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Current enhancement through a time-dependent constriction in fractional topological insulators
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We analyze the backscattering current induced by a time-dependent constriction as a tool to probe fractional
topological insulators. We demonstrate an enhancement of the total current for a fractional topological insulator
induced by the dominant tunneling excitation, contrary to the decrease present in the integer case for not too
strong interactions. This feature allows us to unambiguously identify fractional quasiparticles. Furthermore, the
dominant tunneling processes, which may involve one or two quasiparticles depending on the interactions, can
be clearly determined.
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I. INTRODUCTION

The close interplay between theory and experiments has
always led to fundamental discoveries in condensed-matter
physics. This is particularly evident in the search for topologi-
cal states of matter, starting in the 1980s with the experimental
observation of the integer quantum Hall (QH) effect [1],
characterized by chiral metallic edge states and insulating bulk
states. A few years later, fractional plateaus of the conductance
were discovered [2], theoretically explained by Laughlin as a
manifestation of the fractional QH effect [3]. After the first
theoretical proposal for realizing topological states of matter in
the absence of magnetic fields [4,5], Bernevig et al. suggested
that HgTe/CdTe quantum wells behave as a topological
insulator (TI) [6,7], realizing the quantum spin Hall (QSH)
effect in the presence of time-reversal (TR) symmetry [8]. Soon
after, the group of Molenkamp provided the first experimental
report [9], showing that nonlocal transport is due to protected
helical edge states [10], with spin and momentum bound to
each other [11]. With this picture in mind, it is natural to
wonder how long the experimental realization of fractional
TIs, recently proposed by Levin and Stern [12,13], will
take. At the simple intuitive level, fractional TIs can be
thought of as a superposition of two copies of fractional
QH states in opposite magnetic fields, with the emergence
of TR protected helical edge states with fractional excitations.
Beyond the emergence of the fractional QSH effect in the
flat-band lattice models [14–17] and in peculiar spin liquids
[18], possible experimental realizations of such a state have
been proposed, ranging from a fractional QH state with a
varying g factor in the presence of a thin insulating barrier
to electron-hole bilayers realized in electron-hole-symmetric
systems [19].

It is thus important to find possible strategies and ex-
perimental signatures to identify this novel topological state
of matter, which could also be exploited for quantum com-
puting [20–22]. A breakthrough in this direction has been
reported recently by Beri and Cooper [23], who demonstrated
a surprising robustness of fractional TIs to magnetic per-
turbations, which is completely unexpected in integer TIs.
Based on the works carried out in fractional QH systems
and integer TIs [24–34], they also showed peculiar transport

properties when electrons tunnel through a quantum point
contact (QPC), which could be used to probe fractional TIs
[23,35].

In this context, we propose tunneling through a time-
dependent QPC, realized, for example, by applying time-
modulated gate voltages, to probe fractional TIs. In the
case of a static QPC, backscattering at the constriction
always decreases the total current, and information about the
tunneling processes is encoded in the power-law exponents
as a function of bias and temperature. However, the power
laws are often hardly detectable and are hidden by several
additional mechanisms. Here, we propose a different and more
robust method in order to discriminate between fractional
and integer TIs. We demonstrate that in fractional TIs a
time-dependent QPC enhances the current, contrary to the
decrease induced in integer TIs for not too strong interactions.
This peculiar effect is associated strictly with quasiparticle
tunneling and provides a simple tool to identify fractional
TIs. This method takes advantage of the resolving power of
finite-frequency transport properties in the simple framework
of dc current measurements. Different tunneling processes are
present, involving one or more excitations depending on the
strength of interactions; we show that the proposed setup also
provides a simple way to discriminate between these different
processes, without requiring knowledge of the detailed form
of the current.

This paper is organized as follows. In Sec. II we describe
the interacting helical edge states of fractional TIs and define
the relevant tunneling processes. In Sec. III we evaluate the
backscattering current induced by the time-dependent QPC
in the weak backscattering regime and discuss how it is
affected by the different tunneling processes, in both integer
and fractional TIs. This analysis leads us to draw the main
conclusions of our work. Finally, Sec. IV is devoted to the
conclusions.

