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The influence of the exciton spin on the formation and stability properties of periodic cavity polariton patterns
is studied in a semiconductor microcavity operating in the strong-coupling regime. A linearly polarized optical
beam excites polaritons formed by excitons with different spin orientations and left- and right-circularly polarized
photons. The perturbation analysis of homogeneous solutions reveals a competition between these two spin states.
The outcome of this competition is determined by the sign of the cross-phase modulation parameter. In particular,
it is shown that linearly polarized patterns are preferred, if this parameter is positive. Otherwise, a spontaneous
symmetry-breaking instability leads to the formation of transverse patterns with a spatial polarization asymmetry.
In the regime of bistable homogeneous solutions we observe the spontaneous formation of domains framed by
one-dimensional dark half solitons.
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I. INTRODUCTION

We consider a semiconductor multiple quantum well in a
high-Q microcavity. The strong coupling of semiconductor
excitons with cavity photons leads to the formation of new
quasiparticles which are termed exciton-polaritons [1–4].
Exciton-polaritons therefore bear both photonic and excitonic
properties, which makes them particularly interesting for all-
optical information storage and processing applications [5,6].
In particular, they experience diffraction mainly due to their
photonic nature and inherit the strong and fast nonlinearity
arising from the Coulomb interaction between excitons.
The interplay between these two properties can lead to
the formation of extended periodic spatial patterns which
arise spontaneously from an initially uniform field. After the
pioneering work in fluid dynamics, pattern formation has been
studied in various nonlinear systems reaching from solid-state
physics over chemical reaction dynamics to self-assembly in
biological systems [7,8]. Based on the well-established theo-
retical model for an optical Kerr cavity [9], various theoretical
and experimental investigations of pattern formation in this
environment have been a topic of vigorous interest during the
past 25 years [9–16].

Along with other classical issues of nonlinear dynamics,
recently the formation of periodic patterns was studied in
polaritonic systems, too [17–20]. In Refs. [17–19] the pattern
dynamics of spinless exciton-polaritons was investigated.
Unlike those works, the influence of the exciton spin on the
pattern dynamics is in the focus of the present contribution.
Another aspect of the polarization dynamics related to the
TE-TM splitting between the cavity modes was considered in
Refs. [20,21].

Ground-state excitons in quantum wells consist of an
electron with spin ±1/2 and a heavy hole with spin ±3/2
[22–25]. The four allowed projections of the exciton spin on
the structure growth axis are therefore ±1 and ±2. The former
can be optically excited by photons carrying left- or right-
circular polarization. States with spin ±2, however, cannot
be excited by single photons. Therefore their contribution to
the formation of exciton-polaritons is negligible and they are

called dark states. However, they are indirectly involved, since
bright-state excitons with opposite spins can interact via virtual
dark-state excitons [22,26]. The inclusion of the spin degree
of freedom results in various polarization phenomena such
as polarization multistability [27–29], spin rings [30,31], spin
switching [32,33], half quantum vortices [34], half solitons, or
dissipative vector solitons [35–39].

It turns out that the polariton equations with exciton spin
exhibit the same structure in the nonlinearity as the equations
of motion of a vectorial Kerr cavity [13,14]. Therefore
several results derived there that arise from the vectorial
character of the problem will be addressed in the present
contribution.

The cross-phase modulation parameter α between the two
spins can have either sign [25,29,35,40]. In Ref. [39] the
authors showed that for α < 0 the spontaneous symmetry
breaking between the two spin components of a dark po-
lariton soliton evokes a spatial splitting between these two
components. Similar effects will appear for periodic patterns:
Whereas for α > 0 a linearly polarized solution consisting
of two identical polarization patterns is expected, for α <

0 the spontaneous symmetry breaking manifests itself in
the formation of two spatially shifted polarization patterns
associated with opposite exciton spins.

