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Nonequilibrium molecular dynamics (NEMD) simulations on conceptual binary Lennard-Jones systems show
that the thermal conductivity (κ) of a superlattice (SL) can be significantly reduced by randomizing the thicknesses
of its layers, by which a SL becomes a random multilayer (RML). Such reduction in κ is a clear signature
of coherent phonon that can be localized in RMLs. We build a two-phonon model that divides the overall
heat conduction into coherent and incoherent phonon contributions. In SL both coherent and incoherent phonons
contribute to heat conduction, while in RML coherent phonons are localized so only incoherent phonons
contribute. This model can fit the length dependence of the thermal conductances predicted in our NEMD
simulations very well. The ballistic-limit thermal conductance and the intrinsic mean free path (MFP) of both
coherent and incoherent phonons, and the localization length of coherent phonons, are obtained by fitting our
model to the NEMD simulation results. The significant increase in κ of SL with total length is due to the
long MFP of coherent phonons, and the lower κ of RML than SL is caused by the localization of coherent
phonons.
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I. INTRODUCTION

Phonon transport in the cross-plane direction of a super-
lattice (SL) may manifest particle-like or wave-like character-
istics depending on how far a phonon can travel coherently
without losing its phase information [1]. If phase breaking
happens quickly, for instance, before a phonon traverses
one period (Lp) of the SL, both the phonon propagation
within each layer and the transmission/reflection at each
individual interface will be similar to those in a single-interface
heterojunction regardless of the SL structure. One such case
is when the phases of phonons are randomized at rough
interfaces [2]. In this case, phonons are incoherent and can
be treated as particles. In contrast, if a phonon can transport
coherently over a distance of several Lp’s, phonon interference
due to multiple reflections at the periodic interfaces leads to
new phonon spectra. In such case, phonon transport is coherent
and the wave nature of phonons should be considered. It should
be noted that the terms “coherent” and “ballistic” correspond
to the phase and momentum of a phonon, respectively, and are
not necessarily equivalent. Detailed comparison between them
can be found in Ref. [2].

Extensive efforts have been made to develop SLs for
thermoelectric applications, where a low lattice thermal con-
ductivity (κ) is essential for achieving a high figure of merit [3–
6]. One benefit of the SL structure is the feasibility to tune its κ

by controlling Lp or the interface conditions, e.g., roughness
and species mixing. In the particlelike regime, κ increases
with increasing Lp due to the reduced density of interfaces. In
contrast, in the wavelike regime κ decreases with increasing Lp

due to reduced group velocities and enlarged band gaps [7,8].
The coexistence of these two opposite trends, i.e., κ first
decreases and then increases with increasing Lp in a single
κ-Lp curve, has been observed in experiments and numerical

*ruan@purdue.edu

studies [9–15], and the minimum κ was proposed as a signature
of the transition from the wave regime to the particle regime
as Lp increases [9]. However, κ was found to increase mono-
tonically with increasing Lp in most experiments [16–18],
implying a predominance of incoherent phonon transport
(or particle regime). The presence of interface roughness or
species mixing was proposed to cause the absence of the
coherent phonon transport (or wave regime) [11,19,20], and
these defects were also seen as opportunities for reducing the
κ of SLs [11,21].

The properties of specific coherent phonon modes have
been measured experimentally [22–24], while the importance
of coherent phonons to the overall thermal transport has only
recently been addressed by Luckyanova et al.’s experiment [2].
In their paper, κ was found to increase almost linearly with
the total length of GaAs/AlAs SLs at 30–297 K, which was
attributed to coherent phonon conduction. The trend that κ

increases with increasing SL length has been observed in
previous molecular dynamics simulations [13,19,20,25,26],
but little attention was paid to the role played by coherent
phonons. It is reasonable to expect that coherent phonons
are the dominant heat carriers in long SLs as those in
Luckyanova et al.’s experiment, and mechanisms that suppress
the transport of coherent phonons should be effective in
reducing κ . The transport of various other types of waves,
e.g., electron and photon, can be substantially suppressed
in disordered systems due to Anderson localization [27–30].
The localization of phonons in low-dimensional disordered
media was also studied [31–39], however inadequate attention
was paid to the overall thermal transport properties of 3D
systems [40–43].