II. MODEL

We consider the upper edge of the fractional QSH bar with
right-moving spin-up (R ↑) and left-moving spin-down (L ↓)
excitations, with the opposite case on the lower edge. The
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effective Lagrangian density is [12,13] (� = 1)

L0 = − 1

4πν

∑
α=R,L

∑
σ=↑,↓

∂xφασ (α∂t + v∂x)φασ , (1)

with v being the propagation velocity, α = R/L ≡ +/−, and
σ =↑ / ↓. The filling factor is ν = 1/(2n + 1), with n = 0
for integer TIs and n ∈ N0 for fractional TIs in the Laughlin
sequence. The bosonic fields φασ obey the commutation re-
lations [φασ (x),φα′σ ′(x ′)] = iανπδα,α′δσ,σ ′sgn(x − x ′). They
are related to electron 	ασ and quasiparticle ψασ operators by

	ασ = e
i
ν
αφασ

√
2πa

, ψασ = eiαφασ

√
2πa

, (2)

with a being the microscopic cutoff length, and respectively
correspond to excitations with charges −e and −e∗ = −νe.
We have omitted the Klein factors and the phase factors eiαkF x ,
which are not relevant for our discussion. Note that the two
operators in Eq. (2) coincide in the case of integer TIs since the
fundamental excitation is the electron itself. The Hamiltonian
is easily obtained from Eq. (1),

H0 = v

4πν

∑
α=R,L

∑
σ=↑,↓

∫
dx(∂xφασ )2.

The presence of electron-electron interaction on the edges is
due to intramode interaction

H4 =
∑

α=R,L

∑
σ=↑,↓

∫
dxdx ′ρασ (x)V4(x − x ′)ρασ (x ′) (3)

and intermode interaction

H2 =
∑

α=R,L

∑
σ=↑,↓

∫
dxdx ′ρασ (x)V2(x − x ′)ρᾱσ̄ (x ′), (4)

with ρασ (x) =: 	†
ασ (x)	ασ (x) := 1

2π
∂xφασ (x) being the elec-

tron density associated with the mode with chirality α and spin
σ . Note that not all the terms appear in Eq. (4) since modes
with same chirality and different spin are spatially separated,
so we can neglect their mutual interaction. In the following
we consider local interactions V2(4)(x − x ′) ≈ g2(4)δ(x − x ′).
The Hamiltonian H = H0 + H4 + H2 can be diagonalized by
introducing charge and spin fields [36]

φασ = 1√
2

(νϕc + αθc + σϕs + ασνθs),

which satisfy [ϕλ(x),θλ′ (x ′)] = i π
2 δλ,λ′sgn(x − x ′), so that it

takes the form of a spinful Luttinger liquid [36],

H = u

2π

∑
λ=c,s

∫
dx

[
K̃λ(∂xθλ)2 + 1

K̃λ

(∂xϕλ)2

]
.

The charge and spin parameters are K̃c = K/ν and K̃s =
1/K̃c, with

K =
√

1 + νg4

πv
− νg2

πv

1 + νg4

πv
+ νg2

πv

and renormalized velocity

u = v

√(
1 + νg4

πv

)2
−

(νg2

πv

)2
.

FIG. 1. (Color online) Four-terminal setup for the fractional TI
with a time-dependent QPC. Solid red (dashed blue) lines represent
spin-up (spin-down) excitations.

Here we focus on standard repulsive interactions, which imply
K < 1 (K = 1 in the absence of interactions) [37].

In the presence of a constriction, tunneling from one edge
to the other is allowed. In this work we focus on the weak
backscattering regime, where tunneling is a small perturbation
to the decoupled-edges configuration, focusing on the four-
terminal setup depicted in Fig. 1. In this regime tunneling
of quasiparticles dominates over electron tunneling for any
interaction [35]. The most relevant processes are sketched in
Fig. 2. They correspond to tunneling of single quasiparticles
[H1, Fig. 2(a)] backscattering of two quasiparticles [Hc,
Fig. 2(b)], and tunneling of two quasiparticles from one edge
to the other [Hs , Fig. 2(c)]. Note that Hc(s) preserves the charge
(spin) on each edge; thus one refers to it as the charge (spin)
process. The corresponding Hamiltonians, assuming, without
loss of generality, the QPC located at x = 0, are

H1 = λ1[ψ†
L↑ψR↑ + ψ

†
L↓ψR↓] + H.c.,

Hc = 2πaλc[ψ†
L↑ψ

†
L↓ψR↑ψR↓] + H.c.,

Hs = 2πaλs[ψ
†
L↑ψ

†
R↓ψR↑ψL↓] + H.c.,

where λp, with p = 1,c,s, are the tunneling amplitudes. In
the following we consider a time-dependent constriction, with
λp → λp cos(ωt). This can be achieved through a periodic
modulation of the gate voltages that define the QPC.