This paper is organized as follows. In Sec. II we in-
troduce the equations of motion for exciton-polaritons with
spin. In Sec. III we study the behavior of homogeneous
solutions to these equations by means of a linear stability
analysis thus surveying the occurrence of the symmetry-
breaking instability for α < 0. This analysis represents the
backbone for our further numerical simulations which are
presented in Sec. IV. This section contains a comparison
of the formation of linearly polarized patterns for α >

0 and patterns with space-dependent elliptical polarization
degree for α < 0. In Sec. V a mechanism is presented
that circumvents the frustration of hexagonal pattern forma-
tion in the bistable domain by means of the spontaneous
buildup of domains framed by one-dimensional dark half
solitons.
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II. MATHEMATICAL MODEL

The dimensionless mean-field equations for the left (E+)
and right (E−) circularly polarized components of the photonic
field coupled to the excitonic fields (�±) with spins ±1 read
as [3,4,25]

∂tE
± − i∇2

⊥E± + (γc − i�c)E± = i�± + Ep,
(1)

∂t�
± + (γ0 − i�0)�± + i(|�±|2 + α|�∓|2)�± = iE±.

Here, E and � stand for the averages of photon and exciton
annihilation operators, respectively. Normalization is chosen
such that (�R/g)|E±|2 and (�R/g)|�±|2 denote the photon
and exciton numbers per unit area, where �R is the frequency
of the Rabi oscillations and g the nonlinear interaction constant
of excitons with equal spin. The strength of the cross-phase
modulation between different spin states is described by the
dimensionless parameter α [25,29,35,40]. Ep denotes the
coherent linearly polarized optical pump and �c,0 = (ω −
ωc,0)/�R are the normalized detunings of the pump frequency
ω from the resonance frequencies ωc of the cavity and ω0 of the
excitons, respectively. In our numerical simulations in Secs. IV
and V we shall choose both detunings identical and shall
denote this quantity by �. For some of the analytical results
in Sec. III, however, it is reasonable to stress the difference
between �0 and �c. The damping constants γ0 and γc of
excitons and cavity are also normalized to �R . The transverse
Laplacian ∇2

⊥ = ∂2
x + ∂2

y and the corresponding transverse
coordinates x and y are scaled by x0 = √

c/(2nk�R), where n

denotes the refractive index and k = nω/c is the wave number.
The external pump is normalized such that the incident pump
intensity is Iinc = �ω�2

R|Ep|2/gγc [41]. In a microcavity with
a single InGaAs/GaAs quantum well, realistic parameters
are ��R ≈ 2.5 meV and �g ≈ 10−4 meV. A unit of time in
Eqs. (1) corresponds to ≈0.25 ps for this choice of parameters.
Assuming that the typical relaxation times of the photonic
and excitonic field are 2.5 ps we used γc ≈ γ0 ≈ 0.1 for all
calculations below. Therefore one unit of the normalized time
t amounts to 0.1 photon lifetimes. We denote the total intensity
of the photon field by IE = |E+|2 + |E−|2 and its polarization
degree by ρE = (|E+|2 − |E−|2)/IE .

Since the linearly polarized optical pump acts on both
polarizations equally, the equations of motion are invariant
with respect to the permutation of + and − fields. Therefore,
two types of solutions are possible. Symmetric solutions (ρE =
0) are expected to share many properties of the scalar solutions
described in Ref. [19]. However, within the scope of this
paper, we will mainly deal with asymmetric solutions (ρE �= 0)
arising after the spontaneous breaking of the spin symmetry
of our model (1). It will be shown comprehensively that
these solutions develop several novel properties reinforcing the
strong-coupling properties separating the polaritonic system
from conventional nonlinear cavities [14].

III. ANALYSIS OF HOMOGENEOUS SOLUTIONS

Before discussing transverse effects, we are going to
explore some properties of stationary plane wave solutions
of Eqs. (1), which will be termed homogeneous solutions

(HSs). Similar to the scalar case, the symmetric HSs are
bistable for an appropriate choice of the detunings [19,42].
The bifurcation of asymmetric HSs and the corresponding
polarization multistability phenomena were studied analyti-
cally in [27,28,39] and experimentally in [29]. These works
show the HSs to be a prototypical example for the coexistence
of symmetric and asymmetric solutions at the same pump
power.

Spatial patterns arise when a control parameter exceeds
its critical value and the HSs destabilize in favor of spatially
periodic solutions. This destabilization mechanism arises from
the interplay between diffraction and nonlinearity and is
termed after Turing crediting his pioneering efforts [43] in
the framework of pattern formation in biochemical systems. It
is commonly referred to as modulation instability (MI).