In terms of computational approaches, previous studies
have treated phonons either completely incoherently [44–47]
or coherently [7,9,12,14,48–50]. Taking a binary SL composed
of alternating layers of material A and B as an example, the
incoherent treatment assumes that all phonons traverse distinct
A and B layers successively and transmit/reflect at the A/B or
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B/A interfaces in the same way as a single interface between
two semi-infinite A and B. In contrast, the coherent approach
acquires phonon properties from the superlattice phonon
spectra corresponding to a large unit cell (UC) composed of
one layer of A and one layer of B. Evidently, both methods
have their own drawbacks. The incoherent approach cannot
explain some observations that κ may decrease with increasing
Lp, while the coherent treatment contradicts the fact that
the phase-breaking length, or the coherence length (Lφ) of
some phonons may be comparable to or shorter than Lp. A
more accurate description of phonons in SL should consider
the coexistence of both incoherent phonons that retain the
properties of A and B materials and have short Lφ in terms of
Lp, and coherent ones possessing properties arising from the
new large UC of the SL and can travel without phase breaking
over a distance of several Lp’s.

In this paper we investigate the thermal transport in binary
SLs and random multilayers (RML), i.e., alternating A and B
layers of random thickness, using nonequilibrium molecular
dynamics (NEMD) simulations. Perfect SL and RML are an
ideal pair of systems for isolating the contributions of coherent
and incoherent phonons to heat transfer. With the same total
length and average layer thickness, SL and RML should have
approximately the same scattering rate of incoherent phonons
due to the same interface density, while coherent phonons may
be localized in long RMLs and thereby their contribution to
κ can be neglected. As a consequence, the κ of long RMLs
are almost solely contributed by incoherent phonons, and the
difference between κSL and κRML reveals the κ contributed
by coherent phonons in SL. Indeed our results indicate
that RML is an effective structure to localize the coherent
phonons and reduce thermal conductivity. We also build a
two-phonon model to consider the coexistence of coherent and
incoherent phonons, and the model can successfully explain
the NEMD results and extract the properties of these phonons.
This paper is organized as follows. In Sec. II we describe
the model system and the setup of our NEMD simulations.
Then we present the NEMD simulation results and our two-
phonon model in Sec. III. Finally, we conclude this paper in
Sec. IV.

II. METHODOLOGY

A. Model system

Figure 1(a) shows binary model structures composed of
50% m40 atoms and 50% m90 atoms, which have atomic
mass of mA = 40.0 g/mol and mB = 90.0 g/mol, respectively.
The model structures are constructed by the stacking of face-
centered-cubic UCs along the [100] direction. We first consider
two semi-infinite solids with a single interface, which will give
the diffusive limit of the interfacial resistance. The total length
of the system is up to 2.2 μm. The SL is created from periodic
repetition of m40 and m90 layers of constant thickness dm40

and dm90. Accordingly, d = dm40 = dm90 and Lp = 2d for the
SLs studied in this paper. If the thicknesses of m40 and m90
layers are totally randomized [51], a SL becomes a RML.
A SL and a RML with the same d have the same interface
density.

The m40-m90 model structures mentioned above are con-
ceptual atomic systems, in which the interatomic interactions

are modeled by the Lennard-Jones (LJ) potential,

φij (rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
, (1)

where φij and rij are the pairwise interaction potential energy
and the distance between atoms i and j , and σ and ε are the
zero-potential-energy pair separation and the potential well
depth, respectively. LJ systems have been widely used in
conceptual studies owing to their lower computational cost
than many other potential forms, as well as the simplicity
in independently controlling the lattice constant (by σ ) and
the interatomic interaction strength (by ε). The parameter set
of σAr = 0.34 nm, εAr = 0.0104 eV, and a cutoff radius of
2.5σAr have been adopted in previous studies on solid ar-
gon [49,52]. In this paper, we use ε = 16εAr for the interaction
between all atoms, i.e., m40-m40, m40-m90, and m90-m90,
to mimic materials like Si/Ge and GaAs/AlAs which have
much stronger bonding than solid argon. The zero-potential-
energy pair separation and the cutoff radius are σAr and
2.5σAr.