An additional time dependence is introduced by gauging
away [38] the bias voltages Vi , with i labeling the four

FIG. 2. (Color online) Some examples of the dominant tunneling
processes in the weak backscattering regime: (a) single quasiparticle,
(b) charge, and (c) spin tunneling, with amplitudes λ1, λc, and λs ,
respectively. Solid red (dashed blue) lines represent spin-up (spin-
down) excitations.
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terminals (see Fig. 1). Finally, the bosonized tunneling
Hamiltonians read

H1 = 2λ1

πa
cos(ωt) cos(

√
2νϕc − e∗Vct) cos(

√
2ϕs − e∗Vst),

(5)

Hc = λc

πa
cos(ωt) cos(2

√
2νϕc − 2e∗Vct), (6)

Hs = λs

πa
cos(ωt) cos(2

√
2ϕs − 2e∗Vst). (7)

From Eqs. (5), (6), and (7) we note that only two combinations
of the bias voltages are relevant: the charge,

Vc = 1
2 (V1 − V2 − V3 + V4),

and spin bias,

Vs = 1
2 (V1 + V2 − V3 − V4),

which couple to the charge and spin sectors, respectively. In
Eq. (5) the single-quasiparticle charge couples to both the
charge and spin bias voltages, while in Eq. (6) [Eq. (7)] a
double charge couples to only the charge (spin) bias.

The charge and spin bias voltages are also related to the
charge (I (0)

c ) and spin (I (0)
s ) currents flowing through the topo-

logical bar in the absence of the QPC, I
(0)
c(s) = Gc(s)Vc(s), with

Gc = 2eGs = νe2/π being the charge and spin conductances.

III. BACKSCATTERING CURRENT

The total charge current in the presence of the constriction is
I (tot)
c = I (0)

c + I (bs)
c , with I (bs)

c being the backscattering current
induced by tunneling at the constriction,

I (bs)
c = e∗ dNR

dt
= −ie∗[NR,H1 + Hc + Hs].

Here, NR = ∑
σ=↑,↓

∫
dxψ

†
Rσ ψRσ is the total number of

right-moving quasiparticles. The backscattering current can be
written as I (bs)

c = ∑
p=1,c Ip, where different contributions are

due to the different tunneling processes Ip = −ie∗[NR,Hp],
with

I1(t) = −e∗ 2λ1

πa
cos(ωt) cos(

√
2ϕs − e∗Vst)

× sin(
√

2νϕc − e∗Vct),

Ic(t) = −e∗ 2λc

πa
cos(ωt) sin(2

√
2νϕc − 2e∗Vct).

Note that the spin process does not contribute to the backscat-
tering since Hs preserves the total number of right-moving
excitations [39,40].

We begin focusing on the charge configuration with Vc �= 0
and Vs = 0, which corresponds to a standard two-terminal
setup with V1 = V4 = V/2 and V2 = V3 = −V/2. We will
comment on alternative configurations in the last part of the
work. We employ the Keldysh formalism [41] in order to
evaluate the expectation value of the backscattering currents

at lowest order in the tunneling amplitudes

〈Ip(t)〉 = 1

2

∑
η=±

〈
TKIp(tη)e−i

∫
cK

dt1Hp(t1)〉

= − i

2

∑
η,η1=±

η1

∫ ∞

−∞
dt1〈TKIp(tη)Hp(tη1

1 )〉 + O
(
λ4

p

)
,

with TK being the Keldysh time ordering and η = ± labeling
the two branches of the Keldysh contour cK . The time-
dependent QPC generates dc and ac contributions at frequency
2ω. In the following we will focus on the dc components only,
which read

〈I (ω)
1 (Vc)〉 = −i2e∗|λ̃1|2

∑
η,η1

η1

∫ ∞

−∞
dτ cos(ωτ )

× sin(e∗Vcτ )e2ν[νGη,η1
c (τ )+ 1

ν
Gη,η1

s (τ )], (8)

〈
I (ω)
c (Vc)

〉 = −ie∗|λ̃c|2
∑
η,η1

η1

∫ ∞

−∞
dτ cos(ωτ )

× sin(2e∗Vcτ )e8ν2Gη,η1
c (τ ), (9)

with 2πaλ̃p = λp. For clarity, we explicitly write the depen-
dence on ω and Vc in the dc component. Since the contributions
in Eqs. (8) and (9) are even (odd) functions of ω (Vc), in the
following we restrict the discussion to the case ω,Vc > 0.
Because of the parity properties of the Keldysh Green’s
functions Gη,η1

λ (t − t1) = 〈ϕλ(tη)ϕλ(tη1
1 )〉 − 1

2 〈ϕλ(tη)ϕλ(tη)〉 −
1
2 〈ϕλ(tη1

1 )ϕλ(tη1
1 )〉, Eqs. (8) and (9) can be written in terms of

only G−,+
λ (τ ) = K̃λ

2 ln f (τ ), with

f (τ ) =
∣∣�(

1 + 1
βωc

− i τ
β

)∣∣2

�2
(
1 + 1

βωc

)
(1 + iωcτ )

,

�(x) being the Gamma function, β being the inverse temper-
ature, and ωc = u/a.

