in
our TB description after one takes the low-energy MDF limit.

We then introduce [28,29] a unitary transformation gen-
erated by a Hermitian operator F̂ that cancels exactly the
electron-phonon interaction term from the Hamiltonian Ĥ in
Eq. (13). For the sake of simplicity, this procedure is formally
carried out by setting Ĥee = 0 in Eq. (13): We will come back
to the crucial role [29] played by electron-electron interactions
below.

The Hermitian generator F̂ is found by requiring that Ĥ′ =
eiF̂ Ĥe−iF̂ ≡ Ĥ0 + Ĥph, i.e., the electron-phonon interaction
is eliminated. This equation can be solved order by order
in perturbation theory, by expanding F̂ = 1 + F̂1 + F̂2 + . . .,
where 1 is the identity operator and F̂n denotes the nth order
term in powers of the strength of electron-phonon interactions.
We obtain a chain of equations connecting F̂n to Ĥe−ph. As
an example, F̂1 can be easily found by solving the following
equation: [Ĥ0 + Ĥph,iF̂1] = Ĥe−ph.

Under the action of the Hermitian operator F̂ , the Hamil-
tonian Ĥ → Ĥ0 + Ĥph but relevant operators such as the
density n̂q and the current ĵ q ones are dressed by electron-
phonon interactions in a complicated manner, i.e., n̂q → n̂′

q ≡
eiF̂ n̂qe

−iF̂ and ĵ q → ĵ
′
q ≡ eiF̂ ĵ qe

−iF̂ . The dressed current
operator, in particular, can be expanded in powers of the
electron-phonon interaction as q · ĵ

′
q = q · ĵ q + q · ĵ1,q +

q · ĵ2,q + . . ., where ĵn,q is O(un
q).

The zeroth-order contribution to q · ĵ
′
q , i.e., q · ĵ q , does

not break momentum conservation by transferring part of the
momentum q to the phonon subsystem. Indeed, ĵ q can only
generate single particle-hole pairs with total momentum q,
which lie inside the particle-hole continuum. In turn, this
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implies that, in the limit vFq � ω � 2εF, the only non-
vanishing second-order contribution in the strength of
electron-phonon interactions to Im[χL(q,ω)] is given by
Im[χj1,x j1,x

(q x̂,ω)]. We find

q · ĵ1,q = [iF̂1,q · ĵ q] = A−1
BZ

∑
q ′,ν

uq ′,νϒ̂q,q ′
⊥(â−q ′,ν + â

†
q ′,ν),

(27)

where ABZ is the BZ area.
It is clear from Eq. (27) that q · ĵ1,q breaks momentum

conservation by transferring an amount q ′
⊥ to the phonon

subsystem. In the limit vFq � ω � 2εF, the operator ϒ̂q,q ′

reads

ϒ̂q,q ′ = vFq
′
x

kFω
ρ̂q+q ′ −

[
2
vFq

ω2

q ′
x

kF

(
1 − q ′2

4k2
F

)
− q ′2

4vFk
3
F

]
ĵq ′,x .

(28)

Note that the two terms on the right-hand side of Eq. (28)
have the same physical dimensions, since the current operator
scales with an extra power of the Fermi velocity with respect
to the density operator. The operator of Eq. (28) is suitable
to calculate the imaginary part of the longitudinal current-
current response function to second order in the strength of
electron-phonon interactions. As we show in Appendix B,
this is given by the convolution of a noninteracting response
function with the phonon propagator, and describes the decay
of a quasiparticle of energy ω into a particle-hole pair with
energy ω − ω′, assisted by a phonon with energy ω′. We use
this information to further simplify Eq. (28). We note that the
particle-hole pair is created by the one-body operator ρ̂q+q ′ ,
whose equation of motion reads (ω − ω′)ρ̂q+q ′ = −(q + q ′) ·
ĵq+q ′,α . This in turn implies that

ϒ̂q,q ′ = −
∑

α=x,y

{
vF

ω(ω − ω′)kF
q ′

x(q ′
α + qδα,x)

+ 2

[
vF

ω2

q · q ′

kF

(
1 − q ′2

4k2
F

)
− q ′2

4vFk
3
F

]
δα,x

}
ĵq+q ′,α

≡ −
∑

α=x,y

�(ph)
α (q,q ′,ω,ω′)ĵq+q ′,α. (29)

We stress that this equation is exact to linear order in the
expansion in powers of q/kF.