In what follows a quantitative analytical description of
these destabilization processes is provided. Since a linearly
polarized pump is applied, the unperturbed HSs can be
expected to be linearly polarized, too: E+

0 = E−
0 =: E0 and

�+
0 = �−

0 =: �0. The common scheme for spatially varying
perturbations on top of the HSs and their complex conjugate
fields E0 and �0 reads as

E± = E0 + ε±
1 eλt ei(kxx+kyy),

E± = E0 + ε±
2 eλt e−i(kxx+kyy),

(2)
�± = �0 + ψ±

1 eλt ei(kxx+kyy),

�± = �0 + ψ±
2 eλt e−i(kxx+kyy),

where the perturbation amplitudes ε1,ε2,ψ1,ψ2 are indepen-
dent in the ansatz (2). Since the equations of motions are
isotropic in the x-y plane, all quantities depend only on
the squared modulus k2 = k2

x + k2
y of the transverse wave

vector k = (kx,ky)t rather than on its very components. The
quantity |�0| and the related polaritonic intensity I0 = |�0|2
are suitable candidates for the system’s control parameter
rather than the pump power. Plugging the ansatz (2) in the
equations of motion (1) and linearizing the occurring equations
in the perturbations leads to a homogeneous system of eight
algebraic equations, which can be formulated as an eigenvalue
problem in λ. It decouples into a symmetric (ε2 = ε1, ψ2 =
ψ1) and an antisymmetric (ε2 = −ε1, ψ2 = −ψ1) part. This
decoupling was also reported for vectorial Kerr cavities
[14].

The separation of symmetric and asymmetric modes simpli-
fies the further analytical considerations significantly, since the
8-by-8 eigenvalue matrix decouples into two 4-by-4 matrices
for the symmetric and the antisymmetric part, respectively.
As long as the real part of all four eigenvalues is negative,
the HS is stable with respect to the regarded perturbations.
When the control parameter exceeds its critical value, at least
one of these eigenvalues exhibits a positive real part for a
certain k = |k|. Usually this quantity is denoted as growth rate
Reλ(k,|�0|). Here one has to distinguish between the growth
rate Reλs(k,|�0|) for symmetric modes and Reλas(k,|�0|) for
asymmetric ones. Periodic solutions of Eqs. (1) are amplified,
if their wave vector obeys the condition Reλ(k,|�0|) > 0. This
leads to the spontaneous formation of spatial patterns arising
from a modulationally unstable HS.
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FIG. 1. (Color online) (a)–(c) Analysis of homogeneous solu-
tions (HSs) for α = −0.1 with � = −0.45: (a) HS branches |�±|
over the pump power Ep: symmetric HSs (bold black), asymmetric
HSs (thin gray), and MI range (blue chain line). Continuous lines de-
note stable solutions, whereas dashed lines stand for unstable HSs; (b)
growth rate Reλ(k,|�0|), boundary of instability range Reλ(k,|�0|) =
0 (blue line) and stable domain Reλ(k,|�0|) < 0 (white area); (c)
maximal growth rates Reλs(k,|�0|) and Reλas(k,|�0|) for a given
order parameter |�0| of symmetric (thin red) and antisymmetric (bold
blue) perturbations, respectively. The dashed white line in (b) shows
the position of Reλmax(k,|�0|) in the k-|�0| plane. Horizontal dashed
lines denote the onset and the cessation of the modulational instability.
(d)–(f) show the respective figures for α = −0.1 with � = −0.1.

For α < 0 the growth rate of the asymmetric modes
always exceeds that of the symmetric modes: Reλas(k,|�0|) >

Reλs(k,|�0|). This scenario is exemplarily shown for α =
−0.1 with detunings � = −0.45 in Figs. 1(a)–1(c) and � =
−0.1 in Figs. 1(d)–1(f). At first, the case � = −0.1 will be
studied, where the symmetric HSs are monostable. Figure 1(e)
displays the growth rate Reλ(k,|�0|) = Reλas(k,|�0|). The
branch of modulationally unstable HSs is shown in Fig. 1(d).
For each value of the control parameter |�0| there is a value of
the wave vector k, where the growth rate takes its maximum
Reλmax. The k value at Reλmax determines the typical period
of the arising pattern. In Fig. 1(f) we show that the maxima of
Reλas(k,|�0|) are larger than that of Reλs(k,|�0|) for all values
of |�0|. Therefore all arising patterns are expected to be gov-
erned by the dynamics arising from the antisymmetric modes.

