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We report numerical simulations of biexciton generation in coupled quantum dots (CQDs) placed in a static
electric field and excited by a chirped laser pulse. Our simulations explicitly account for exciton-phonon
interactions at finite temperature using a non-Markovian quantum jump approach to solve the excitonic dynamics.
In the case of noninteracting quantum dots, the biexciton generation is severely limited by the biexciton binding
energy. We demonstrate that the application of an axial electric field along the CQDs can yield a favorable
excitonic level alignment that compensates for the biexciton binding energy and yields an optimum biexciton
generation. On the contrary, well-defined values of the electric field lead to destructive quantum interference
that completely inhibits the biexciton generation. We therefore demonstrate here the potential of chirped pulse
excitations of CQDs for high-efficiency biexciton generation but also for the control of unique optoelectronic
properties of complex quantum systems.
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I. INTRODUCTION

The robust generation of high-quality biexcitons in semi-
conductor quantum dots (QDs) is of prime importance for
the development of quantum information as their radiative
decay can be used as a source of entangled photon pairs [1,2].
An ideal biexciton generation can in principle be achieved
using Rabi oscillations [3–5]. However, the final biexciton
population obtained via this simple scheme depends strongly
on the intensity and duration of the laser pulse and is therefore
not robust against experimental parameters. To overcome this
difficulty, it has recently been proposed to use adiabatic rapid
passage (ARP) techniques [6] to obtain a robust control of
the final exciton [7–12] or biexciton [13–16] population of
isolated QDs at finite temperature.

These studies have, however, shown that the efficiency
of biexciton generation is severely limited by the biexciton
binding energy [14,16], noted δ in the following, which can
range between a few and a few tens of meV, depending on
the nature and size of the QD [17–19]. Due to the binding
energy of the biexciton, the central frequency of the laser
pulse, usually set at half the biexciton energy, is off-resonant
with the transition to the first excited state of the QD. As a
consequence of this detuning, intense laser pulses are needed
to obtain a significant population of the biexcitonic state even
for a biexciton binding energy of only a few meV [14].
Several solutions have been devised to circumvent this issue.
It is possible, for example, to benefit from phonon-induced
dephasing [16] or to use a two-color ARP scheme [14]
to compensate for the effect of δ. However, these elegant
solutions come with inherent experimental complications,
such as the necessity to use two distinct frequency swept laser
pulses [14].

While the chirped pulse excitation of isolated QDs have
been intensively studied, little is known about the efficiency of
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such process for coupled quantum dots (CQDs) [20,21]. The
energy levels and mutual electronic and excitonic couplings
between the dots can be finely tuned by engineering their struc-
ture and by carefully controlling the interdot distance [22–25].
The possibility to apply an electric field along the dimer [26,27]
using an external gate voltage adds a supplementary means to
control these energy levels [28–31]. Such electronic structure
manipulation by an external field has already been employed
to generate well-defined entangled states [32,33] or for the
realization of conditional logic [34] using CQDs.

In this paper, we study the biexciton generation in CQDs
placed in a static electric field and excited by a chirped laser
pulse. Different theoretical approaches have been developed
to account for exciton-phonon (ex-ph) interactions during
the ARP excitation of isolated QDs [35–37]. Most of these
approaches are based on the propagation of the density matrix
of the system under consideration using the Born-Markov
approximation [9] or correlation expansion techniques [14].
The computational cost of these techniques scales quadrat-
ically with the system size, which might be prohibitive to
study large quantum systems. In the work presented here, the
simulation of the excitonic dynamics is performed using the
recently developed non-Markovian quantum jump (NMQJ)
approach [38] combined with a Chebyshev expansion of the
evolution operator [39].

The NMQJ approach is based on a non-Hermitian de-
terministic propagation of the wave function interrupted by
stochastic quantum jumps [40,41]. Consequently the NMQJ
does not require the propagation of the density matrix of
the system and might therefore be more appropriate than
Liouville-space approaches to study the dynamics of large
open quantum systems. However, its computational efficiency
should be similar to density matrix propagation techniques
for small systems due to the extra numerical effort required
to perform the quantum jumps. In contrast with many density
matrix propagation techniques [9], the NMQJ approach avoids
the Markov approximation [41,42]. As a consequence, the
time-dependent relaxation rates used in the NMQJ approach
depend not only on the instantaneous energies of the system,

1098-0121/2014/90(16)/165307(10) 165307-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.165307


NICOLAS RENAUD AND FERDINAND C. GROZEMA PHYSICAL REVIEW B 90, 165307 (2014)

but also on their entire evolution from the starting point of
the dynamics [42]. The NMQJ is, however, an intrinsically
numerical approach and is therefore unable to provide on
its own analytic solutions such as the ones developed in
Ref. [13]. It has, however, been shown that the NMQJ approach
converges to the exact solution of the master equation in
selected cases [41]. Besides, unlike real-time path-integral
approaches [43], the NMQJ cannot account for an arbitrary
multiphonon process as only the second-order exciton-phonon
interaction terms are kept in the master equation. Despite
the significant differences outlined above, these different
techniques should, however, lead to comparable results for
the systems studied in this paper.

In this paper, we first study the case of an isolated QD to
validate our numerical approach. In agreement with previous
studies [14], we observe a significant degradation of the
biexciton generation with the biexciton binding energy. We
then consider the case of CQDs placed in a static external
electric field and excited with a chirped laser pulse. Our results
demonstrate that favorable values for the electric field lead to
a significant improvement of the biexciton generation even for
large values of the biexciton binding energy and low intensities
of the laser pulse. On the contrary, well-defined values of
the electric field lead to destructive quantum interference
and totally inhibit the biexciton generation. The excitation of
CQDs with chirped laser pulses not only provides an attractive
route for efficient biexciton generation, but it also offers an
ideal platform to probe the unique optoelectronic properties of
complex quantum systems.