The derivation of the imaginary part of the current-current
response function to second order in the strength of electron-
phonon interactions is carried out in Appendix B. Here we
report only the final result, which involves also taking the
low-energy MDF limit. We find

1

τ (q,ω)
= −πe2ω

D0

∑
α,β,ν

∫
d3q ′

(2π )3

∫ ∞

−∞

dω′

π
u2

q ′,ν

× [nB(ω′) − nB(ω′ − ω)]�(ph)
α (q,q ′

⊥,ω,ω′)

×�
(ph)
β (q,q ′

⊥,ω,ω′)Im
[
D(ph)

ν (q ′,ω′)
]

× Im
[
χ

(0)
jαjβ

(q + q ′
⊥,ω − ω′)

]
, (30)

FIG. 3. Feynman diagrams for the proper density-density re-
sponse function χ̃nn(q,ω) at second order in the strength of the
electron-phonon interaction. (a) Shows the vertex correction, while
(b) shows one of the two time-reversal-conjugate self-energy inser-
tions. The oriented solid line represents the bare electronic Green’s
functions, while the wavy line is the frequency-dependent effective
electron-electron interaction V (q,ω). Finally, the filled circle repre-
sents a density vertex, while the cross stands for the electron-phonon
interaction (21). Each wavy line therefore comes with two powers of
uq,ν . Since the effective electron-electron interaction V (q,ω) depends
on frequency, the contribution of these diagrams does not vanish
outside the particle-hole continuum, as one could naively expect from
the resemblance of diagrams (a) and (b) to the diagrams at first order
in the strength of the bare electron-electron interaction vq .

where nB(ω) = [exp(βω) − 1]−1 is the usual Bose-Einstein
thermal factor with β = (kBT )−1 and

D(ph)
ν (q,ω) = 2ωph,ν(q)

(ω + iγν)2 − ω2
ph,ν(q)

(31)

is the phonon propagator [46]. Equation (30) is the most
important result of this section. Figure 3 shows the Feynman
diagrams at second order in the strength of the electron-phonon
interaction whose evaluation leads to the scattering rate in
Eq. (30).

In Appendix C we show that, in the limit q = 0 and ω → 0,
Eq. (30) reproduces the dc transport time τtr for scattering of
electrons against graphene’s acoustic phonons as found, e.g.,
in Ref. [17].

We can now easily take into account electron-electron
interactions, which were dropped at the beginning of Sec. III C.
This is done by replacing in Eq. (30) the longitudinal and
transverse components of the noninteracting current-current
response function χ

(0)
jαjβ

(q,ω) with the RPA current-current

response χ
(RPA)
jαjβ

(q,ω). We remind the reader (i) that the RPA
dielectric function has been introduced in Eq. (25) and (ii)
that the transverse RPA current-current response function
coincides with the noninteracting one [33].

IV. SCATTERING OF HPP MODES AGAINST
GRAPHENE’S ACOUSTIC PHONONS

We now consider the impact of graphene’s intrinsic acoustic
phonons on the damping rate of the HPP mode discussed in
Sec. III B and shown in Fig. 2(a). In this case, q in Eq. (21) is
a 2D wave vector in the graphene plane.

As far as the electron-acoustic phonon interaction vertex
u

(ac)
q is concerned, we have chosen to follow earlier works

[16,17,47,48] in which this is approximated in the following
manner, ∣∣u(ac)

q

∣∣2 = δq‖,0
D̃2q2

2ρωph(q)
, (32)
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where D̃ is an effective deformation potential, ρ = 7.6 ×
10−8g/cm2 is the graphene’s mass density, and ωph(q) =
ṽphq is an effective acoustic phonon dispersion. Here ṽph ∼
0.02vF ∼ 20 km/s [16,17,47,48]. The validity of the effec-
tive model (32) has been recently confirmed by extensive
first-principles calculations [49,50]. See, in particular, the
discussion in Sec. VIII of Ref. [50].

In what follows, we determine the effective deformation
potential D̃ by requiring that the dc mobility,

μ = eτtr

mc
, (33)

with mc = kF/vF the cyclotron mass and τtr ≡ limω→0 τ (0,ω),
matches the value measured in Ref. [15] at T = 300 K.
Following this procedure [51], we obtain D̃ = 48.3 eV.

Our main results for the acoustic-phonon-scattering-limited
inverse damping ratio Q of the HPP mode shown in Fig. 2(a)
are summarized in Fig. 4. More precisely, in Fig. 4(a) we plot
our prediction for Q as a function of the carrier density n, for a
fixed value of the illumination wavelength λ = 10.6 μm (cor-
responding to a mid-infrared photon energy ω = 110 meV),
and at a temperature T = 300 K. As a comparison, we also
plot the “inverse damping ratio” Qtr calculated by replacing
the HPP lifetime τ (q1,ω) with the transport time τtr in the
denominator of Eq. (11). Note that Qtr � Q and that Q has
a rather weak density dependence. We conclude that the HPP
inverse damping ratio at 10.6 μm and at room temperature
falls in the range 50–70 in hBN/G/hBN stacks with carrier
mobilities �35.000 cm2/(Vs) [see Fig. 4(b)]. Interestingly,
we notice that the density dependence of the mobility μ

and that of the HPP mode inverse damping ratio Q are not
correlated: At large densities μ decreases, while Q shows a
slight increase. The mobility μ is, of course, correlated with
the unphysical construct Qtr. Note also that, for typical carrier
densities, the ratio Q/Qtr is always significantly smaller than
one [see Fig. 4(c)].