Another scenario arises for bistable symmetric HSs, for
example by choosing � = −0.45; cf. Figs. 1(a)–1(c). In
this case, there is an additional |�0| range where the HS
destabilizes against perturbations with k = 0. Usually this
does not lead to the formation of transverse patterns but
rather to a spontaneous switching to the stable upper branch
of the bistability loop and was therefore termed bistable
frustration [11]. This range is indicated by a bold black dashed
line in Fig. 1(a). It will be examined in Sec. V.

The corresponding scenario for positive α is quite differ-
ent. It shows the dominance of the symmetric modes and
therefore α > 0 leads to the formation of stable symmetric
patterns.

One can conclude that for α < 0 (α > 0) there is a
critical |�0| range where solely asymmetric (symmetric)
modes are amplified. In the following, analytical expressions
for the respective critical quantities will be derived. For
symmetric perturbations, the critical intensity I±

0,crit,s at the
Turing instability points amounts to

I±
0,crit,s = 1 + 4γc�0 ± √

1 − 4γc[3γ0(1 + γ0γc) − �0(2 + γc�0)]

6γc(1 + α)
, (3)

whereas for antisymmetric perturbations we get

I±
0,crit,as =

1 − α + 4γc�0 ±
√

(1 − α + 4γc�0)2 − 4(3 − α)(1 + α)γc

(
γ0 + γ 2

0 γc + γc�
2
0

)

2(3 − α)(1 + α)γc

. (4)

The wave vectors of the asymmetric patterns at this bifurcation point fulfill the relation

(k±
as)

2 = �c +
(1 − α)(1 + 2γ0γc) ∓

√
(1 − α + 4γc�0)2 − 4(3 − α)(1 + α)γc

(
γ0 + γ 2

0 γc + γc�
2
0

)

4γ0 − 2(1 − α)�0
. (5)

Equations (4) and (5) are only valid for (k±
as)

2 � 0. For
detunings leading to (k±

as)
2 < 0 we set (k±

as)
2 = 0. Then the

critical intensity at the upper bifurcation point reads as

I±
k=0,crit,as = −2B ±

√
4B2 − [4 − (1 − α)2](B2 + A2)

4 − (1 − α)2
, (6)

where A = γ0 + γc/(γ 2
c + �2

c) and B = −�0 + �c/(γ 2
c +

�2
c). It should be noted that I±

0,crit,as does not depend on �c

whereas I±
k=0,crit,as depends on both detunings and was already

calculated in Ref. [39].
In Eqs. (3)–(6) the −/+ signs do not refer to the exciton

spin but to the lower and upper destabilization point of the
HSs, respectively. The main results of the above analysis
are illustrated in Fig. 2. In Fig. 2(a) we plotted the critical
intensity I−

0,crit over α at �0 = −0.45 for both symmetric and
antisymmetric perturbations. It can be seen that for α > 0
the MI point for symmetric perturbations lies at a smaller
pump power than that of the antisymmetric perturbations. This
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FIG. 2. (Color online) Results of the perturbation analysis of
homogeneous solutions: (a) critical intensity for symmetric (thin red)
and antisymmetric perturbations (bold blue) as a function of α for
�0 = −0.45; (b) intensity I−

0,crit,as at the lower bifurcation point and
I+

0,crit,as at the upper bifurcation point as a function of the detuning
� for α = −0.1 (bold blue lines); within the region encircled by the
thin solid black curve also perturbations with k = 0 are unstable; the
dashed black lines frame the range between the turning points of
the bistability loop for symmetric HSs.

means that the arising patterns can be expected symmetric
[ρE(x,y) ≡ 0] and each polarization is similar to the scalar
hexagonal patterns from Ref. [19]. For α < 0, however, the
bifurcation point for antisymmetric perturbations lies at a
smaller pump power than that for the symmetric ones. In
Ref. [39] we proved for dark solitons that these antisymmetric
dynamics are reflected in a spatial effect, namely in the
spatial separation of the two half solitons formed in + and
− polarization. For hexagonal patterns, this spatial breakup is
also expected to appear in the form of two spatially shifted +
and − patterns. The polarization degree ρE(x,y) is then also
nontrivial.