We conduct lattice dynamics calculations using the GULP
package [53] to compute the phonon dispersions of the m40
and m90 crystals, and a m40-m90 SL which is built from
alternating layers of 1 UC thick m40 and 1 UC thick m90
(1UC + 1UC) and a 2UC + 2UC SL. As shown in Fig. 1(b),
the phonon bands are flatter in the SL than in m40 and m90
crystals, and SL with thicker layers (2UC + 2UC) has flatter
bands than that with thinner layers (1UC + 1UC).

B. Simulation setup

The simulation domain setup is shown in Fig. 1(c). The
device of length L is sandwiched between two heat baths of
length Lbath. About 1 nm thick of atoms (the dark regions) at the
two ends are frozen to work as the fixed boundary condition
(bc). We leave two 8.4 nm long buffer regions between the
device and each of the two heat baths to extract the temperature
at the two ends of the device, i.e., TL and TR . We use �t =
1 fs as the simulation time step based on the criteria given in
Ref. [52], that is, �t ≈ 0.002

√
σ 2m/ε.

Our NEMD simulations (at temperature T ) are conducted
with the LAMMPS package [54] in the following process.
(1) The periodic bc is applied to all three directions (X as
the length direction, Y and Z as the lateral directions) and
each atom is given a random velocity vector based on the
Gaussian distribution function with a mean of 0 and a variance
corresponding to a temperature of 5 K. (2) The entire supercell
is relaxed in the NPT ensemble at zero pressure, and the
temperature increases gradually from 5 K to T in 200 ps.
(3) The entire supercell is relaxed in the NPT ensemble at zero
pressure and temperature T for 300 ps. (4) About 1 nm layer
of atoms at both ends of the supercell are frozen and kept so,
which is equivalent to applying the fixed bc to the X direction.
(5) NEMD simulation is performed where the velocities of
the atoms in the two heat baths are rescaled to a temperature
of T + �T/2 or T − �T/2 every simulation step and the
atoms in the fixed boundary regions are frozen. Step (5) lasts
10–40 ns depending on the length of the supercell to ensure
that the heat current reaches steady state. Longer supercells
need longer time to reach steady state.
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FIG. 1. (Color online) (a) Schematic of two semi-infinite solids with a single interface, superlattice (SL) and random multilayer (RML)
made of alternating layers of m40 and m90. In single-interface systems phonons can be treated as incoherent particles, while in SLs phonons
may manifest as either coherent waves or incoherent particles. The SL has uniform layer thickness dm40 = dm90, while dm40 and dm90 are
randomized in RML. In both SL and RML, there are 50% m40 and 50% m90 atoms. (b) Phonon dispersion relations along the [100] direction
for: m40 and m90 crystals (left panel), 1UC × 1UC SL (center panel), and 2UC × 2UC SL (right panel). (c) Schematic of the simulation
domain setup in this work. Lbath is the length of the heat bath and L is the total length of the device. The hot (cold) bath is maintained at
T + �T/2(T − �T/2). TL and TR are the steady-state local temperature at the buffer regions next to the two ends of the device. J is the
steady-state heat current. (d) Convergence of predicted κ with respect to heat bath length Lbath and cross-sectional area A.

The thermal conductance G of the system is computed
as G = J/[A(TL − TR)], where A is the cross-sectional area
of the device and J is the steady-state heat current, i.e., the
amount of kinetic energy artificially injected into (extracted
from) the hot (cold) heat bath per unit time. Then κ can be
calculated as κ = GL. Quantification of the uncertainty in
our simulations can be found in the Appendix.