In Fig. 4(d) we illustrate the dependence of Q on illu-
mination frequency, for a fixed value of the carrier density
n = 7.2 × 1012 cm−2. Gaps in these curves occur when the
illumination energy falls in the reststrahlen bands, where the
collective HPP mode ceases to exist. As expected, the inverse
damping ratio is strongly suppressed when the illumination
energy approaches the reststrahlen bands. This results in a
nonmonotonic behavior of Q in the region between the two
reststrahlen bands.

Finally, in Fig. 5 we plot the damping rate 1/τ (q,ω) of
HPP modes due to scattering against acoustic phonons as
a function of the frequency ω and for three values of the
wave vector q. The peaks in 1/τ (q,ω) occur for frequencies
ω such that the argument ω − ω′ [with ω′ = ωph(q ′)] of the
screened current-current response function on the right-hand
side of Eq. (30) crosses regions of large spectral weight.
[Since typically ω′ = ωph(q ′) � ω we can neglect it.] Regions
with large spectral weight can be found both outside and
inside the particle-hole continuum. The latter ones occur
when the HPP mode enters inside the continuum or into a
reststrahlen band. This explains why, for example, the peak of
1/τ (q,ω) occurring at the highest energy falls inside the upper
reststrahlen band. Finally, note that the peak which occurs
in Fig. 4(d) at ω ∼ 0.11eV is correlated to the dip observed

(a)

(b)

(c)

(d)

FIG. 4. (Color online) (a) The inverse damping ratio Q of the
HPP mode in a hBN/G/hBN stack. In this plot we show the impact of
acoustic phonon scattering (solid line). The quantity Q is plotted as
a function of carrier density n and for a fixed illumination frequency
ω = 110 meV. As a comparison, we also plot the quantity Qtr, which
is the inverse damping ratio Q calculated from Eq. (11) by replacing
τ (q1,ω) with the dc transport scattering time τtr = limω→0 τ (0,ω)
(dashed line). (b) The electron mobility in a hBN/G/hBN stack as a
function of carrier density, as calculated from Eq. (33) by considering
scattering of electrons against graphene’s acoustic phonons. (c) The
ratio Q/Qtr, as extracted from (a). (d) Same as in (a) but with Q

plotted as a function of the illumination frequency and for a fixed
carrier density n = 7.2 × 1012 cm−2. Note the two “gaps” due to the
hBN reststrahlen bands. All data in this figure have been calculated
at T = 300 K.

in Fig. 5 at the same frequency. Other features of 1/τ (q,ω)
which occur close to the reststrahlen bands are not visible in
Fig. 4(d) since they are obscured by the contribution to Q

stemming from substrate losses.
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FIG. 5. (Color online) The damping rate of HPP modes of
Eq. (30), 1/τ (q,ω), due to the scattering against acoustic phonons.
Different curves, plotted as a function of the frequency ω

(in eV), correspond to different values of the wave vector q. In this
plot the electron density is fixed at n = 7.2 × 1012 cm−2. Shaded
regions correspond to reststrahlen bands, while solid dots indicate
the frequency ω = vFq below which the RPA particle-hole continuum
starts.

V. SCATTERING OF HPP MODES AGAINST HBN
OPTICAL PHONONS

In this section we calculate the inverse damping ratio of
the HPP mode displayed in Fig. 2(a) by taking into account
scattering against hBN optical phonons. According to Eq. (30),
two ingredients are necessary to calculate the lifetime of the
HPP mode, namely the phonon frequencies and the electron-
phonon coupling. A detailed derivation of these quantities is
given in Appendix D. Here we briefly summarize the main
results.

When the 3D phonon momentum q is either parallel or
perpendicular to the ẑ axis, the phonon frequency coincides
with either ωL

z or ωL
x . However, if q is along any other direction

the two modes are mixed, and two “extraordinary phonons”
[52] can be excited. These modes are neither longitudinal nor
transverse. In Appendix D we show that the extraordinary
phonon frequencies ωph,ν(q) (ν = 1,2) of bulk hBN can be
found by solving the equation,

q2
⊥εx(ωph,ν(q)) + q2

‖εz(ωph,ν(q)) = 0. (34)

Analytical expressions for ωph,ν(q) are available but are rather
complicated and will not be reported here. The electron-
phonon interaction is given by

uop
q,ν =

√
4πe2

[q2
‖∂ωεz(ω) + q2

⊥∂ωεx(ω)]ω=ωph,ν (q)
. (35)

The derivation of Eq. (35) is also given in Appendix D.
Although the expressions of ωph,ν(q) and uq,ν are rather

cumbersome, we can greatly simplify the calculation by
noting the following crucial identity (see Appendix D for a
derivation),∫ ∞

−∞

dq‖
2π

∑
ν

∣∣uop
q,ν

∣∣2
Im

[
D(ph)

ν (q,ω)
] = Im[V (q,ω)], (36)

where V (q,ω) is the phonon-mediated effective interaction
between electrons in the graphene plane.