II. NON-MARKOVIAN QUANTUM JUMP FOR AN
EXPLICITLY TIME-DEPENDENT HAMILTONIAN

The Hamiltonian of a QD system in interaction with a laser
pulse and in the presence of exciton-phonon coupling can
be written as H = H0 + HE (t) + HB + HSB , where H0 is
the Hamiltonian of the isolated QD, HE (t) is the interaction
Hamiltonian between the QDs and the incident laser field,
HB is the Hamiltonian of the bath, formed here by the phonon
modes of the QDs, andHSB the ex-ph interaction Hamiltonian.
In the local basis set, i.e., in the basis formed by the excitations
of each QD, H0 reads

H0 =
NS∑
n=1

εn|n〉〈n| +
NS∑

m<n

Vnm(|n〉〈m| + |m〉〈n|), (1)

where NS is the total number of states in the system, εn is
the energy of the excited state |n〉, and Vnm is the electronic
or excitonic coupling between the states |n〉 and |m〉. This
Hamiltonian can equivalently be expressed in its diagonal basis
set by H0 = ∑

M EM |M〉〈M|, where EM is the energy of the
Mth diagonal state and |M〉 = ∑

n mn|n〉 is the Mth diagonal
state. The excitation of the QDs is operated by the Hamiltonian
HE (t) that reads

HE (t) =
NS∑
n=1

NS∑
m<n

1

2
μnm�(t)(|n〉〈m| + |m〉〈n|), (2)

where μnm is the transition dipole moment between the states
|n〉 and |m〉, and �(t) is the electric field. Adiabatic rapid

passage is achieved using a linearly chirped Gaussian pulse [6]:

�(t) = �√
2πτ0τ

exp

(
− t2

τ 2

)
exp(−iωlt − iat2), (3)

where � is the pulse area, i.e., the square root of the pulse
intensity, and ωl is the central frequency of the laser pulse.
Experimentally, such a pulse can be created by passing a
transform-limited pulse through a Gaussian chirp filter that
introduces a quadratic phase α. The chirp filter modifies
the pulse length, which becomes τ = (α2/τ 2

0 + τ 2
0 )1/2 and

introduces a chirp rate a = α/(α2 + τ 4
0 ) [11]. The Hamiltonian

of the driven system is given by

HS = H0 + HE (t). (4)

The eigenstates of HS are referred to as the dressed states
and can be expressed in the local basis as

|
α(t)〉 =
∑
m

cα,m(t)|m〉. (5)

As demonstrated in previous publications [8,14], the time
evolution of the dressed states is of key importance for
the comprehension of the dephasing and energy relaxation
observed during the ARP excitation of QDs.

In the following, we assume that the exciton-phonon
interactions principally lead to fluctuations in the QD energy
levels [42]. We consequently neglect any variations of the
interdot couplings induced by the phonon modes of the
crystal. Under this assumption, the exciton-phonon interaction
Hamiltonian reads [42]

HSB =
NS∑
n=1

Sn ⊗
∑

q

(gqbq + g∗
qb

†
q). (6)

In Eq. (6), the operators Sn are diagonal matrices defined
by [42]

Sn = ηn|n〉〈n|, (7)

where ηn is equal to the number of excitons in the local state
|n〉 [14]. In Eq. (6), gq is the interaction strength with the qth
mode of the bath, and b

†
q (bq) creates (destroys) a phonon

in the qth mode. Finally, the phonon Hamiltonian is defined
by [44]

HB =
∑

i

�ωib
†
i bi . (8)

Using the Hamiltonian described above, one can show
that the second-order time-convolutionless master equation
governing the dynamics can be written as [41,42,44]

d

dt
ρS(t) = − i

�
[HS(t),ρS(t)]

+
∑
α,β

γαβ(t)Aαβ(t)ρS(t)A†
αβ(t)

− 1

2

∑
α,β

γαβ(t){A†
αβ(t)Aαβ(t),ρS(t)}, (9)

where ρS(t) is the reduced density matrix on the excitonic
states, and where the operators

Aαβ(t) = sαβ(t)|
α(t)〉〈
β(t)| (10)
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describe the exciton-phonon interactions [44]. A detailed
derivation of this equation can be found in Ref. [42]. Based on
the Born approximation, Eq. (9) is limited to weak system-bath
interaction and does not account for multiphonon processes. In
Eq. (10), the coefficients sαβ(t) come from the development of
the operators Sn, introduced in Eq. (6), on the time-dependent
basis formed by the instantaneous dressed states [42]:

sαβ(t) =
NS∑
n=1

ηncn,α(t)c∗
n,β(t). (11)

Contrary to the Markovian limit, the decay rates, γαβ(t),
present in Eq. (9) are time-dependent here and can take positive
and negative values. The time intervals where a given decay
rate takes negative values are characteristic of non-Markovian
memory effects [41]. For finite temperature, these decay rates
can be expressed as [42]

γαβ(t) =
∫ t

0
dτ

∫ ∞

0
dν J (ν)n(ν) cos{[ωαβ(τ ) + ν]τ }

+J (ν)[n(ν) + 1] cos{[ωαβ(τ ) − ν]τ }, (12)

where J (ν) is the spectral density of the bath modes, n(ν) is
the bosonic distribution function, and ωαβ(τ ) is the energy
difference between the dressed states |
α(t)〉 and |
β(t)〉.
These energy differences here are explicitly time-dependent
due to the interaction between the QDs and the laser field.

Following the NMQJ approach, the master equation (9) is
solved following a statistical approach using an ensemble of
Nreal realizations of the system state vector. In the following,
we use an ensemble size of Nreal = 105. At any time of the
simulation, the reduced density matrix, ρS(t), can be obtained
by averaging over the state vector ensemble [38]:

ρS(t) = N0(t)

Nreal
|
0(t)〉〈
0(t)| +

NS∑
α=1

Nα(t)

Nreal
|
α(t)〉〈
α(t)|.

(13)

In this equation, the state |
0(t)〉 is the propagated initial
state of the dynamics [41]. Its initial weight in the ensemble
is consequently N0(t = 0) = Nreal. The remaining states in
the ensemble, i.e., |
α(t)〉 with α = 1,N , correspond to the
instantaneous dressed states. During each time step, �t , of the
dynamics, |
0(t)〉 evolves in a deterministic fashion and the
weights Ni(t) with i = 0 − NS are modified according to a
well-defined conserving stochastic process [38].

The deterministic evolution of |
0(t)〉 is driven by a non-
Hermitian Monte Carlo effective Hamiltonian [40]:

Heff(t) = HS(t) − i
�

2

∑
α,β

γα,β (t)A†
αβ(t)Aαβ(t). (14)

As a consequence of the explicit time dependence inHeff(t),
the first-order expansion of the evolution operator usually used
in the NMQJ implementation [41,42] is not suitable here to
propagate the wave function. Instead, the evolution operator is
expanded in a Chebyshev series [39]:

|
0(t + �t)〉 =
(

NC∑
i=0

aiφi(−iH̃eff�t)

)
|
0(t)〉, (15)

where ai are the expansion coefficients and φi are the
complex Chebyshev polynomials defined by their recurrence
relation [39]. A total of NC = 50 polynomials were used
in the expansion, and a time increment of �t = 10 fs was
set to solve the dynamics. The accuracy of the dynamics
obtained with Eq. (15) was checked for selected cases using an
iterative time-ordering Chebyshev (ITOC) expansion [45,46].
This highly accurate approach adds a supplementary iterative
loop to the Chebyshev expansion (15) to account for the time-
ordering operator [45]. As a consequence of this additional
loop, the error propagated during the dynamics using the
ITOC expansion can be brought to machine precision even for
intense laser pulses and large time increments. No significant
differences were observed between the dynamics obtained via
these two numerical approaches. This confirms the adequacy
of the Chebyshev expansion given in Eq. (15) to solve
the dynamics of the systems studied here. Finally, let us
mention that due to the diagonal non-Hermitian part in the
Hamiltonian (14), a normalization of |
0(t)〉 is required at the
end of each time step [40,41].