C. Convergence study

Figure 1(d) shows the effect of heat bath length Lbath and
cross-sectional area A on the thermal conductivity prediction
for a SL with L = 137 nm and d = 4.3 nm at T = 30 K.
Notably, the predicted κ increases with Lbath and saturates
when Lbath = 270.2 nm. Beyond these lengths, κ does not
depend on the length of the heat bath and they are used
in our simulations. We use A = 6 UC × 6 UC as the
cross-sectional area. Another scheme for NEMD calculation

of κ is by applying a constant heat current and measuring
the resulting �T , which has been used in previous studies
on SLs [20,26,52,55]. The κ predicted from this method is
κ = 5.43 W/m-K when Lbath = 270.2 nm and A = 6 UC ×
6 UC, and the measured �T is approximately 5.4 K, which is
in good agreement with the constant �T scheme used by us.

III. RESULTS AND DISCUSSIONS

A. Temperature distributions and thermal boundary
resistances in SL and RML

Figures 2(a)–2(d) show the temperature profiles (dots) out
of our NEMD simulations and the derived thermal boundary
resistance Ri (crosses) of individual interfaces. Ri is computed
as Ri = A�Ti/J and plotted with respect to the right y axis,
where �Ti is the temperature drop at the ith interface. The
diffusive-limit thermal boundary resistance Rs is obtained
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FIG. 2. (Color online) Temperature profiles (left y axis) and the thermal boundary resistances of each individual interface (right y axis) for:
(a) a SL with d = 4.3 nm and L = 68.4 nm; (b) a SL with d = 17.1 nm and L = 273.5 nm; (c) a SL with d = 4.3 nm and L = 34.2 nm;
(d) a RML with d = 4.3 nm and L = 68.4 nm. The red dashed lines show the diffusive limit of the thermal boundary resistance, i.e.,
3.4 × 10−9 m2K/W.

from NEMD simulations on single-interface heterojunctions
of m40 and m90 crystals (see Supplemental Material [56]). In
Figs 2(a)–2(d), the interfacial R’s in SL and RML are lower
than the diffusive limit Rs of 3.4 × 10−9m2K/W. Figure 2(a)
(for a SL with d = 4.3 nm) and Fig. 2(b) (for a SL with
d = 17.1 nm) reveal that Ri’s are generally higher in SLs
with thicker layers. Similar behaviors were observed in Si/Ge
systems, where a thin Si (or Ge) film was sandwiched between
two Ge (or Si) substrates [8]. This is a clear indication that
the interfaces are coupled in SL of short period, and coherent
thermal transport has to be considered. Also, in Fig. 2(a) we
can see that Ri is almost constant (Ri ≈ 0.7 × 10−9 m2K/W)
in the central region of the SL, but Ri ≈ 2.4 × 10−9 m2K/W
for the interfaces at the end of the SL (closest to the heat
baths). Similar observations have been made by Samvedi and
Tomar on Si/Ge SLs, and the higher R of the interfaces closest
to the heat baths was attributed to the filtering of phonons
that originate from the heat bath but are not coherent in the
SL, i.e., not following the phonon dispersion of the SL [25].
In SLs with many periods, R decreases from the ends to
the center and levels off as shown in Figs. 2(a) and 2(b),
while in short SLs, R may keep decreasing till the center
of the SL, as shown in Fig. 2(c). Therefore, longer SLs

should show stronger coherent phonon characteristics than
shorter SLs.

Comparing Figs. 2(a) and Fig. 2(d), which are for a SL and
a RML, respectively, we can see that R’s of the interfaces in
the RML are generally higher than those in the corresponding
SL. This implies that both coherent and incoherent phonons
transfer heat in the SL, while coherent ones are localized in
the RML and only incoherent phonons contribute, leading
to higher R’s in RML. More in-depth analysis is given
below.

B. Thermal conductance and thermal conductivity

The thermal conductance G and thermal conductivity κ of
SLs (solid squares) and RMLs (solid circles) are predicted
using the temperature profiles from NEMD simulations, and
the results are shown in Figs. 3(a) and 3(b). Both the SLs and
RMLs have d = 4.3 nm and the simulations are conducted at
T = 30 K. We can see that GSL and κSL are always higher
than GRML and κRML, respectively, indicating RMLs as a
promising structure for applications such as thermoelectrics
which requires low κ . In Fig. 3(b), κSL increases with L

and saturates slowly, which agrees with the experiment by
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FIG. 3. (Color online) (a) Fitting of simulation data (d = 4.3 nm and T = 30 K) using the two-phonon model depicted by Eqs. (4)–(8).
(b) Thermal conductivity κ = GL as a function of L. The inset shows the zoom view of kcoh in RMLs for L < 300 nm. In both figures, markers
are from simulations while curves are from model fitting.