Using Eq. (36) in Eq. (30) we finally get the following
expression for the relaxation rate due to scattering against

(a)

(b)

FIG. 6. (Color online) (a) The inverse damping ratio of graphene
due to the scattering with optical phonons of the substrate (solid line).
The curve is plotted as a function of density n in units of 1012 cm−2

and for fixed illumination wavelength λ = 10.6 μm (corresponding to
ω = 110 meV) and temperature T = 0 K. Note that the contribution
Im[εs(ω)]/Re[εs(ω)] completely dominates the HPP damping rate. As
a comparison we plot the inverse damping ratio obtained by removing
the anisotropy of the substrate (dashed line). (b) Same as (a) but
plotted as a function of the illumination frequency (measured in eV)
and for fixed density n = 7.2 × 1012 cm−2 and temperature T = 0 K.

hBN optical phonons:

1

τ (op)(q,ω)
= −πe2ω

D0

∑
α,β

∫
d2q ′

(2π )2

∫ ∞

−∞

dω′

π
Im[V (q ′,ω′)]

× [nB(ω′) − nB(ω′ − ω)]�(ph)
α (q,q ′,ω,ω′)

×�
(ph)
β (q,q ′,ω,ω′)Imχ

(0)
jαjβ

(q + q ′,ω − ω′).

(37)

We emphasize that the corresponding dc transport time τ
(op)
tr =

limω→0 τ (op)(q = 0,ω) diverges, since optical phonons require
a finite energy to be excited. Even though the contribution of
optical phonons to the dc transport scattering rate is negligible,
this is not necessarily the case for the scattering rate 1/τ (q,ω)
evaluated at finite q and ω, which is relevant for the HPP mode
inverse damping ratio. An HPP mode can indeed decay by the
simultaneous emission of an electron-hole pair and an optical
phonon in the substrate. We note that this process is physically
distinct from the dissipation that arises from the finite lifetime
of the optical phonons in the substrate—the r(ω) contribution.

In Fig. 6 we show our results for the HPP mode inverse
damping ratio due to scattering against hBN optical phonons.
In Fig. 6(a) Q is plotted as a function of density n and for a
fixed illumination wavelength (solid line). By comparing the
numbers for Q with those shown in Fig. 1, we conclude that
the result is completely dominated by the extrinsic contribution
r(ω) evaluated at ω = 110 meV, and that the optical phonons
of the hBN substrate give a negligible contribution to the
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inverse damping ratio of HPP modes. We thus conclude that
at room temperature the dominant contribution to HPP-mode
losses stems from the scattering against graphene’s acoustic
phonons. The dashed line in Fig. 6(a) indicates the result
that one obtains by artificially forcing εx(ω) → εz(ω). In
Fig. 6(b) we show the same quantities as in (a) but this time
plotted as functions of the illumination frequency ω and for a
fixed carrier density n = 7.2 × 1012 cm−2. In these plots the
temperature has been fixed at the value T = 0K: Since the
hBN optical phonon energy scales are very high, we do not
expect any significant temperature dependence in the relevant
range 0K � T � 300 K.

VI. SUMMARY AND CONCLUSIONS

We have presented a theory of hybrid plasmon-phonon
modes in a graphene sheet encapsulated between two hexago-
nal boron nitride (hBN) semi-infinite slabs (hBN/G/hBN). By
using linear response theory and the random phase approxi-
mation, we have calculated the dispersion relation of hybrid
plasmon-phonon modes that stem from the hybridization
between graphene Dirac plasmons and hBN optical phonons.
The uniaxial hyperbolic nature of hBN yields three plasmon-
phonon branches separated by two reststrahlen bands.

We have carried out a detailed study of the inverse damping
ratio of these plasmon-phonon modes. We have considered two
possible sources of scattering limiting their lifetime: scattering
against graphene’s acoustic phonons and hBN optical phonons.
We have discovered that scattering against intrinsic acoustic
phonons is the dominant limiting factor in hBN/G/hBN stacks
and that it yields theoretical inverse damping ratios of hybrid
plasmon-phonon modes that lie in the range 50–70 at room
temperature, with a weak dependence on carrier density and
a strong dependence on illumination wavelength. While the
current work focuses on room temperature for its relevance to
applications, the inverse damping ratio is expected to increase
when temperature is lowered and the scattering of electrons
with intrinsic acoustic phonons is suppressed. Numerical
calculations on the temperature dependence of the inverse
damping ratio at a fixed carrier density and illumination
frequency will be shown elsewhere [53].