Figure 2(b) displays the full instability landscape for
negative α. The intensity range between the inflection points of
the bistability loop for symmetric HSs is framed by the dashed
black contour. It is included in the range of symmetric HSs
being unstable with respect to uniform perturbations which
is calculated from Eq. (6) and depicted by a solid black
contour. The bold blue lines denote the critical intensities
I±

0,crit,as according to Eq. (4) in their existence range.
In this section the results for the symmetric (linearly

polarized) case can be adopted from the results presented in
Ref. [19] by scaling the scalar fields with the factor

√
1 + α.

IV. PSEUDOSPIN PATTERNS

The HS analysis in Sec. III has revealed that the expected
shape of the arising patterns depends crucially on the cross-
phase modulation parameter α between excitons with different
spin, in particular on the sign of α. In Ref. [39] we have shown
for dark solitons that this sign is the crucial parameter for
the dynamics and the field configuration of the polaritonic
system. Whereas for α > 0 symmetric solitons are preferred
where both polarizations form the same profile, a spontaneous
symmetry breaking appears for α < 0. Similar effects will be
observed for spatially extended patterns in this section.

FIG. 3. (Color online) (a) Two-dimensional profile |E+(x,y)| =
|E−(x,y)| of a hexagonal pattern for α > 0; (b) field intensity
IE(x,y) = |E+(x,y)|2 + |E−(x,y)|2. Parameters are α = 0.1, � =
−0.1, and Ep = 0.35.

For α = 0 the equations for both +/− polaritons degen-
erate to two decoupled scalar equations which were already
investigated [19].

For α > 0 the two spins are coupled. Hexagonal patterns
arise beyond the bifurcation point for MI. The patterns for both
polarizations are identical [cf. Fig. 3(a)] which manifests itself
in a linearly polarized hexagonal pattern with polarization
degree ρE(x,y) ≡ 0. Therefore the location of maxima and
minima of the field intensity IE(x,y) coincides with that
of the respective field moduli |E±(x,y)|; cf. Fig. 3(b). This
symmetric pattern fulfills the prediction from Sec. III where
its shape was deduced from the fact that the symmetric
perturbations are preferred compared with the antisymmetric
ones for α > 0. These symmetric patterns do not exhibit any
novel properties in comparison with the scalar patterns studied
in Ref. [19].

For the physically more relevant case α < 0, however,
antisymmetric perturbations are dominating. This is reflected
by a spontaneous spatial shift between the patterns of the
two polarizations similar to the spatial splitting between dark
solitons reported in Ref. [39]. In Fig. 4 a prototypical example
near I−

0,crit,as for � = −0.1 is studied. Figure 4(a) shows
the total field intensity IE(x,y). Although being hexagonal,
the arising intensity pattern differs substantially from the
intensities of the single polarizations, because the spatial
splitting between the two hexagonal lattices is not small but
rather in the same order of magnitude as the lattice spacing.
IE(x,y) can be classified as honeycomb-like, despite being
formed by two hexagonal patterns |E+(x,y)| and |E−(x,y)|.
The spatial shift between these two patterns is indicated by the
black and white hexagon indicating the maxima of |E+(x,y)|
and |E−(x,y)|, respectively. It manifests itself in the nontrivial
polarization degree ρE(x,y) depicted in Fig. 4(b). The spatial
shift between the two polarizations matches with the structure
of the patterns: the maxima of |E+(x,y)| coincide with the
minima of |E−(x,y)| and vice versa.

A similar scenario can be observed near I−
0,crit,as for � =

−0.45; cf. Fig. 5. Here, |E+(x,y)| and |E−(x,y)| are shifted
along a line coinciding with a basis vector of the hexagonal
lattice. This changes the phenotype of the arising intensity
pattern substantially. Figure 5(a) shows a stripelike pattern. A
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FIG. 4. (Color online) Symmetry-breaking mechanism leading
to the formation of vectorial hexagonal patterns for α < 0: (a) total
intensity IE(x,y) = |E+(x,y)|2 + |E−(x,y)|2 of the photon field;
(b) polarization degree ρE(x,y). The white (black) hexagon indicates
the maxima of |E−(x,y)| (|E+(x,y)|). Parameters are α = −0.1,
� = −0.1, and Ep = 0.35.

look at Fig. 5(b) shows that both the bright and the dark stripes
experience a modulation of the polarization degree. Therefore,
the hexagonal nature of the pattern is preserved, at least with
respect to the polarization degree ρE(x,y).