Luckyanova et al. [2]; in contrast, κRML saturates much earlier
than κSL. Such a difference between SL and RML cannot be
explained by only considering incoherent or ballistic phonon
transport, since the average interface density is the same.
Therefore, we believe the different behaviors of coherent
phonons in SL and RML are responsible for such difference.
In the following section, we will propose a two-phonon model
to explain our simulation results.

C. Two-phonon model

Previous studies on SLs either treat all phonons as incoher-
ent particles possessing properties of individual layers or as
coherent waves with properties determined by the superlattice
phonon spectra. Herein we propose a more general model
that accounts for the coexistence of coherent and incoherent
phonons in one system. In such a two-phonon model, we divide
all phonon modes into two groups: coherent ones which are
localizable in RML and incoherent ones which can be scattered
at the interfaces in both SL and RML. In terms of the phonon
spectrum, coherent phonons are the phonon modes with long
wavelength and mean free path, while incoherent phonons are
those with short wavelength and mean free path.

Within the Landauer framework, the thermal conductance
depends on the device length L by [57]

G(L) = G0
λ

λ + L
, (2)

where the subscript 0 indicates ballistic-limit quantity, so G0

is the ballistic-limit thermal conductance, and λ is the phonon
mean free path (MFP). Accordingly, the thermal conductivity
κ is

κ(L) = G(L)L = G0
λL

λ + L
, (3)

which indicates that κ increases almost linearly with the total
length when L � λ (ballistic regime) while it saturates at a
constant value when L � λ (diffusive regime). Such a relation
has been employed for phonon transport to compute the κ of

silicon and Bi2Te3, and good agreement with experiment was
achieved [58,59].

By treating coherent phonons and incoherent phonons as
two lumped groups, the thermal conductance G of a SL can
be expressed as

GSL(L) = GSL,coh(L) + Ginc(L)

= Gcoh,0
λcoh

λcoh + L
+ Ginc,0

λinc

λinc + L
, (4)

where the subscripts coh and inc denote coherent and incoher-
ent phonon, respectively.

In a random medium, e.g., RML, the Anderson localization
of coherent energy carriers would lead to exponential decay
of G when L increases. Noting that such localization acts on
coherent phonons only, we modify the first term in Eq. (4) to
include an exponential decay,

GRML(L) = GRML,coh(L) + Ginc(L)

= Gcoh,0
λcoh

λcoh + L
exp

(
− L

Lloc

)
+Ginc,0

λinc

λinc + L
,

(5)

where Lloc is the localization length which describes how fast
G decays in random media. In Eq. (5), we have assumed that
the properties of both coherent and incoherent phonons (G0

and λ) stay the same as those in SLs except that coherent
phonons are localized in RMLs [60]. When L is large, the
exponential term in Eq. (5) can be neglected as it decays much
faster than the second term on the right hand side, i.e., coherent
phonon contribution is negligible. Therefore,

GRML,L�Lloc (L) ≈ Ginc(L) = Ginc,0
λinc

λinc + L
. (6)

If we define �G(L) = GSL − GRML, then for L � Lloc,
subtracting Eq. (6) from Eq. (4) gives

�G(L)L�Lloc = GSL,coh(L) = Gcoh,0
λcoh

λcoh + L
. (7)
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For short RMLs, the G contributed by coherent phonons may
be significant, which can be obtained by subtracting Eq. (6)
from Eq. (5),

Gcoh,RML(L) = Gcoh,0
λcoh

λcoh + L
exp

(
− L

Lloc

)
. (8)

D. Decomposition of thermal conductance

In Fig. 3(a), we fit our NEMD simulation results (d =
4.3 nm and T = 30 K) with Eqs. (4)–(8). To distinguish
discrete data points from fitted curves, in Fig. 3(a) and the
following discussions, we denote the curves as functions of
L, namely, Ginc(L), GRML,L�Lloc (L), �G(L), GSL,coh(L), and
GSL(L), while those without a trailing “(L)” indicate discrete
data points. The model fitting is conducted in the following
manner.