Our theoretical predictions indicate that hBN/G/hBN stacks
can be very fruitfully used as a low-loss and gate tunable
platform for plasmonics in the mid-infrared spectral range. We
will show somewhere else [31] that our results are in excellent
quantitative agreement with recent s-SNOM measurements.
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APPENDIX A: THE EFFECTIVE ELECTRON-ELECTRON
INTERACTION FROM ELECTROSTATICS

In this Appendix we derive the effective electron-electron
interaction in a graphene sheet embedded between two semi-
infinite uniaxial dielectrics.

We assume to have a graphene sheet lying on the z = 0
plane and surrounded by two semi-infinite uniaxial dielectrics
filling the half spaces z < 0 and z > 0. To determine the ef-
fective electron-electron interaction we solve the electrostatic
problem,[

εz(ω)∂2
z + εx(ω)∇2

r

]
φ(r,z) = −4πen(r)δ(z), (A1)

for the 3D electrical potential φ(r,z). Here r = (x,y) is a
2D vector in the z = 0 plane, ∇r = (∂x,∂y), and n(r) is the
charge density on the graphene sheet. The in-plane εx(ω) and
out-of-plane εz(ω) components of the hBN dielectric tensor
have been defined earlier in Eq. (23).

We solve Eq. (A1) in the two half-spaces z > 0 and z < 0
with the Ansatz,

φ(r,z) = φq⊥ exp(iq⊥ · r − q‖|z|). (A2)

Substituting Eq. (A2) in Eq. (A1) we find, for z �= 0,

[εz(ω)q2
‖ − εx(ω)q2

⊥]φq⊥ = 0, (A3)

which is solved by the choice,

q‖ = q⊥

√
εx(ω)

εz(ω)
. (A4)

Note that q‖ becomes imaginary when the product
εz(ω)εx(ω) < 0. In this case the Ansatz (A2) describes elec-
tromagnetic waves that are not bounded to the graphene sheet
and that propagate in all the three spatial directions.

The quantity φq⊥ is determined by matching the z < 0
and z > 0 solutions at z = 0 with the “metallic” boundary
condition imposed by the presence of graphene, i.e.,

εz(ω)[∂zφ(r,z)|z=0+ − ∂zφ(r,z)|z=0− ] = −4πe, (A5)

where −e is the electron charge.
The requested 2D effective electron-electron interaction

V (q⊥,ω) is simply given by

V (q⊥,ω) ≡ −eφq⊥ = 2πe2

εs(ω)q⊥
, (A6)

with

εs(ω) =
√

εx(ω)εz(ω). (A7)

APPENDIX B: THE RESPONSE FUNCTION
AT FINITE TEMPERATURE

We start from the definition of the finite-temperature
(Matsubara) linear response function,

χ
(T )
AB (τ ) = −〈T (Â(τ )B̂)〉, (B1)

where 〈. . .〉 stands for the average over the finite-temperature
density matrix and T indicates the imaginary-time ordering
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operator. We assume that Â and B̂ are bosonic operators built
with an even number of fermionic operators. In the frequency
representation χ

(T )
AB reads as follows:

χAB(iωm) =
∫ β

0
dτeiωmτχ

(T )
AB (τ ), (B2)

where ωm = 2πm/β is a bosonic Matsubara frequency and
β = (kBT )−1 is the inverse temperature. More specifically,
Â = (â†

q ′,ν + â−q ′,ν)ϒ̂q,q ′
⊥ and B̂ = (â†

−q ′′,ν ′ + âq ′′,ν ′ )ϒ̂−q,−q ′′
⊥

where the operator ϒ̂q,q ′ has been introduced earlier in
Eq. (29).

Since τ > 0 in Eq. (B2), we can remove the imaginary-
time ordering operator T on the right-hand side of Eq. (B1).
Furthermore, we approximate

M = 〈[â†
q ′,ν(τ ) + â−q ′,ν(τ )]ϒ̂q,q ′

⊥(τ )

× (â†
−q ′′,ν ′ + âq ′′,ν ′)ϒ̂−q,−q ′′

⊥ 〉
� 〈[â†

q ′,ν(τ ) + â−q ′,ν(τ )](â†
−q ′′,ν ′ + âq ′′,ν ′ )〉

× 〈ϒ̂q,q ′
⊥(τ )ϒ̂−q,−q ′′

⊥ 〉
= δq ′,q ′′δν,ν ′D(ph)

ν (q ′,τ )χT
ϒq,q′⊥ϒ−q,−q′⊥

(τ ), (B3)

where we retained only the Wick pairings that are dominant in
the large-Nf limit.