The stochastic process governing the evolution of the
statistical weights Nα(t) during each time step depends on
the values of the decay rates γαβ(t) [38]. If γαβ(t) is positive,
the jump operator Aαβ(t) can transfer ensemble members from
any propagated state, |
κ (t)〉, to the target state of the jump
operator: |
α(t)〉. The probability of such a jump, referred to
as a Markovian jump, is given by [41]

Pκ,αβ (t) = γαβ(t)pκ,αβ(t)�t (16)

with pκ,αβ (t) = 〈
κ (t)|A†
αβ(t)Aαβ(t)|
κ (t)〉. Therefore, the

jump probability depends on the overlap 〈
κ |
β〉. This
overlap is non-null only for κ = β or for κ,β = 0 as |
0(t)〉 is
a superposition of the NS dressed states.

If the rate γαβ(t) is negative, a so-called non-Markovian
jump occurs and the direction of the jump is reversed [38].
Therefore, ensemble members that had previously been trans-
ferred to state |
α(t)〉 by a Markovian jump can be transferred
back to |
κ (t)〉 during a non-Markovian jump. The probability
of such jump is given by [41]

Pκ,αβ (t) = Nκ (t)

Nα(t)
|γαβ(t)|pκ,αβ(t)�t. (17)

If during the time interval �t , z ensemble members are
transferred from |
k(t)〉 to |
m(t)〉 by a Markovian or non-
Markovian jump, the statistical weights are modified according
to Nm

k
(t + �t) = Nm

k
(t) ± z. Following the original MCWF

approach, the number of transferred states is determined by a
Monte Carlo process using the jump probability (16) or (17)
for Markovian and non-Markovian jumps, respectively.

As clearly explained in Ref. [41], the master equation (9)
does not ensure that the density matrix remains positive during
the dynamics. This violation of the density matrix positivity
occurs when γαβ(t) < 0 and simultaneously Nα(t) = 0. The
detection of such an event is straightforward, and nonphysical
evolution can be easily identified. However, such a violation
of the positivity of the density matrix was not observed for the
set of parameters used in this paper.
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III. BIEXCITON GENERATION IN ISOLATED
QUANTUM DOTS

To validate the theoretical framework described above, we
have calculated the biexciton generation obtained via ARP
on a single QD. Recent articles have tackled this issue and
underlined the impact of the biexciton binding energy on
the final biexciton population [13,14]. In the following, we
label the local excited states as |ehX〉, where e and h are the
number of excited electrons and holes in the QD, respectively.
The isolated QD studied here is consequently modeled by its
ground state |0〉, its singly excited state |11X〉, and its biexcitonic
state |22X〉. The energy of the single excitonic state is labeled
E1

1X
and the energy of the biexcitonic state is given by

E2
2X

= 2E1
1X

− δ, (18)

where δ is the biexciton binding energy. Experimental results
have shown that δ significantly varies depending on the nature
and the size of the QD. The biexciton binding energy can
therefore range from about 3 meV for InGaAs/GaAs QDs up
to 27 meV for CdS/ZnS QDs [19]. Setting the laser frequency
at half the biexciton energy, 2�ωl = E2

2X
, and using the rotating

wave approximation (RWA), the total Hamiltonian of the QD
interacting with a linearly polarized laser pulse can be written
as [14]

HS =
⎛
⎝ � �/2 0

�/2 δ/2 �/2
0 �/2 −�

⎞
⎠, (19)

where � = 2αt . In this Hamiltonian, the first, second, and third
states represent the ground (|0〉), the singly excited (|11X〉), and
the biexcitonic (|22X〉) states, respectively. The dipole moments
of the two transitions 〈0|μ|11X〉 and 〈1

1X|μ|22X〉 were assumed
to be identical. According to Eq. (6), only two relaxation
operators model the ex-ph interactions: S1 = |11X〉〈1

1X| and
S2 = 2|22X〉〈2

2X|.
As seen in Eq. (12), the exciton-phonon interactions enter

the description of the time-dependent dynamics via the spectral
density J (ω). With the small energy differences considered
here, the interaction of the exciton with the acoustic phonon
is dominant [8]. The phonon spectral density is therefore well
approximated by the super-Ohmic distribution [47]:

J (ω) = �ω3e−ω2/ω2
c , (20)

where � represents the exciton-phonon coupling constant and
ωc is the high-energy frequency cutoff. Previous estimations
of the exciton-phonon interaction strength have shown that
� = 0.022 ps−1 for GaAs QDs [11]. The frequency cutoff of
the bath spectral density depends on the size of the QD. We
set here ωc = 0.72 meV, which corresponds to a QD of 5 nm
in diameter [48].

Using these parameters, we have calculated the final
biexciton population, denoted Pf (2

2X), obtained for different
values of the pulse area � and chirp parameter α. The results
of these calculations are shown in Fig. 1. Different values of
the biexciton binding energy were considered. A temperature
of T = 4 K and an initial pulse duration of τ0 = 2 ps were
set during the calculations. The results shown in Fig. 1
are almost identical to those reported by Glässl et al. [14],
where a real-time path-integral approach was used to solve
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FIG. 1. (Color online) Variations of the final biexciton popula-
tion with the pulse area (�) and chirp parameter (α) of the laser pulse
for an isolated QD. Four different values of the biexciton binding
energy δ are represented. A temperature of T = 4 K was set during
the calculations.

the excitonic dynamics [43]. However, discrepancies appear
between our results and those reported in Ref. [14] for large
values of the pulse area (� > 6π ) and small negative values of
the chirp parameter −20 < α < 0. These differences are due
to the different ex-ph coupling strength and frequency cutoff
of the phonon modes considered in both cases.