(1) Equation (6) is used to fit GRML (solid circles) in the
range of L > 200 nm to get Ginc,0 and λinc. We enforce L >

200 nm since a proper use of Eq. (6) requires L � Lloc. With
Ginc,0 and λinc, we can back calculate Ginc(L) for the entire L

range, not limited to L > 200 nm.
(2) The data points for �G (open up-triangles) are obtained

by subtracting GRML from GSL (solid squares). Equation (7)
is then used to fit �G in the L > 200 nm range to get Gcoh,0

and λcoh. Then the curve �G(L) can be obtained for the entire
L range.

(3) Subtracting the Ginc(L) curve obtained in step (1) from
GRML, we can obtain a series of data points GRML,coh (left-
pointing triangles) decaying exponentially. We can get Lloc by
fitting GRML,coh with Eq. (8). Then we can obtain the curve
GRML,coh(L).

(4) According to Eq. (4), the summation of GSL,coh(L),
which is the �G(L) obtained in step (2), and the Ginc(L)
obtained in step (1) gives GSL(L), and the result [the dark
line indicated as Ginc(L) + GSL,coh(L) in Fig. 3(a)] agrees
well with the GSL (solid squares) predicted by our simu-
lations (dark squares), again demonstrating the applicability
of our two-phonon model to multilayer structures. It is
worth mentioning that in Fig. 3(b) and its inset, κRML,coh(L)
first increases with L and then decreases. The increase is
due to ballistic phonon transport (κ increases with L in
ballistic transport regime) while the decrease is due to phonon
localization.

Using the above fitting procedure, we fit our two-phonon
model to three sets of simulation data obtained from inde-
pendent simulations with different initial conditions and RML
configurations. Figure 4(a) shows the ballistic-limit thermal
conductance G0 as a function of d for coherent and incoherent
phonons. Notably, G0,coh decreases quickly with increasing
d. This is because the phonon group velocity decreases with
increasing d due to zone folding, which has been illustrated
in previous lattice dynamics studies [7,61]. Figure 4(b) shows
λcoh and λinc in SLs (left y axis), and Lloc of coherent phonons in
RMLs (right y axis). We can see that λinc increases significantly
with increasing d, which arises from decreased density of
interfaces that hinder the forward propagation of incoherent
phonons. Also, λcoh is always larger than λinc. This is because
the interfaces are lattice discontinuities for incoherent phonons
while they are not “seen” by coherent phonons. Lloc also

Average layer thickness δ (nm)

(a)

(b)

FIG. 4. (Color online) (a) Ballistic-limit thermal conductance G0

of coherent and incoherent phonons in SLs; (b) MFP λ of coherent
phonons and incoherent phonons in SLs and the localization length
Lloc of coherent phonons in RMLs.

increases with d, but it is shorter than 80 nm for all the d’s
we studied. Therefore, the contribution of coherent phonons
to GRML is negligible in RMLs with L > 200 nm, and the
validity of step (1) of the above fitting procedure is confirmed.
We need to point out that here we have used a single Lloc for
the group of coherent and localized phonon modes in RML,
but in principle each coherent mode can have its own Lloc, so
GRML,coh do not necessarily decay exactly exponentially.

Now if we revisit Fig. 3(b) with Fig. 4 in mind, we can
gain the following insights: (1) The fact that κSL increases
with L reflects a ballistic transport behavior of coherent
phonons which have long MFP. (2) κRML is lower than κSL

due to the localization of coherent phonons in RML. (3) The
fact that κRML saturates quickly with increasing L reflects a
diffusive behavior of incoherent phonons which have short
MFP.