Using the last line of Eq. (B3) in Eq. (B2) and the identity,∫ β

0
dτeiωnτ = βδn,0, (B4)

which is valid for any bosonic Matsubara frequency ωn, we
get

χj1,x j1,x
(q,iωm) = − 1

β

∑
ωn,q ′,ν

u2
q ′,νD(ph)

ν (q ′,iωn)

×χϒq,q′⊥ ϒ−q,−q′⊥
(iωm − iωn)

≡ − 1

β

∑
ωn

f (iωn,iωm − iωn). (B5)

The Matsubara sum in the last line of Eq. (B5) can be
transformed into an integral over a contour in the complex
plane that encircles the poles of the Bose-Einstein occupation
factor nB(z) = (eβz − 1)−1. In doing so, we exclude the branch
cuts of f (z,iωm − z) which occur for Im(z) = 0,ωm. After the
analytical continuation to real frequencies we find

χj1,x j1,x
(q,ω) =

∫ +∞

−∞

dω′

2πi
{[nB(ω′) − nB(ω′ − ω)]

× [f++(ω′,ω − ω′) − f−−(ω′,ω − ω′)]

+ nB(ω′)[f+−(ω′,ω−ω′)−f−+(ω′,ω−ω′)]},
(B6)

where fλλ′ (ω,ω′) = f (ω + iλη,ω′ + iλ′η) and η = 0+. Note
that the term in the square bracket in the last line of Eq. (B6)
is purely imaginary. Since it is multiplied by the imaginary
unit, its contribution to the integral is purely real. Taking the

imaginary part of Eq. (B6) we finally find

Imχj1,x j1,x
(q,ω) = −

∑
q ′,ν

u2
q ′,ν

∫ +∞

−∞

dω′

π
ImD(ph)

ν (q ′,ω′)

× [nB(ω′) − nB(ω′ − ω)]

× Imχϒq,q′⊥ϒ−q,−q′⊥
(ω − ω′). (B7)

In the limit T → 0, and for ω > 0, Eq. (B7) becomes

Imχj1,x j1,x
(q,ω) = −

∑
q ′,ν

u2
q ′,ν

∫ ω

0

dω′

π
ImD(ph)

ν (q ′,ω′)

× Imχϒq,q′⊥ϒ−q,−q′⊥
(ω − ω′). (B8)

APPENDIX C: THE DC TRANSPORT TIME DUE TO
SCATTERING OF ELECTRONS AGAINST GRAPHENE’S

ACOUSTIC PHONONS

In this Appendix we show that, in the limit q = 0 and ω →
0, Eq. (30) reproduces the dc transport time τtr for scattering of
electrons against graphene’s acoustic phonons as found, e.g.,
in Ref. [17].

In the limit above, the matrix element �α(q,q ′,ω,ω′)
defined in Eq. (29) reduces to

�α(0,q ′,ω,ω′) = vFq
′
xq

′
α

kFω(ω − ω′)
. (C1)

Substituting Eq. (C1) in Eq. (30) we therefore get

1

τtr
= πe2

D0

∑
q ′,α,β

∣∣u(ac)
q ′

∣∣2
∫ ∞

−∞

dω′

π
∂ω′nB(ω′)

v2
Fq

′2
x q ′

αq ′
β

k2
F(ω − ω′)2

× Im[D(ph)(q ′,ω′)]Im
[
χ

(0)
jαjβ

(q ′,ω′)
]
. (C2)

We now recall [33] that, in a homogeneous and isotropic
electron liquid, the current-current linear response tensor can
be decomposed in the following manner:

χ
(0)
jαjβ

(q,ω) = qαqβ

q2
χ

(0)
L (q,ω)

+
(

δαβ − qαqβ

q2

)
χ

(0)
T (q,ω), (C3)

where χ
(0)
L (q,ω) and χ

(0)
T (q,ω) are the so-called [33] lon-

gitudinal and transverse current-current response functions,
respectively. Using Eq. (C3) we can write Eq. (C2) in the
following form:

1

τtr
= πe2

D0

v2
F

2k2
F

∑
q ′

q ′2∣∣u(ac)
q ′

∣∣2
∫ ∞

−∞

dω′

π
∂ω′nB(ω′)

× Im[D(ph)(q ′,ω′)]Im
[
χ (0)

nn (q ′,ω′)
]
. (C4)

Here we used Eq. (26) to express the longitudinal current-
current response function in terms of the density-density
response function.

Using Eq. (32) in Eq. (C4) and the imaginary part of the
phonon propagator in the absence of phonon damping, i.e.,

Im[D(ph)(q ′,ω′)] = −π [δ(ω′ − ωph(q ′))

− δ(ω′ + ωph(q ′))], (C5)

165408-10
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we find

1

τtr
= −2

πe2

D0

v2
F

2k2
F

∫
d2q ′

(2π )2
q ′2 D̃2q ′2

2ρωph(q ′)
∂ω′nB(ω′)

∣∣∣∣
ωph(q ′)

× Im
[
χ (0)

nn (q ′,ωph(q ′))
]
. (C6)

Note that the two terms on the right-hand side of Eq. (C5)
give identical contributions to the integral in Eq. (C4): This
explains the factor two on the right-hand side of Eq. (C6).