As seen in Fig. 1, the pulse area threshold required to obtain
an optimum biexciton generation increases with biexciton
binding energy. In the ideal case in which δ = 0, a pulse
area of �th = 2π is sufficient to obtain a optimum population
on |22X〉. However, for δ = 10 meV, this threshold increases
to �th = 10π , which corresponds to a pulse 25 times more
intense than for δ = 0. Additionally, for δ = 10 meV and
� = 2π , a negligible final biexciton population is obtained.
This demonstrates the difficulty in obtaining an efficient
biexciton generation using low-intensity pulses for quantum
dots presenting a strong biexciton binding energy.

IV. BIEXCITON GENERATION
IN COUPLED QUANTUM DOTS

To improve the biexciton generation for QDs presenting
large values of δ, we study in this section the chirped pulse
excitation of two neighboring QDs that are coupled with
each other [22]. The two QDs are referred in the following
as top (T ) and bottom (B), and they are separated by a
distance R. This distance can be precisely controlled by
tuning the growth conditions of the dots [24], which is fixed
to R = 8.4 nm in the following. Additionally, an external
electric field, denoted F in the following, can be applied to
the dimer of QDs when the latter is placed in an n-i Schottky
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barrier [26,27]. This static external electric field can be used to
shift the energy of selected excitonic states of the CQDs, which
leads to a rich pattern of level anticrossings in its absorption
spectrum [28].

We consider in the following all the 14 excited states of
the CQDs up to two excitations. As in the preceding section,
these states are labeled |eT eB

hT hB
X〉, where eT (eB) and hT (hB) are

the number of excited electrons and holes in the top (bottom)
QD, respectively. Our model consequently encompasses two
localized excitons |10

10X〉 and |01
01X〉 and two indirect excitons

|10
01X〉 and |01

10X〉. Similarly, several biexcitonic states are
present in the model: two localized biexcitons |20

20X〉 and |02
02X〉,

one segregated biexciton |11
11X〉, two indirect biexcitons |02

20X〉
and |20

02X〉, and a set of trionic-like states, |02
11X〉, |20

11X〉, |11
02X〉,

and |11
20X〉.

In the following, we aim to optimize the final biexciton
population obtained on the top QD, i.e., the population of
|20
20X〉. The choice of the QD is of course arbitrary. We first

present the model Hamiltonian describing the excitonic levels
of the coupled QDs. We then explore the optical spectrum of
the CQDs and study the efficiency of the biexciton generation
obtained via ARP excitation.

A. Energy levels and mutual couplings in CQDs

An accurate determination of the exciton and biexciton
energies of coupled InGaAs QDs has recently been derived
from atomistic empirical pseudopotential calculations [49,50].
A description of these energies using a simple configuration-
interaction approach can be found in the Appendix. Following
the tight-binding parametrization developed in Ref. [49], we
fix the excitation energy of the top QD to E10

10X
= 1.587 eV.

The energy of the bottom QD can be precisely controlled
experimentally by tuning its chemical or structural param-
eters [24,25,49]. As reported in Ref. [24], we consider a
detuning of 10 meV between the two QDs and fix E01

01X
=

1.597 eV.
Due to the intrinsic charge-transfer character of the indirect

excitons, the energies of |10
01X〉 and |01

10X〉 depend strongly on
the value of the static electric field, F [31]. These energies are
given by

E01
10X

(F ) = E0
01
10X

− eFR, (21)

E10
01X

(F ) = E0
10
01X

+ eFR. (22)

Following [49], the zero-field energies of these indirect ex-
citons were set to E0

10
01X

= E0
01
10X

= 1.609 eV [49]. As mentioned

above, our model contains a total of nine biexcitonic states.
The energies of the localized biexcitons, |20

20X〉 and |02
02X〉, are

affected by the biexciton binding energy δ:

E20
20X

= 2E10
10X

− δ, (23)

E02
02X

= 2E01
01X

− δ. (24)

Following [50], the energy of the segregated biexciton,
|11
11X〉, is set to E11

11X
= E10

10X
+ E01

01X
+ 6 meV. Similarly to

the indirect single excitons, the trion-like states experience

a Stark shift induced by F . Their energies are, therefore,
given by

E11
20X

(F ) = E0
11
02X

− eFR, (25)

E11
02X

(F ) = E0
11
02X

+ eFR, (26)

E20
11X

(F ) = E0
20
11X

+ eFR, (27)

E02
11X

(F ) = E0
02
11X

− eFR. (28)

As shown in the Appendix, the zero-field energies of these
states are set here to E0

11
20X

= E0
20
11X

= E20
20X

+ 33 meV and

E0
02
11X

(0) = E0
11
02X

= E02
02X

+ 23 meV. Finally, the energies of the

indirect biexcitonic states are set to E02
20X

= E20
02X

= E11
11X

+
74 meV.

The excitonic and biexcitonic states described above inter-
act with each other either via the electron or hole tunneling
matrix elements, denoted te and th, respectively, or via a Förster
excitonic coupling, denoted VF [31,49]. The values of these
different couplings depend strongly on the distance R between
the two dots [49,51]. With a distance of R = 8.4 nm, the values
of these couplings are set to te = 5.1 meV, th = 0.4 meV,
and VF = 0.08 meV [31,49]. The different couplings between
the different excitons and biexcitons are straightforward to
determine and are therefore not explicitly described here.

Due to these mutual interactions, the excitons and biex-
citons formed delocalized excitonic and biexcitonic states.
These noninteracting diagonal states are denoted |Xn〉 and
|Bm〉, respectively, and they can be expressed as

|Xn〉 =
∑
ab,cd

χ
(n)
ab,cd

∣∣ab

cd
X

〉
, (29)

|Bm〉 =
∑
ab,cd

β
(m)
ab,cd

∣∣ab

cd
X

〉
. (30)

Four of these states are of particular importance in the
following. The states |10

10X〉 and |01
10X〉 are coupled by the

tunneling matrix element te. Due to the strong value of
te considered here, these two states can be mixed in two
delocalized excitonic states, referred to as |X0〉 and |X1〉 in
the following, if the energies E10

10X
and E01

10X
are brought in

near resonance by the electric field. The states |20
20X〉 and |11

20X〉
interact also via te. Therefore, an important mixing of these
two states in two delocalized biexcitonic states, denoted |B0〉
and |B1〉 in the following, can occur if the energies E20

20X
and

E11
20X

are brought in near resonance by the electric field. As
demonstrated in the following, the energetic variations of these
four delocalized excitonic states induced by the axial electric
field can be used to compensate for the effect of the biexciton
binding energy.