For a static QPC (ω = 0) the backscattering currents are
(βωc � 1)

〈
I (ω=0)
p (Vc)

〉 = −4e∗|λ̃p|2
ωc

e∗

qp

sinh

(
βqpVc

2

)(
2π

βωc

)2�p−1

×B
(

�p − i
βqpVc

2π
,�p + i

βqpVc

2π

)
, (10)

where B(x,y) is the Euler beta function and

q1 = e∗, �1 = ν

2

(
K + 1

K

)
,

qc = 2e∗, �c = 2νK (11)

are the backscattered charge and scaling dimensions for the
processes. Note that Eqs. (10) and (11) are valid both for
quasiparticle tunneling in fractional TIs [with ν = 1/(2n +
1) < 1] and for electron tunneling in integer TIs (with ν = 1
and e∗ ≡ e). The smallest scaling dimension in Eq. (11)
identifies the dominant tunneling process. In particular one
finds that single-quasiparticle tunneling (p = 1) dominates
at weak interactions K > K∗, with K∗ = 1/

√
3. At stronger
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interactions K < K∗ the charge process (p = c) dominates.
In any case, for a static QPC, both processes always reduce
the total current (I (ω=0)

p < 0 for Vc > 0), as can be argued [42]
from Eq. (10).

However, when an ac modulated (ω �= 0) QPC is consid-
ered, the backscattering contributions are no longer driven by
only the bias, and the time-dependent constriction comes into
play. This can be seen by writing Eqs. (8) and (9) as

〈
I (ω)
p (Vc)

〉 = 1

4

∑
η=±

〈
I (ω=0)
p (Vc + ηω/qp)

〉
, (12)

which shows a striking similarity with the photoassisted
current. We find that the current is driven by two effective
channels [43] with voltages Vc ± ω/qp, and the sign of
〈I (ω)

p (Vc)〉 now depends on how the two terms in Eq. (12)
combine. Even if there is only one time-dependent parameter
(the tunneling amplitude), the backscattering current has been
interpreted [38] as originating from a pumping mechanism
since the effect of gauging out the bias voltages is to give rise to
the additional time-dependent parameter necessary to generate
a pumping current. In this case, it is no longer obvious that the
constriction leads to a decrease of the current, and the time-
dependent QPC may be able to pump a current in the forward
direction, leading to a global current enhancement [38,43–47].
At low temperatures, one finds from Eqs. (10) and (12)
the necessary condition for the process p to enhance the
current to be �p < 1/2. Under this condition, the enhancement
is expected for Vc � ω/qp. Let us consider fractional TIs
and study whether the current is enhanced or decreased by
the time-dependent constriction. Positive values of 〈I (ω)

p (Vc)〉
correspond to an enhancement of the current more than the
universal value I (0)

c (remember we are focusing on Vc > 0).
At weak interactions K > K∗ the dominant contribution is
the single-quasiparticle tunneling with scaling dimension �1

[see Eq. (11)]. In this regime �1 < 1/2, and the current is
enhanced for Vc � ω/e∗ [Fig. 3(a)]. The single-quasiparticle
process decreases the current for stronger interactions K <
1

2ν
(1 − √

1 − 4ν2) < K∗ (red curve in Fig. 3); however, in this
regime tunneling is dominated by the charge process, which
leads to enhancement already at moderate interactions K < 1

4ν

for Vc � ω/(2e∗), as shown in Fig. 3(b). It is worth noticing
that at the crossover K ≈ K∗ both the single-quasiparticle and
charge processes contribute to enhancing the current. We thus
expect a global enhancement of the current in fractional TIs
in the presence of a time-dependent constriction, due either
to single-quasiparticle tunneling (for weak interaction) or to
charge tunneling (for strong interaction).

Let us now compare this scenario with the one obtained for
an integer TI, where only electrons can tunnel. From Eq. (11)
we find that single-electron tunneling, which dominates at
weak interactions K > K∗, always decreases the current. At
stronger interactions K < K∗ charge tunneling dominates,
which, however, still leads to a decrease as long as K > 1/4.

We then conclude that, if interactions are not too strong
K > 1/4, the enhancement of the current in the presence of
an ac-modulated QPC is a peculiar feature of fractional TIs.