We now specialize Eq. (C6) to the case in which the
phonon frequency is much smaller than both temperature and
Fermi energy. In this case we use the following approximate
expressions:

∂ω′nB(ω′)
∣∣∣∣
ωph(q ′)

→ − kBT

ω2
ph(q ′)

, (C7)

and

Im
[
χ (0)

nn (q ′,ω′)
] → −�(2kF − q ′)

ω′

vFq ′
NfkF

2πvF

×
√

1 − q ′2

4k2
F

. (C8)

After some straightforward algebra Eq. (C6) gives

1

τtr
= εF

4v2
F

D̃2

ρṽ2
ph

kBT , (C9)

which coincides with the result reported in Ref. [17].

APPENDIX D: THE DERIVATION
OF THE FRÖHLICH HAMILTONIAN

In this Appendix we derive the interaction Hamiltonian
between electrons in graphene and optical phonons in hBN. In
what follows we shorten our notation by setting ω� ≡ ωT

� .
Following Ref. [52] we start from the following equations:

∂2
t u�(r,t) = −ω2

�u�(r,t) + ω�

√
ε�,0 − ε�,∞

4πm̄nc
E�(r,t),

P�(r,t) =
√

m̄nc(ε�,0 − ε�,∞)

4π
ω�u�(r,t)

+ ε�,∞ − 1

4π
E�(r,t), (D1)

which describe the coupling between the electric field E�(r,t)
and lattice motion, which is encoded in the displacement
field u�(r,t) between the two atoms in the hBN unit cell.
The latter induces a polarization P�(r,t), which adds to the
electric field to produce the electric displacement D�(r,t) =
E�(r,t) + 4πP�(r,t). Finally, m̄ is the reduced mass and nc

the number of cells in the unit volume.
Equation (D1) is combined with the following ones:

E(r,t) = −∇�(r,t),

D(r,t) = εx(ω)E⊥(r,t)r̂ + εz(ω)E‖(r,t) ẑ,

∇ · D(r,t) = 0, (D2)

to solve the electrostatic problem. Here �(r,t) is the electro-
static potential.

Fourier transforming Eqs. (D1) and (D2) with respect to
space and time we find

u�(q,ω) = ω�

ω2
� − ω2

√
ε�,0 − ε�,∞

4πm̄nc
E�(q,ω), (D3a)

P�(q,ω) = 1

4π
[ε�(ω) − 1]E�(q,ω), (D3b)

E�(q,ω) = −iq��(q,ω), (D3c)

q⊥εx(ω)E⊥(q,ω) + q‖εz(ω)E‖(q,ω) = 0. (D3d)

Equation (D3c) implies that the electric field is purely
longitudinal, i.e., it is parallel to q. Combining Eqs. (D3c)
and (D3d) we get the following necessary condition:

q2
⊥εx(ω) + q2

‖εz(ω) = 0, (D4)

to make sure that ∇ · D vanishes. The solutions {ωph,ν(q),ν =
1,2} of the previous equation are the so-called “extraordinary”
phonon frequencies [52]. These modes are neither longitudinal
nor transverse, except in the limiting cases of q oriented
parallel or perpendicular to the ẑ axis. Indeed, Eq. (D3a)
implies that in general the lattice displacement is neither
parallel nor perpendicular to the electric field and therefore
to q. Recall that E and q are always parallel.

We now define u�,ν(q,ω) as the lattice displacement asso-
ciated with the normal mode characterized by the frequency
ωph,ν(q). Since normal modes are orthogonal to each other,
combining Eqs. (D3a) and (D3c) we get the electrostatic
potential:

�(q) ≡
∑

ν

�(q,ωph,ν(q))

= i

q

∑
�,ν

√
4πm̄nc

ε�,0 − ε�,∞

ω2
� − ω2

ph,ν(q)

ω�

q�u�,ν(q,ω)

q
.

(D5)

Once this quantity is quantized, it completely determines
the electron-phonon interaction Hamiltonian, which is given
by Ĥe−ph = e

∑
q n̂−q�(q). In what follows we proceed to

quantize Eq. (D5).
Equation (D3a) implies that the displacement can be

written as

u�,ν(q,ω) =
⎡⎣∑

j

ω2
j (εj,0 − εj,∞)[

ω2
j − ω2

ph,ν(q)
]2

q2
j

q2

⎤⎦−1/2

× ω�

√
ε�,0 − ε�,∞

ω2
� − ω2

ph,ν(q)

q�

q
uν(q), (D6)

where uν(q) is the modulus of the displacement vector uν(q),
i.e., uν(q) =

√
u2

‖,ν(q) + u2
⊥,ν(q). The prefactor of uν(q) on

the right-hand side of Eq. (D6) is uniquely determined
by the angle between the vectors uν(q) and q, and can
easily be derived from Eq. (D3a). Quantizing the lattice
displacement in the usual manner, i.e., uν(q) = −i(aq,ν +
a
†
−q,ν)/