B. Optical spectrum of the CQDs

The variation of the CQDs absorption spectrum with F is
shown in Fig. 2. This absorption spectrum was calculated from
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FIG. 2. (Color online) Variation of the CQD absorption spectrum
with the laser frequency and the electric field. The energies of the
diagonal excitonic states |X0(1)〉 and |B0(1)〉 are marked with black
and red plain (dashed) lines, respectively.

the averaged ground-state population of the CQDs [52]:

A = 1 −
∫ t∞

0
dt|〈0|e−iHS t |0〉|2, (31)

where HS(t) refers to the Hamiltonian of the CQDs in
interaction with a broad square laser pulse. The spectrum
shown in Fig. 2 was calculated for δ = 5 meV and continuous
values of F ranging between ±80 kV/cm. Each resonance
observed in this figure corresponds to the excitation of a
particular diagonal excitonic state |Xn〉 or biexcitonic state
|Bn〉. The former case occurs when �ωl = EXn

. This is the
case, for example, for the excitation of |X0〉 and |X1〉, which
are marked by black plain and dashed lines, respectively, in
Fig. 2. As seen in this figure, a level anticrossing between these
two states appears for F = 26.19 kV/cm. The energies of |X0〉
and |X1〉, denoted EX0 and EX1 , are consequently shifted up
and down when approaching the anticrossing. Due to the large
value of te, EX0 and EX1 can be up to 10 meV below and above
E10

10X
while remaining optically active.

The resonances induced by a two-photon excitation of a
particular biexcitonic state, |Bn〉, occurs when 2�ωl = EBn

.
This is the case, for example, for the resonances marked by red
plain and dashed lines in Fig. 2. These resonances correspond
to the two-photon excitation of |B0〉 and |B1〉, respectively. As
seen in Fig. 2, the energy of |X0〉 is exactly half the energy
of |B0〉 for F = 20.52 kV/cm. Therefore, by setting the laser
central frequency to 2�ωl = EB0 , one obtains

EX0 = EB0 − EX0 = �ωl, (32)

i.e., the central laser frequency is resonant with the |0〉 → |X0〉
transition and also with the |X0〉 → |B0〉 transition. Let us

stress once again that the diagonal biexciton state, |B0〉, is
not fully localized on |20

20X〉 and is mixed (principally) with
|11
20X〉. However, for the values of F reported in the following,

a negligible mixing between these two states is obtained and
|B0〉 is localized at more that 80% on |20

20X〉, i.e., |β(0)
20,20| > 0.90

in Eq. (30).

C. ARP excitation of CQDs

The total Hamiltonian of the CQDs in interaction with the
laser pulse can be written as

HS =
∑
n=1,4

(ξXn
− �)|Xn〉〈Xn|

+
∑

m=1,9

(ξBm
− 2�)|Bm〉〈Bm|

+
∑
n=1,4

(�Xn,0|Xn〉〈0| + H.c)

+
∑

m=1,9

∑
n=1,4

(
�Bm,Xn

|Bm〉〈Xn| + H.c
)

(33)

with � = 2αt and where �X,Y is the laser-induced coupling
between the states X and Y of the CQDs. In Eq. (33), ξXn

=
EXn

− �ωl and ξBn
= EBn

− 2�ωl are the detuning between
the central laser frequency and the diagonal excitonic and
biexcitonic energies, respectively.

According to Eq. (6), there are a total of 13 relaxation op-
erators here modeling the ex-ph interactions. These operators
are defined in the local basis by

Sabcd =
∑
ab,cd

ηab,cd

∣∣ab

cd
X

〉〈ab

cd
X

∣∣, (34)

where ηab,cd is the number of excitons in the state |ab
cdX〉.

We therefore assume that all the excitons (biexcitons) interact
with the same strength with the phonon modes regardless
of the location of the electron(s) and hole(s) in the CQDs.
An evaluation of these different ex-ph couplings could be
performed using the deformation and piezoelectric fields of the
material considered. These delicate calculations are, however,
outside the scope of this paper.

This approximation is motivated here by the difficulty to
precisely determine the relative ex-ph coupling strength for all
the different states.

The Hamiltonian described above was used to simulate
the excitation of CQDs by a chirped laser pulse and extract
the final biexciton population on |B0〉. The variations of this
final biexciton population, denoted Pf (B0), with the pulse
area � and the chirp parameter α are shown in Fig. 3. Four
different cases are presented, each one corresponding to a given
combination of values for δ and F that leads to 2EX0 = EB0 . A
temperature of T = 4 K was set during the calculations with a
pulse duration of τ0 = 2 ps. We limit the analysis to values of
α ranging between ±20 ps−2. As seen in Fig. 3, the resulting
variations of the final biexciton population are very similar to
those obtained for an isolated quantum dot with δ = 0 [see
Fig. 1(a)]. In each case, an optimum population transfer to
|B0〉 is obtained for α = 20 ps2 with a threshold pulse area of
only �th 	 2π .
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FIG. 3. (Color online) Variations of the final biexciton popula-
tion on |B0〉 with the pulse area and the chirp parameter. Four different
combinations of values for δ and F are represented. A temperature
of T = 4 K and an initial pulse duration τ0 = 2 ps were used during
the calculations.

The results shown in Fig. 3 demonstrate the possibility to
optimize the biexciton generation in the top QD by engineering
the interactions between the two dots. This cooperative effect
between the two QDs leads to a significant improvement of
biexciton generation when using a low-intensity laser pulse
in materials presenting an important biexciton binding energy.
However, the maximum value of δ that can be compensated
is intrinsically limited by the magnitude of the electronic
coupling te with δmax 	 2te.

The time evolution of the dressed states energies obtained
for δ = 5 meV, � = 2π , and α = 20 ps−2 are represented
for different values of F in Fig. 4. The right column shows
the corresponding variations of the biexciton generation with
� and α. As already explained above, an optimum biexciton
generation is obtained for δ = 5 meV and F = 20.52 kV/cm.
The corresponding time evolution of the dressed state energies
is shown in Fig. 4(c). Long before and after the pulse, it
is possible to identify the dressed states with the ground
state |0〉, the diagonal singly excited state |X0〉, and the final
biexcitonic state |B0〉. The other dressed states have energies
that are far above those three and have therefore a negligible
impact on the dynamics. For F = 20.52 kV/cm, a single
anticrossing between the relevant dressed states is obtained at
t = 0. The splitting of this central anticrossing is large enough,
even for � = 2π , to ensure the adiabaticity of the dynamics
and therefore to enable a robust biexciton generation. The
asymmetry observed in Fig. 4(d) between positive and negative
values of α is due to the different dressed states adiabatically
followed during the dynamics [14]. For α > 0, the dynamics
follows the lowest dressed state and is therefore not strongly
perturbed by the ex-ph interactions. On the contrary, for α < 0
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FIG. 4. (Color online) Time evolution of the relevant dressed
state energies for a CQD with δ = 5 meV, � = 2π , and α = 20 ps 2.
The evolution for α = −20 ps 2 can be read from the plots by reversing
the time axis. The corresponding biexciton generation maps are shown
in the right column.

the dynamics follows the highest dressed state and is therefore
more sensitive to phonon-induced dephasing [14].