E. Relative importance of coherent phonons as a function of
temperature and layer thickness

To quantify the importance of the contribution of coherent
phonons, we plot κ of SL and RML, as well as their difference
�κ = κSL − κRML as a function of temperature, and the results
are shown in Figs. 5(a) and 5(b). We can see that �κ decreases
as T rises, indicating that coherent phonons become less
important at higher T . Similarly, Figs. 6(a) and 6(b) show
κ and �κ as a function of d for T = 30 K and T = 100 K,
respectively. Apparently, �κ also decreases with increasing
d, indicating that coherent phonons become less important at
larger d.

To explain this trend, note that we have argued in Sec. I that
coherent phonons are important only if the coherence length
Lφ of phonons extends several d’s so that enough phonon in-
terferences can occur to form the SL phonon spectra; otherwise
the phonons manifest themselves as incoherent particles. To
support this argument, we explore the correlation between �κ

and Lφ/d. �κ quantifies coherent phonon contribution to heat
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)b()a(

FIG. 5. (Color online) Thermal conductivity of SL and RML, and the difference between them as a function of temperature T (left Y-axis).
The ratio of MFP λ to average layer thickness d as a function of T (right Y-axis). (a) is for d = 1.1 nm and (b) is for d = 4.3 nm. The dashed
curves are guides for the eyes.

conduction, and Lφ/d specifies how many layers a phonon can
traverse coherently, and we anticipate a positive correlation
between them. Since Lφ is inconvenient to evaluate, we
approximate it to be λ. In pristine bulk crystalline materials, Lφ

is related to both the normal and Umklapp processes since they
are both inelastic and thereby can break the phase of phonons,
while λ is related only to the Umklapp process since it causes
thermal resistance (momentum breaking) [62]. Nevertheless
Lφ and λ are positively correlated and λ is easier to obtain in
NEMD simulations (details can be found in the Appendix).

In Figs. 5(a) and 5(b), we indeed see that both �κ and
λ/d decrease as T rises. In Figs. 6(a) and 6(b), we also see
that both �κ and λ/d decrease with increasing d. Clearly,
higher T (which leads to higher inelastic scattering rate and
shorter λ) or larger d will lead to smaller λ/d, meaning that
there is a higher chance of phase-breaking scattering before a
phonon traverses each layer. Therefore, the coherent phonon
contribution �κ decreases. The extreme case is when T is
so high or d is so large that most phonons have lost their
phase before traversing a layer and, consequently, κSL = κRML.
In addition, κRML increases substantially with increasing d

owing to decreased interface density. A similar trend was also

reported for SLs with interface mixing or roughness, indicating
a predominance of incoherent phonons [20,44].

In addition, we can clearly see a minimum κSL with respect
to d, which is due to the competition of coherent and incoherent
phonons per the discussions above. The coherent phonon
contribution κSL,coh decreases with d, due to the fast decrease in
G0,coh owing to reduced group velocities. On the other hand,
κSL,inc increases with d due to the increase in λinc owing to
the reduced interface density. Since κSL is a summation of
κSL,coh and κSL,inc, a minimum κSL,min can form at a critical
layer thickness dc. Below dc, the effect of coherent phonons
dominates so κSL decreases with d. Above dc, the effect of
incoherent phonons dominates so κSL increases with d.

IV. CONCLUSIONS

To summarize, we have conducted NEMD simulations
on conceptual binary Lennard-Jones systems and proposed
a two-phonon model to interpret the simulation results for
SLs and RMLs. Our model considers the coexistence of co-
herent and incoherent phonon contribution to heat conduction
in SLs and RMLs, and can fit the simulation data very well.
κSL and κRML were found to increase with the total length of

)b()a(

(d
c 
, κ

SL,min
)

FIG. 6. (Color online) Thermal conductivity of SL, RML and the difference between them as a function of d (left Y-axis). The ratio of
MFP λ to average layer thickness d as a function of d (right Y-axis). (a) and (b) are for T = 30 K and T = 100 K, respectively. The dashed
curves are guides for the eyes.
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the structure, while κRML < κSL and κRML saturates at a finite
value much sooner than κSL. We attribute the increasing κ with
total length in SLs to coherent phonon transport, and the lower
κ of RML than SL to the localization of coherent phonons due
to the random layer thickness. Using the two-phonon model,
we also extracted the phonon MFP and ballistic-limit thermal
conductance of coherent phonons and incoherent phonons.
Based on our findings, we propose RMLs as low-κ materials
that may be used for thermoelectric applications.