Up to this point, we restricted our observations to the close
vicinity of the bifurcation point I−

0,crit,as and varied mainly the
detuning. However, in Ref. [19] it was shown that for, e.g.,
� = −0.1 the HSs show a monostable dependence on the
pump power. This makes the whole modulationally unstable
pump range accessible for the formation of a variety of stable
extended patterns. In Fig. 6 we present two examples for
different pump powers leading to different types of stripe
patterns in IE .

Figures 6(a)–6(c) show vectorial labyrinthine patterns.
From the polarization degree ρE(x,y) in Fig. 6(c) it can be
seen that there is a spatial shift between the stripes of |E+(x,y)|
and |E−(x,y)|. Another peculiarity is the occurrence of point
defects, marked in Fig. 6(c).

FIG. 5. (Color online) Symmetry-breaking mechanism leading
to the formation of modulated stripes for α < 0: (a) total intensity
IE(x,y) = |E+(x,y)|2 + |E−(x,y)|2 of the photon field; (b) polariza-
tion degree ρE(x,y). The white (black) hexagon indicates the maxima
of |E−(x,y)| (|E+(x,y)|). Parameters are α = −0.1, � = −0.45, and
Ep = 0.2816.

FIG. 6. (Color online) Formation of various vectorial patterns for
α = −0.1 and � = −0.1: (a)–(c) labyrinthine stripe patterns for
Ep = 1.2: (a) |E+(x,y)|; (b) total intensity IE(x,y) = |E+(x,y)|2 +
|E−(x,y)|2 of the photon field; (c) polarization degree ρE(x,y).
(d)–(f) honeycomb patterns add to modulated stripes for Ep = 1.4:
(d) honeycomb pattern |E+(x,y)|; (e) stripelike total intensity
IE(x,y) = |E+(x,y)|2 + |E−(x,y)|2 of the photon field; (f) hexag-
onally patterned polarization degree ρE(x,y).

Near the upper bifurcation point I−
0,crit,as, the field |E+(x,y)|

forms a honeycomb pattern; cf. [19] and Fig. 6(d). The
intensity profile in Fig. 6(e) shows several domains originating
from various dislocations in the hexagonal structure of |E±|.
Whereas in the domain on the right, IE(x,y) preserves the
original hexagonal structure due to impurities in the fields,
the other domain shows a stripelike pattern. The polarization
degree ρE(x,y) in Fig. 6(f), however, still bears the hexagonal
symmetry of the original profiles.

All examples with α < 0 in this section show genuine
vectorial characteristics which cannot be observed in the
framework of the scalar model [19]. Furthermore, it was shown
that the additional consideration of TE-TM splitting between
the cavity modes induces a spontaneous motion of the whole
polariton pattern [20].

In Ref. [14] the formation of stripe patterns with uniform
polarization degree along each stripe was reported for a vec-
torial Kerr cavity. However, in order to match the parameters
used there in the polaritonic system studied here, one would
have to choose α = 7, which lies outside the physical range
yet known for this parameter.

165308-5



ALBRECHT WERNER, OLEG A. EGOROV, AND FALK LEDERER PHYSICAL REVIEW B 90, 165308 (2014)

FIG. 7. (Color online) Formation of a domain structure separated by multiple one-dimensional dark half solitons for � = −0.7, α = −0.1,
and Ep = 0.19: (a) three spatially distinct domains (enumerated by 1 to 3) are separated by slowly moving dark half solitons (direction of
motion indicated by red arrows), (b) region 3 has vanished after the melting of the surrounding half solitons, (c) region 1 has vanished, resulting
in two crossed stationary dark half solitons.

V. SPONTANEOUS FORMATION OF DARK HALF
SOLITONS IN THE BISTABLE RANGE

For a scalar self-defocusing Kerr cavity it was previously
claimed that pattern formation is frustrated in the bistable
pump range, since all patterns are subjected to bistable
switching which drives the solution to the stable upper branch
of the bistability loop [11].