As seen in Figs. 4(a) and 4(e), modifying the value
of F principally shifts the energy of |X0〉 and results in
the creation of multiple anticrossings between the different
dressed states. These anticrossings are too narrow for the
adiabaticity condition to be respected, which lessens the qual-
ity of the biexciton generation. As a consequence, the pulse
area threshold required to obtain an optimum biexciton
generation increases.

To evaluate the stability of the effect described above,
we have calculated the variations of Pf (B0) for values of
F ranging between 0 and 40 kV/cm. The results of these
calculations are shown in Fig. 5. All the calculations were
performed with δ = 5 meV, T = 4 K, and for different values
of �. In each case, a value of F = 20.52 kV/cm significantly
improves the biexciton generation. This improvement of the
biexciton generation is stable toward small fluctuations of the
external electric field as a final biexciton population superior
to 0.8 is obtained for values of F ranging between 20 and
22 kV/cm.

As seen in Fig. 5, a value of the electric field of F =
31 kV/cm completely inhibits the biexciton generation even
for large values of �. This total cancellation of the biexciton
generation is due to destructive quantum interference between
the different optical pathways available between the ground
state and final biexciton state. The signature of such interfer-
ence has been observed in a broad range of situations, such
as the electronic transmission of molecular junctions [53,54]
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FIG. 5. (Color online) Variations of the final population of |B0〉
for α = 20 ps2, δ = 5 meV, T = 4 K, and different values of the pulse
area.

and quantum dots [55], the fission of singlet excited states in
molecular crystals [56], or the charge propagation through
organic molecules [57,58]. In the CQDs studied here, the
four diagonal excitonic states, |Xm〉, act as intermediate states
during the excitation of the CQD from its ground state to
the biexcitonic state |B0〉. In the limit where all the excitonic
states are off-resonant with the central laser frequency, destruc-
tive interference between the different pathways is obtained
when [53,54]

∑4
n=1 ξ−1

Xn
〈0|μ|Xn〉〈Xn|μ|B0〉 = 0. As can be

seen in Fig. 5, the biexciton generation can be switched ON or
OFF, with a large ON/OFF ratio, by simply tuning the value
of the electric field.

Finally, Fig. 6 shows the effect of the temperature on
the biexciton generation for the CQDs and the isolated QD.
In both cases, a biexciton binding energy of δ = 5 meV
was considered. The value of the electric field along the
CQDs was tuned to F = 20.52 kV/cm to obtain an optimum
biexciton generation. As seen in Fig. 6, the efficiency of the
biexciton generation decreases with the temperature. Hence, if
a nearly optimal biexciton generation is obtained in the CQDs
for � = 2π at T = 4 K, at T = 20 K the final biexciton
population reaches only 0.6 and drops to 0.4 at T = 80 K.
Figure 6 also reveals that that biexciton population behaves
nonmonotonically with the pulse area. For values of � > 2π ,
the biexciton population initially decreases, only to increase
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FIG. 6. (Color online) Temperature dependence of the biexciton
generation depending on the pulse area for α = 20 ps2 and δ =
5 meV. Two cases are reported: the CQDs with F = 20.52 kV/cm
(plain lines) and the isolated QD (dashed lines).

again after � = 4π . Similar variations of the final biexciton
population have been reported for isolated QDs [14], and they
are due to the resonance character of the ex-ph coupling [59].
Consequently, the increase and decrease of the final biexciton
population depend strongly on the interplay between the
phonon spectral density and the envelope of the laser pulse.

Figure 6 also shows the impact of temperature on the
biexciton generation in a single quantum dot with δ = 5 meV.
As mentioned above, the threshold pulse area needed to obtain
a maximum biexciton population is much larger here than
for the CQDs. Hence a pulse area of � = 8π is required to
obtain a maximum biexciton generation. Note, however, that
for T = 80 K, the final biexciton population saturates at 0.5.
Consequently, at high temperature and large pulse area, the
biexciton generation is more efficient in an isolated QD than
in CQDs, as only one single excited states is then involved in
the excitonic dynamics.

V. CONCLUSION

In this paper, we presented numerical results of the chirped
pulse excitation of an isolated quantum dot and a quantum
dot dimer. These simulations were based on a non-Markovian
quantum jump approach to account for the charge-phonon
interactions combined with a Chebyshev expansion of the
evolution operator. The results obtained with this numerical
approach on isolated quantum dots are in good agreement
with previously reported results. As already reported in the
literature, the efficiency of the biexciton generation decreases
significantly with the biexciton binding energy. Consequently,
intense laser pulses are required to obtain an efficient biexciton
generation in isolated quantum dots presenting a biexciton
binding energy of a few meV.

We have then studied the excitation of two coupled QDs
placed in an external static electric field and excited by a
chirped laser pulse. The absorption spectrum of this system
reveals the presence of different level anticrossings resulting
from the mixing of its excitonic and biexcitonic states. We
have demonstrated here that the value of the electric field
can be tuned to compensate for the effect of the biexciton
binding energy during the ARP excitation of the CQDs.
Consequently, for well-defined values of the electric field,
a resonant two-photon absorption to a diagonal biexcitonic
state can be obtained. Our results show that the excitation
obtained in this situation is similar to the one obtained for
an isolated QD with a null biexciton binding energy. Hence
a very efficient biexciton generation can be obtained using
low-intensity pulses even for biexciton binding energies of a
few tens of meV.

Our calculations have also demonstrated the possibility to
tune the electric field in order to obtain destructive quantum
interference during the chirped pulse excitation of the CQDs.
When such interference occurs, the biexciton generation is
totally inhibited and the final biexciton generation drops to
zero even for large values of the pulse area. As a consequence,
the biexciton generation can be easily turned ON or OFF
by precisely tuning the value of the electric field along the
CQDs. The large ON/OFF ratio obtained with this approach
might be important for a future experimental verification of
the results presented here. While it represents a significant
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TABLE I. Single-particle electron and hole energies and
Coulomb integrals used to evaluate the exciton and biexciton energies
of the CQDs.

εT
e 1.458 eV εT

h −0.156 eV

εB
e 1.463 eV εB

h −0.161 eV

Jeh 27 meV J ×
eh 10 meV

Jhh 31 meV J ×
hh 14 meV

Jee 29 meV J ×
ee 12 meV

experimental challenge, the utilization of chirped laser pulses
on CQDs provides a unique solution to probe and control
the optoelectronic properties of complex multilevel quantum
systems.