Other signatures can help discriminate fractional TIs also
for K < 1/4. Indeed, it is worth noticing that, as shown in
Fig. 3, a transition of 〈I (ω)

p (Vc)〉 from positive to negative

FIG. 3. (Color online) The dc backscattering currents 〈I (ω)
p (Vc)〉

(units of e∗|λ̃p|2/ωc) as a function of βe∗Vc for a fractional TI
with ν = 1/3 for βω = 10, βωc = 103 and different interaction
strengths: K = 1 (solid black line), K = 1/

√
3 ≈ 0.577 (dashed blue

line), and K = 0.3 (dot-dashed red line). (a) The single-quasiparticle
contribution enhances the total current at weak interactions for
Vc � ω/e∗, while (b) the charge contribution enhances the total
current at stronger interactions for Vc � ω/(2e∗).

values is expected around Vc ≈ ω/qp and thus depends on
the backscattering process through the backscattered charge
qp. Since Vc and ω can be externally controlled, one should
be able to extract information about the backscattered charge,
and thus about the fractional or integer nature of the system,
simply by varying the bias. In particular, by observing whether
the current displays a transition around Vc ≈ ω/e∗ or Vc ≈
ω/(2e∗), one could also discriminate between single-particle
and multiparticle tunneling. In other words, the position of
the transition in the backscattering current has the power to
resolve the presence of different fractional excitations. In this
perspective, this quantity has similarities to the photoassisted
differential conductance or finite-frequency noise [48–51]
since they are similarly affected by the scaling dimensions
and by the Josephson resonances of the tunneling excitations.

Furthermore, the current enhancement represents a sig-
nature of quasiparticle (and not electron) tunneling. Indeed,
evaluating the tunneling contribution of electrons (despite not
the dominant process) would essentially result in replacing
e∗ → e and ν → 1/ν in Eqs. (10) and (11), and one can
conclude that both single- and double-electron tunnelings
decrease the current for not too strong interactions (as long
as K > ν/4).

We have thus proposed a simple strategy to identify
quasiparticle tunneling in fractional TIs. This method could
complement other peculiar responses, such as the quantized
conductance, the stability to TR symmetry-breaking pertur-
bations, or the power-law behavior of the backscattering
current. However, we stress that, to identify quasiparticle
tunneling, one does not need to study the details of the current
(like, for example, for extracting the exponents of the power
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laws [23]); the enhancement of the current in the presence of
a time-dependent QPC provides by itself a powerful signature
of the presence of a fractional TI. For strong interactions
K < 1/4, the current is enhanced in both fractional and
integer TIs; however, the transition from positive to negative
values depends on the backscattered charge, allowing us
to discriminate between fractional and integer excitations.
Therefore, we can conclude that the proposed protocol is stable
against electron interactions.

Before concluding, we briefly comment on a different bias
voltage configuration, that is, the so-called spin configuration,
with Vc = 0 and Vs �= 0, which corresponds to the presence
of a bias voltage between the upper (at voltage Vs/2) and the
lower (at voltage −Vs/2) edges. Here, a net charge tunneling
current flows across the constriction from one edge to the
other, arising from a single-quasiparticle tunneling contribu-
tion, given by Eq. (8) with Vc → Vs , and a spin tunneling
contribution, given by Eq. (9) with Vc → Vs and K → 1/K .
The dominant contribution is the single-quasiparticle one
with scaling dimension �1. In the presence of a static QPC
the tunneling current always flows from positive to negative
voltage, as expected. However, in the case of a time-dependent
QPC in fractional TIs, the tunneling current may reverse its
direction, flowing against the bias. This anomalous response,
which is expected to occur as long as interactions are not too
strong [K > 1

2ν
(1 − √

1 − 4ν2)], represents another peculiar

feature of fractional TIs with respect to their integer version,
where it is not expected to occur at all.

IV. CONCLUSIONS

We showed that an enhancement of the current is expected
for a fractional topological insulator with a time-dependent
constriction, allowing for quasiparticle tunneling from one
edge to the other. This effect is not expected to occur either in
integer topological insulators (for not too strong interactions)
or in fractional topological insulators when electrons (and not
quasiparticles) tunnel through the constriction, and thus, it
represents an important tool to identify fractional quasiparti-
cles. This simple method allows us to unambiguously identify
fractional topological insulators without requiring knowledge
of the detailed form of the current (like, for example, for
extracting the power-law exponents). Furthermore, we showed
that this effect is robust against electron interaction and
discussed how one can discriminate between single- and
multiparticle processes.
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