As a final remark, we note that as the current model
considers all coherent and incoherent phonons as two gray
media, the fact that different phonon modes can have different
MFP and wavelength is significantly neglected, and the
nonequilibrium between phonons [63] are not considered. A
possible extension of our model would be a spectral treatment
of phonon modes. Besides, when metal layers are involved,
electron-phonon scattering can also considerably destroy the
phase of phonons, and electron-phonon nonequilibrium near
the interface can also play a role in determining the thermal
transport properties [64].

ACKNOWLEDGMENTS

The authors are grateful to the financial support from the
Air Force Office of Scientific Research (AFOSR) and National
Science Foundation (NSF).

APPENDIX A: SIMULATION UNCERTAINTY

To quantify the uncertainty associated with our NEMD
simulations, we conduct 48 independent simulations for SLs
with 16 layers (SL-16L), RMLs with 16 layers (RML-16L),
SLs with 64 layers (SL-64L), and RMLs with 64 layers (RML-
64L), of which the average layer thickness is d = 4.3 nm. The
histogram of the computed κ’s normalized by their average
are shown in Fig. 7. The uncertainty is defined as the standard
deviation of κ normalized by the average κ , and is found to
be 2.2%, 5.7%, 2.3%, and 3.8% for SL-16L, RML-16L, SL-
64L, and RML-64, respectively. There are several sources of
uncertainty in our NEMD simulations. For SLs, the uncertainty
comes from the statistical nature of molecular dynamics, where
the difference in initial conditions and process can lead to
slightly different results. However, a RML can have different
configurations due to the many possible arrangements of di’s
for given L and d. Such variation in di’s may add to the
uncertainty. As we can see in Fig. 7 as well as the normalized
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0
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nt
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 SL-64L
 RML-64L
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d = 4.3 nm

κ/κaverage

FIG. 7. (Color online) Histogram of κ normalized by the cor-
responding average for 48 independent samples for SLs with 16
layers (SL-16L), RMLs with 16 layers (RML-16L), SLs with 64
layers (SL-64L), and RMLs with 64 layers (RML-64L), of which
d = 4.3 nm and T = 30 K.

standard deviations mentioned above, the simulated κ’s of
RMLs are more dispersed than those of SLs. The uncertainty
is even larger for RMLs with less layers (RML-16L) than those
with more layers (RML-64L), since there is a higher chance
that RML-64L is fully randomized than RML-16L.

APPENDIX B: ESTIMATING λ

We estimate the average group velocity as

v−1 = v−1
LA + 2v−1

TA

3
, (B1)

which considers the longitudinal acoustic branch (subscript
LA) and the two degenerate transverse acoustic branches (TA).
λ can be estimated from λ = 3κ/(cv). Here c is the classical
heat capacity of the LJ crystal, which is c = 3kBn with kB de-
noting the Boltzmann constant and n the atom number density.
The lattice constant a of the LJ crystal is (5.278 ± 0.008) Å
in the temperature range studied here (30–150 K), so n =
4/a3 ≈ 2.72 × 1028 m−3 and hence c = 1.13 × 106J/m3 − K.
vLA and vTA are estimated as the Brillouin zone center group
velocity of the corresponding branches in Fig. 1(b), and
we get vLA,m40 = 4135 m/s, vTA,m40 = 3053 m/s, vLA,m90 =
2748 m/s, and vTA,m90 = 2039 m/s. The κ’s of m40 and
m90 crystals are computed from NEMD simulations and
Green-Kubo calculations of which the details can be found
in the Supplemental Material [56]. Finally, the average λ of
m40 and m90 crystals are taken as λ−1 = λ−1

m40 + λ−1
m90.
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