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Imaging of double slit interference by scanning gate microscopy
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We consider scanning gate microscopy imaging of the double slit interference for a pair of quantum point
contacts (QPCs) defined within the two-dimensional electron gas. The interference is clearly present in the
scattered electron wave functions for each of the incident subbands. Nevertheless, we find that the interference
is generally missing in the experimentally accessible conductance maps for many incident subbands. We explain
this finding on the basis of the Landauer approach. A setup geometry allowing for observation of the double slit
interference by scanning gate microscopy is proposed.
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I. INTRODUCTION

Interference effects for particles [1] are the cornerstone
of quantum mechanical understanding of the wave nature of
matter. The experiments including double slit interference
were performed with electrons [2,3], ions [4], and larger
objects including clusters and molecules [5]. The double slit
interference implementing the Feynman version of the exper-
iment was reported only very recently [6]. The interference
experiments are performed on particles in vacuum [1–5] or
in the solid state. The two-dimensional electron gas (2DEG)
in semiconductor nanostructures is an attractive solid-state
medium in this context due to a large coherence length for
Fermi level electrons and carrier confinement that can be
arbitrarily tailored for formation of electron interferometers
[7]. The role of slits in 2DEG is played by quantum point
contacts (QPCs) [8,9].

The electron flow determined by the Fermi level wave
function is imaged by scanning gate microscopy (SGM) [10].
In the SGM technique the charged tip of the atomic force
microscope locally perturbs the potential landscape within
the 2DEG which is buried shallow beneath the surface of
the semiconductor. The response of the system is monitored
by conductance (G) maps as functions of the tip position.
SGM was earlier used in quantum point contacts [11] for
observation of the wave function diffraction including angular
branching due to the conductance quantization inside the slit.
The conductance maps contain interference patterns involving
electron standing waves formed between the QPC and the tip
[12]. SGM imaging of electron interferometers using antidots
was also performed [13]. In spite of a large number of SGM
studies of a single QPC [11,12,14] the imaging of the double
slit interference was not reported so far. This paper investigates
the problem of observation of the double slit interference by
SGM.

We solve the phase coherent scattering problem for the
Fermi level electron waves incident to the double slit system.
The calculated SGM conductance map for the simplest
double slit system does not contain signatures of the Young
interference and is a sum of G maps for separate slits. The
double slit interference is present in the contributions to
conductance for separate incident subbands but it disappears
in the Landauer [15] summation. We explain this finding using
symmetry arguments and indicate the setup geometry needed
to obtain the interference signal in the SGM conductance map.

II. THEORY

We consider a system depicted in Fig. 1(a) with a wide
(500 nm) input lead and two open slits. We solve the coherent
scattering problem as given by the Schrödinger equation for the
Fermi level electrons. In order to determine the conductance
we use a finite difference variant [16] of the quantum
transmitting boundary method [17,18] for the effective mass
Hamiltonian

H = − �
2

2m
∇2 + Vcon(x,y) + Vtip(x,y), (1)

where m = 0.067m0 is the GaAs electron effective mass, and
Vcon and Vtip are the potentials forming the confinement (a
finite quantum well is applied) and describing the perturbation
induced by the scanning tip, respectively. For the tip potential
we use the Lorentz function as obtained in our previous
Schrödinger-Poisson modeling [19],

Vtip(x,y) = Utip

1 + [(x − xtip)2 + (y − ytip)2]/d2
tip

, (2)

where (xtip,ytip) is the position of the tip, dtip is the width of
the potential maximum, and Utip its value.

In the input lead far from the QPCs the wave function is a
superposition of incoming and backscattered waves

� input(x,y) =
M∑

k=1

ake
ikxχ in

k (y) + bke
−ikxχ in

−k(y), (3)

where the summation runs over wave vectors k at the Fermi
level. In the upper and lower ends of the computational box (the
blue dashed lines in Fig. 1) transparent boundary conditions are
applied [20], in form �(x,y ± �y) = �(x,y) exp(±ikb�y),
where kb is an outgoing wave vector [20], kb = √

2mEF /�.
In the output lead [black dashed vertical line in Fig. 1(a)] of
width 1 μm we have the outgoing wave functions only:

�output(x,y) =
Mout∑
k=1

dke
ikxχout

k (y). (4)