APPENDIX: CONFIGURATION INTERACTION
ENERGIES OF THE EXCITON AND BIEXCITON STATES

Following Refs. [49,50], we express the energy of the dif-
ferent biexciton states as a configuration expansion including
the single-particle energies of electrons, εT/B

e , and holes, εT/B

h ,
on the top (T ) and bottom (B) quantum dot, and the different
Coulomb integrals. The energy of the localized excitons reads

E10
10

= εT
e − εT

h − Jeh,

E01
01

= εB
e − εB

h − Jeh,

where Jeh is the Coulomb integral between an electron and
a hole localized on the same QD. We assign here a positive
value to all the Coulomb integrals and adjust their respective
signs in the CI expansion. We also assume that all the Coulomb
integrals in the top and bottom QD are identical. The zero-field

energy of the indirect excitons reads

E0
01
10

= εB
e − εT

h − J×
eh,

E0
10
01

= εT
e − εB

h − J×
eh,

where J×
eh is the Coulomb integral between an electron and

a hole localized on two different QDs. The energy of the
segregated biexciton state is given by

E11
11

= E10
10

+ E01
01

+ J×
ee + J×

hh − 2J×
eh,

where J×
ee (hh) is the Coulomb integral between two electrons

(holes) localized on two different QDs. Similarly, J×
eh is the

electron-hole Coulomb integral between an electron and a hole
localized on two different QDs. The zero-field energies of the
trion-like states are given by

E0
11
20

= E10
10

+ E0
01
10

− Jeh − J×
eh + J×

ee + Jhh,

E0
11
02

= E01
01

+ E0
10
01

− Jeh − J×
eh + J×

ee + Jhh,

E0
20
11

= E10
10

+ E0
10
01

− Jeh − J×
eh + Jee + J×

hh,

E0
02
11

= E01
01

+ E0
01
10

− Jeh − J×
eh + Jee + J×

hh,

where Jee (hh) is the Coulomb integrals between two electrons
(holes) localized on the same QDs. Finally the energies of the
delocalized biexciton states are given by

E0
02
20

= 2E0
01
10

− 2J×
eh + Jee + Jhh,

E0
20
02

= 2E0
10
01

− 2J×
eh + Jee + Jhh,

following Refs. [49,50] and assuming a static detuning of
10 meV between the excitation energies of the two QDs.
This detuning that originates here is a 5 meV shift of the
single-particle electron and hole energy between the top and
bottom QD. All the parameters used to evaluate the excitonic
and biexciton energies are given in Table I.
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Phys. Rev. B 83, 094303 (2011).
[44] H.-P. Beuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2002).
[45] M. Ndong, H. Tal-Ezer, R. Kosloff, and C. P. Koch, J. Chem.

Phys. 132, 064105 (2010).
[46] H. Tal-Ezer, R. Kosloff, and I. Schaefer, J. Sci. Comput. 53, 211

(2012).
[47] U. Weiss, Quantum Dissipative Dynamics (World Scientific,

Singapore, 1993).
[48] A. V. Fedorov, A. V. Baranov, and K. Inoue, Phys. Rev. B 56,

7491 (1997).
[49] G. Bester, A. Zunger, and J. Shumway, Phys. Rev. B 71, 075325

(2005).
[50] J. Peng and G. Bester, Phys. Rev. B 82, 235314 (2010).
[51] A. S. Bracker, M. Scheibner, M. F. Doty, E. A. Stinaff, I. V.

Ponomarev, J. C. Kim, L. J. Whitman, T. L. Reinecke, and
D. Gammon, Appl. Phys. Lett. 89 233110 (2006).

[52] Following [31], the absorbtion spectrum is calculated
via the average ground-state population: A =
(1/t∞)

∫ ∞
0 dt|〈0| exp(−i H

�
t)|0〉|2, where t∞ is set to be

long enough to capture several amplitude oscillations of
the time-dependent dynamics. To simulate the continuous
excitation of the system by a broad square laser pulse, �(t) is
set to �(t) = �0 exp(−iωlt) with the pulse amplitude set to
�0 = 10μeV in our calculations.

[53] N. Renaud, M. A. Ratner, and C. Joachim, J. Chem. Phys. B
115, 5582 (2011).

[54] P. Sautet and C. Joachim, Chem. Phys. Lett. 153, 511
(1988).

[55] Y. Han, W.-J. Gong, H.-M. Wang, and A. Du, J. Appl. Phys.
112, 123701 (2012).

[56] F. Mirjani, N. Renaud, N. Gorczak, and F. C. Grozema, J. Phys.
Chem. C 118, 14192 (2014).

[57] C. Patoux, C. Coudret, J.-P. Launay, C. Joachim, and A.
Gourdon, Inorg. Chem. 36, 5037 (1997).

[58] N. Renaud, D. Powell, M. Zarea, B. Movaghar, M. R.
Wasielewski, and M. A. Ratner, J. Phys. Chem. A 117, 5899
(2013).

[59] P. Machnikowski and L. Jacak, Phys. Rev. B 69, 193302
(2004).