In the present section, it is shown that the aforementioned
bistable switching to the upper part of the bistability loop can
be circumvented in the case of vectorial exciton-polaritons
according to Eqs. (1). Figure 7 shows the crucial moments
of the dynamical evolution near the MI point for � = −0.7.
After about 900 photon lifetimes the profile shown in Fig. 7(a)
consists of three spatially distinct domains designated by 1 to
3. It should be noted that the used split-step Fourier algorithm
for numerically solving Eqs. (1) requires periodic boundary
conditions. The regions are separated by one-dimensional dark
half solitons [39,42]. These half solitons move slowly due
to curvature forces [44]. Due to this motion the number of
domains will decrease. The domain walls framing the smallest
region (in this case region 2) have the largest curvature.
This is the reason for the slow movement of these walls in
the next step of the dynamical evolution. After about 1500
photon lifetimes they merge eventually [Fig. 7(b)]. The final
steady state is reached after about 2300 photon lifetimes with
the disappearance of all curved surfaces and of region 1
[Fig. 7(c)].

The formation of these stable patterns depends strongly
on external parameters, namely the detunings and the pump
power. In order to analyze the stability range of these patterns
quantitatively it is useful to have a closer look at the dark
half solitons separating the domains in Fig. 7(c). A one-
dimensional profile showing both polarizations is depicted
in Fig. 8(a). Both polarizations nest on the upper branch of
the bistability loop. Whereas |�+| develops a fully fledged
dark soliton, the other polarization |�−| stays near the HS.
This asymmetric configuration is termed half soliton [35,36] or
vector soliton [39] and is the only stable soliton for α < 0. Dark
solitons are usually created by adequately disturbing the upper
branch of the bistability loop [39]. The present simulations
show that their attraction range in phase space can also be
entered from the modulational instability of its lower branch.

In order to form stable dark half solitons in this way, it
is therefore necessary to choose a pump power that lies both
in the modulationally unstable pump range of the HSs and
in the stable pump range of these solitons. The branch of the
solitons can be determined by means of the Newton-Raphson
iterative method. This method allows for the determination of
both stable and unstable solutions depicted in Fig. 8(b) with
bold and dashed blue lines, respectively.

The destabilization of a spatially homogeneous flow leading
to the formation of spin textured states surrounded by half
solitons induced by the instability of a polaritons superfluid has
been shown recently in Ref. [21]. The transformation from spin
domains to half solitons driven by the transition from linear to
nonlinear optical spin Hall effect was shown in Ref. [37]. The
formation of a Wigner crystal of half solitons [38] is a further
example of self organization of a polarization pattern.

For α > 0, the dark soliton solutions to be considered are
symmetric [39]. Their stability range is significantly smaller
than that of the asymmetric solitons reported for α < 0.
Particularly, the switching point to the upper branch of the
bistability loop lies usually at too high pumps to match
this stability range. Therefore, the stabilization mechanism
presented in this section was not observed for positive α.
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FIG. 8. (Color online) (a) Dark 1D half soliton: slice along
dashed line in Fig. 7(c); (b) multistability diagram: symmetric HSs
(black), asymmetric HSs (gray), and modulationally unstable HSs
(red), stable (unstable) solutions are denoted with bold (dashed) lines,
the blue curve denotes the branch min|�−|(Ep) of the half soliton in
(a). Parameters are α = −0.1 and � = −0.7.
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VI. CONCLUSIONS

In summary, we have studied polariton patterns in a
semiconductor microcavity with special emphasis on the
spin degree of freedom of these quasiparticles. We found
that the sign of the cross-phase modulation parameter α

between excitons with different spins is crucial for the
topology of the arising patterns. For α > 0 all observed
patterns are invariant under the permutation of + and −. For
α < 0, however, this spin symmetry is broken spontaneously.
This symmetry breaking manifests itself in a spatial shift
between the fields with opposite spins. All these simulations
were backed by analytical calculations for the corresponding

stationary plane wave solutions, from which the patterns grow
spontaneously.

Furthermore we have shown the spontaneous formation
of stable domains framed by one-dimensional dark half
solitons in the bistable pump range for α < 0 and surveyed
their properties. This mechanism counteracts the bistable
frustration of pattern formation reported for Kerr cavities and
spinless polaritons.
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