√
2ncm̄V ωph,ν(q), with V the volume of the system,
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we obtain

u�,ν(q,ω) = i(ncV m̄)−1/2√
2ωph,ν(q)

⎡⎣∑
j

ω2
j (εj,0 − εj,∞)[

ω2
j − ω2

ph,ν(q)
]2

q2
j

q2

⎤⎦−1/2

× ω�

√
ε�,0 − ε�,∞

ω2
ph,ν(q) − ω2

�

q�

q
(aq,ν + a

†
−q,ν). (D7)

With the help of Eq. (23) it is easy to show that the term in
square brackets on the right-hand side of Eq. (D7) gives

S =
∑

j

ω2
j (εj,0 − εj,∞)[

ω2
j − ω2

ph,ν(q)
]2

q2
j

q2

= [q2
‖∂ωεz(ω) + q2

⊥∂ωεx(ω)]ω=ωph,ν (q)

2q2ωph,ν(q)
.

(D8)

When Eq. (D8) is used in Eq. (D7) we obtain

u�,ν(q,ω) = −i
1√

m̄ncV

ω�

√
ε�,0 − ε�,∞

ω2
� − ω2

ph,ν(q)

× q�(aq,ν + a
†
−q,ν)

[q2
‖∂ωεz(ω) + q2

⊥∂ωεx(ω)]1/2
ω=ωph,ν (q)

. (D9)

Combining Eqs. (D5) and (D9) we finally get

�(q) =
∑

ν

√
4πV −1

[q2
‖∂ωεz(ω) + q2

⊥∂ωεx(ω)]ω=ωph,ν (q)

× (aq,ν + a
†
−q,ν). (D10)

This in turn implies that the electron-phonon Hamiltonian is

Ĥe−ph =
∑
q,ν

uq,ν n̂−q(aq,ν + a
†
−q,ν), (D11)

where

uq,ν =
√

4πe2V −1

[q2
‖∂ωεz(ω) + q2

⊥∂ωεx(ω)]ω=ωph,ν (q)
. (D12)

Let us briefly comment this equation. First of all, if the system
is isotropic, i.e., ε(ω) ≡ εx(ω) = εz(ω), the frequencies of
the normal modes become ωph,ν(q) = {ωL,ωT} (we omit the
direction index, since the two are equivalent). The second
solution, corresponding to a purely transverse mode, should
be disregarded (see below). Substituting ωph,ν(q) = ωL one
immediately recovers the usual Fröhlich Hamiltonian.

Moreover, when q is parallel (perpendicular) to the ẑ
axis ωph,1(q) coincides with ωL

z (ωL
x ), while ωph,2(q) is

equal to ωT
x (ωT

z ). This in turn implies that the mode ν = 1
is purely longitudinal, while ν = 2 describes a transverse
optical phonon. However, the denominator of Eq. (D11), i.e.,
[q2

‖∂ωεz(ω) + q2
⊥∂ωεx(ω)]ω=ωph,ν (q), diverges when ωph,ν(q) co-

incides with one of the transverse frequencies, thus excluding
the transverse modes from the electron-phonon interaction.

By adding the phonon-mediated electron-electron interac-
tions, derived from Eq. (D11), to the bare Coulomb potential
one finds the effective 3D electron-electron interactions:

V3D(q,ω) = 4πe2

εx,∞q2
⊥ + εz,∞q2

‖

+
∑

ν

4πe2D(ph)
ν (q,ω)

[q2
‖∂ωεz(ω) + q2

⊥∂ωεx(ω)]ω=�ν (q)
,

(D13)

which turns out to be equal to

V3D(q,ω) = 4πe2

εx(ω)q2
⊥ + εz(ω)q2

‖
. (D14)

Note that it is possible to recover the effective 2D electron-
electron interaction in Eq. (A6) by integrating Eq. (D14) over
q‖. Moreover, Eqs. (D13) and (D14) allows us to write

S̃ ≡
∑

ν

u2
q,νD(ph)

ν (q,ω)

= 4πe2

εx(ω)q2
⊥ + εz(ω)q2

‖
− 4πe2

εx,∞q2
⊥ + εz,∞q2

‖
.

(D15)

This equation is used in Sec. V, where the integral,

I(q⊥,ω) ≡
∫ ∞

−∞

dq‖
2π

∑
ν

u2
q,νD(ph)

ν (q,ω), (D16)

is rewritten as

I(q⊥,ω) = 2πe2

q⊥
√

εx(ω)εz(ω)
− 2πe2

q⊥
√

εx,∞εz,∞
, (D17)

with the help of Eq. (D15). Equation (D17) in particular
implies that

Im[I(q⊥,ω)] = Im

[
2πe2

q⊥
√

εx(ω)εz(ω)

]
≡ Im[V (q⊥,ω)]. (D18)
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