165307-10

http://dx.doi.org/10.1103/PhysRevB.76.045331
http://dx.doi.org/10.1103/PhysRevB.76.045331
http://dx.doi.org/10.1103/PhysRevB.76.045331
http://dx.doi.org/10.1103/PhysRevB.76.045331
http://dx.doi.org/10.1103/PhysRevB.61.12632
http://dx.doi.org/10.1103/PhysRevB.61.12632
http://dx.doi.org/10.1103/PhysRevB.61.12632
http://dx.doi.org/10.1103/PhysRevB.61.12632
http://dx.doi.org/10.1103/PhysRevB.86.155442
http://dx.doi.org/10.1103/PhysRevB.86.155442
http://dx.doi.org/10.1103/PhysRevB.86.155442
http://dx.doi.org/10.1103/PhysRevB.86.155442
http://dx.doi.org/10.1103/PhysRevLett.109.043002
http://dx.doi.org/10.1103/PhysRevLett.109.043002
http://dx.doi.org/10.1103/PhysRevLett.109.043002
http://dx.doi.org/10.1103/PhysRevLett.109.043002
http://dx.doi.org/10.1103/PhysRevB.54.8743
http://dx.doi.org/10.1103/PhysRevB.54.8743
http://dx.doi.org/10.1103/PhysRevB.54.8743
http://dx.doi.org/10.1103/PhysRevB.54.8743
http://dx.doi.org/10.1016/S0022-0248(98)01539-5
http://dx.doi.org/10.1016/S0022-0248(98)01539-5
http://dx.doi.org/10.1016/S0022-0248(98)01539-5
http://dx.doi.org/10.1016/S0022-0248(98)01539-5
http://dx.doi.org/10.1016/S0022-0248(02)02516-2
http://dx.doi.org/10.1016/S0022-0248(02)02516-2
http://dx.doi.org/10.1016/S0022-0248(02)02516-2
http://dx.doi.org/10.1016/S0022-0248(02)02516-2
http://dx.doi.org/10.1103/PhysRevB.81.205315
http://dx.doi.org/10.1103/PhysRevB.81.205315
http://dx.doi.org/10.1103/PhysRevB.81.205315
http://dx.doi.org/10.1103/PhysRevB.81.205315
http://dx.doi.org/10.1103/PhysRevLett.96.137401
http://dx.doi.org/10.1103/PhysRevLett.96.137401
http://dx.doi.org/10.1103/PhysRevLett.96.137401
http://dx.doi.org/10.1103/PhysRevLett.96.137401
http://dx.doi.org/10.1038/nphys882
http://dx.doi.org/10.1038/nphys882
http://dx.doi.org/10.1038/nphys882
http://dx.doi.org/10.1038/nphys882
http://dx.doi.org/10.1126/science.1121189
http://dx.doi.org/10.1126/science.1121189
http://dx.doi.org/10.1126/science.1121189
http://dx.doi.org/10.1126/science.1121189
http://dx.doi.org/10.1103/PhysRevB.71.205316
http://dx.doi.org/10.1103/PhysRevB.71.205316
http://dx.doi.org/10.1103/PhysRevB.71.205316
http://dx.doi.org/10.1103/PhysRevB.71.205316
http://dx.doi.org/10.1103/PhysRevB.79.245309
http://dx.doi.org/10.1103/PhysRevB.79.245309
http://dx.doi.org/10.1103/PhysRevB.79.245309
http://dx.doi.org/10.1103/PhysRevB.79.245309
http://dx.doi.org/10.1103/PhysRevLett.83.2270
http://dx.doi.org/10.1103/PhysRevLett.83.2270
http://dx.doi.org/10.1103/PhysRevLett.83.2270
http://dx.doi.org/10.1103/PhysRevLett.83.2270
http://dx.doi.org/10.1126/science.291.5503.451
http://dx.doi.org/10.1126/science.291.5503.451
http://dx.doi.org/10.1126/science.291.5503.451
http://dx.doi.org/10.1126/science.291.5503.451
http://dx.doi.org/10.1126/science.1155374
http://dx.doi.org/10.1126/science.1155374
http://dx.doi.org/10.1126/science.1155374
http://dx.doi.org/10.1126/science.1155374
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1103/PhysRevB.84.081305
http://dx.doi.org/10.1103/PhysRevB.84.081305
http://dx.doi.org/10.1103/PhysRevB.84.081305
http://dx.doi.org/10.1103/PhysRevB.84.081305
http://dx.doi.org/10.1103/PhysRevB.84.195311
http://dx.doi.org/10.1103/PhysRevB.84.195311
http://dx.doi.org/10.1103/PhysRevB.84.195311
http://dx.doi.org/10.1103/PhysRevB.84.195311
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1063/1.3259838
http://dx.doi.org/10.1063/1.3259838
http://dx.doi.org/10.1063/1.3259838
http://dx.doi.org/10.1063/1.3259838
http://dx.doi.org/10.1103/PhysRevB.83.094303
http://dx.doi.org/10.1103/PhysRevB.83.094303
http://dx.doi.org/10.1103/PhysRevB.83.094303
http://dx.doi.org/10.1103/PhysRevB.83.094303
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1007/s10915-012-9583-x
http://dx.doi.org/10.1007/s10915-012-9583-x
http://dx.doi.org/10.1007/s10915-012-9583-x
http://dx.doi.org/10.1007/s10915-012-9583-x
http://dx.doi.org/10.1103/PhysRevB.56.7491
http://dx.doi.org/10.1103/PhysRevB.56.7491
http://dx.doi.org/10.1103/PhysRevB.56.7491
http://dx.doi.org/10.1103/PhysRevB.56.7491
http://dx.doi.org/10.1103/PhysRevB.71.075325
http://dx.doi.org/10.1103/PhysRevB.71.075325
http://dx.doi.org/10.1103/PhysRevB.71.075325
http://dx.doi.org/10.1103/PhysRevB.71.075325
http://dx.doi.org/10.1103/PhysRevB.82.235314
http://dx.doi.org/10.1103/PhysRevB.82.235314
http://dx.doi.org/10.1103/PhysRevB.82.235314
http://dx.doi.org/10.1103/PhysRevB.82.235314
http://dx.doi.org/10.1063/1.2400397
http://dx.doi.org/10.1063/1.2400397
http://dx.doi.org/10.1063/1.2400397
http://dx.doi.org/10.1063/1.2400397
http://dx.doi.org/10.1021/jp111384d
http://dx.doi.org/10.1021/jp111384d
http://dx.doi.org/10.1021/jp111384d
http://dx.doi.org/10.1021/jp111384d
http://dx.doi.org/10.1016/0009-2614(88)85252-7
http://dx.doi.org/10.1016/0009-2614(88)85252-7
http://dx.doi.org/10.1016/0009-2614(88)85252-7
http://dx.doi.org/10.1016/0009-2614(88)85252-7
http://dx.doi.org/10.1063/1.4768937
http://dx.doi.org/10.1063/1.4768937
http://dx.doi.org/10.1063/1.4768937
http://dx.doi.org/10.1063/1.4768937
http://dx.doi.org/10.1021/jp503398a
http://dx.doi.org/10.1021/jp503398a
http://dx.doi.org/10.1021/jp503398a
http://dx.doi.org/10.1021/jp503398a
http://dx.doi.org/10.1021/ic970013m
http://dx.doi.org/10.1021/ic970013m
http://dx.doi.org/10.1021/ic970013m
http://dx.doi.org/10.1021/ic970013m
http://dx.doi.org/10.1021/jp308216y
http://dx.doi.org/10.1021/jp308216y
http://dx.doi.org/10.1021/jp308216y
http://dx.doi.org/10.1021/jp308216y
http://dx.doi.org/10.1103/PhysRevB.69.193302
http://dx.doi.org/10.1103/PhysRevB.69.193302
http://dx.doi.org/10.1103/PhysRevB.69.193302
http://dx.doi.org/10.1103/PhysRevB.69.193302