The transparent boundary conditions at the bottom and top
boundaries and the outgoing boundary conditions at the output
lead edge remove scattering from the ends of the computational
box. In this paper we take EF = 6 meV as the Fermi energy
level for which we have M = 16 in the input lead. The edge of
the computational box labeled as the output lead in Fig. 1(a) is
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FIG. 1. (Color online) (a) Sketch of the double slit system for the electron incident from the left (lead of width 0.5 μm) with two QPCs
of width w with centers separated by d = 130 nm. The space at right of the slits is infinite with transparent boundary conditions [20] applied
along the dashed lines [21]. ri is the distance between the ith QPC and the tip. (b) Conductance for a single (red line) and both (black line)
QPCs open for Fermi energy EF = 6 meV (16 conducting subbands in the input lead). (c) Real part of the wave function for the electron
incident from the lowest (c) and second (d) subband.

treated as the channel of width 1 μm which at 6 meV carries
Mout = 32 conducting subbands in the input and output leads,
respectively. For the transparent and the outgoing boundary
conditions the waves passed by QPC and the tip do not return
to the discussed region upon reflection from the ends of the
computational box. After solution of the scattering problem
for each incoming mode the conductance of the system is
evaluated by the Landauer formula G = G0

∑Min
i=1 Ti , where

Ti is the transmission probability of the ith incoming mode
and G0 = 2e2/h.

III. RESULTS AND DISCUSSION

The calculated conductance for a single and two QPCs
in the absence of the tip is plotted in Fig. 1(b) as a sum
of contributions from 16 conducting subbands of the input
lead. For further discussion we choose w = 22 nm at the first
step of G: We shall discuss the simplest case of a single
conducting subband for each QPC. The conductance maps
obtained by the SGM for the QPC tuned to the G steps
exhibits oscillations with a high amplitude and radial fringes
[12], which is convenient for discussion of the interference
involving both slits. The real part of the wave functions is

displayed in Figs. 1(c) and 1(d) for the transport calculated
from the lowest and the second subband of opposite symmetry
with respect to the lead axis.

The dashed rectangle of Fig. 1(c) indicates the area in which
we will discuss the conductance maps obtained by SGM.
The G map calculated for a single QPC by the scattering
problem with the method described in the previous section
is displayed in Fig. 2(a). The map contains the radial fringes
due to formation of the standing waves between the QPC and
the tip. When both QPCs are open [Fig. 2(b)] we observe
a checkerboard pattern which, however, turns out not to be
the effect of the double slit wave function interference, as the
pattern of the G map can be exactly reproduced by the sum of
G maps for separate open slits [see Fig. 2(c)].

Let us explain the absence of the Young interference in the
conductance maps. We begin by the case of a single QPC open.
In the absence of the tip the wave function passing through the
slit gets diffracted. The diffracted wave function can be quite
well numerically simulated by the Huygens principle. Each
point of the opening is a source of a circular wave and the
resulting diffracted wave function can be calculated as

�QPC(r) =
∫

QPC
dr′fQPC(y ′)

eikF |r−r ′ |
√|r − r′| (5)

(a) (b) (c)

FIG. 2. (Color online) Conductance map for the QPC no. 2 open (a) and for both QPCs open (b). (c) Sum of conductance maps for separate
QPCs open for tip potential parameters: dtip = 10 nm and Utip = 5 meV. The insets schematically explain the setup of the apparatus for each
of the plots.
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FIG. 3. (Color online) (a) Probability density for the diffracted wave function for the second QPC open in the absence of the tip as calculated
from the scattering problem. (b) and (c) show the probability densities for interference of diffracted waves |�1 ± �2|2 with “+” in (b) and
“−” in (c). (d) The variation of the probability density as given by Eq. (11) to be compared with the SGM map of Fig. 2(a). (e) and (f) show
contributions to conductance in functions of the tip position for the lowest (e) and second (f) incident subband.

with the Fermi wave vector at the open half-space side

( �
2k2

F

2m
= EF ) and the transverse wave function of the only

conducting mode, which for the QPC center at the origin is

fQPC(y) =
√

2
w

sin( πy

w
) (for an infinite quantum well forming

the constriction). The diffracted density calculated by Eq. (5)
is displayed in Fig. 3(a). The diffracted wave function can be
put in form

�l(r) = ψQPC(r)eikF r , (6)

where ψQPC is a slowly varying envelope function. When the
tip is introduced to the system at position rtip it gives rise to a
scattering wave function �bs with the amplitude proportional
to the envelope ψQPC,

�bs(r) = R(rtip − r)ψQPC(r)eikF |rtip−r|. (7)

The R function varies slowly as compared to the Fermi
wavelength 2π/kF . Along the line between the tip and the QPC
the superposition of the incoming [Eq. (6)] and backscattered
[Eq. (7)] wave functions is approximately given by

�(r) = ψQPC(r)�bs(r) (8)

with

�bs = (eikF rl + αe−ikF rl ), (9)

where a scattering amplitude α replaces R function and rl

stands for the distance to the lth slit [see Fig. 1(a)]. The SGM
image is proportional to the probability density

ISGM(r) = |�(r)|2 = |ψQPC(r)�bs(r)|2
(10)

= |ψQPC(r)|2{|α2| + 1 + 2�(α)[cos2(kF rl) − 1]}.
Neglecting the slowly varying terms the spatial variation of
the probability density distribution is given by

ĨSGM = |ψQPC(r)|2 cos2(kF rl). (11)

Figure 3(d) shows ĨSGM for the second QPC open which very
well coincides with the variation of the exact conductance
map of Fig. 2(a) with the oscillation period equal to half of the
Fermi wavelength λF /2 = 30 nm.

The results of Fig. 2(b)—the G map for both slits open—
were calculated as a sum of contributions of 16 incident
subbands given by separate scattering solutions (see the
Theory section). The contribution of the incident subband k to
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the SGM image when both the slits are open is proportional to
the probability density for the superposition of waves passing
through one of the slits,

Il(r) = Tl|ψQPC1(r)�bs1(r) ± ψQPC2(r)�bs2(r)|2, (12)

where the sign ± depends on the parity of the incident mode l.
The parity is (−1)l+1, where l numbers the energy subbands.
For only two input channel subbands at the Fermi level the
SGM image is given by

ISGM = I1 + I2 = (T1 + T2)(|ψQPC1φbs1|2 + |ψQPC2φbs2|2)

+ (T1 − T2)2�{ψQPC1φbs1ψ
∗
QPC2φ

∗
bs2},

which can be written as

ISGM = (T1 + T2)Ino int + (T1 − T2)Iint, (13)

where Ino int is the sum of single slit images as given by
Eq. (10), and the Iint is responsible for the interference effects.
From the above formula it is clear that the interference
signal vanishes when T1 � T2. Figures 3(b) and 3(c) show
the probability densities for the lowest and second incident
subbands, calculated from wave function given by a sum
and a difference of integrals of type (5), respectively. For the
symmetry reasons in the lowest subband we have a central line
of positive interference [Fig. 3(b)] for the lowest subband and
a zero of the wave function for the second subband [Fig. 3(c)].
In Figs. 3(e) and 3(f) we plotted the G maps obtained for the
two subbands as calculated from the solution of the scattering
problem. The maxima of the probability density coincide with
the extrema of G maps. The latter contains the interference
fringes of the λF /2 period which correspond to standing waves
between the tip and the QPC which were described above for
a single QPC [cf. Figs. 2(a) and 3(d)].

Generalizing the description, for M subbands in the input
channel the SGM image is given as

ISGM = Ino intT + Iint�T , (14)

FIG. 4. (Color online) The number of incident subbands M (top
of the figure), the summed transfer probability T [Eq. (15), blue
line], and the value of �T [Eq. (16)] as functions of the width of the
input channel with fixed EF = 6 meV. The black line (r) shows the
correlation factor between the images of the probability density for
both slit open, and the sum of densities for separate slits. The value
of r = 1 indicates absence of the interference signal. The lower the
value of r the larger the interference features.

(a) (b)

FIG. 5. (Color online) Same as Figs. 2(b) and 2(c) only for the
QPCs shifted by 60 nm below the axis of the channel.

with

T =
M∑
i=1

Ti (15)

and

�T = T1 − T2 + T3 − T4 + · · · + TM−1 − TM. (16)

For the SGM image normalized to the summed transfer
probability one obtains

ISGM

T
= Ino int + Iint

�T

T
, (17)

with the interference term vanishing for large M since
�T � T . This explains the result of Fig. 2, with the pattern
of the G map for the two QPCs [Fig. 2(b)] as a simple sum of
maps for separate QPCs [Fig. 2(c)].

The disappearance of the interference signal with M

is described in a quantitative manner in Fig. 4. We keep
EF = 6 meV and vary the width of the input channel. The
number of subbands M is given on top of the figure. The
summed transfer probability tends to T = 2 (each slit opens
a single channel) for large M . The value of �T vanishes for

(a) (b)

FIG. 6. (Color online) Same as Figs. 2(b) and 2(c) only for Utip

and dtip increased twice, to 10 meV and 20 nm, respectively.
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(a)
(b) (c)

FIG. 7. (Color online) (a) Sketch of the system of double QPCs including a channel acting as the symmetry filter. The width of the channel
is equal to the width of the opening w = 22 nm. (b) Conductance map for two QPCs open. (c) Sum of conductance maps of separate QPCs.

M > 4. For quantitative evaluation of the interference image
we calculated the cross correlation coefficient r [16] between
(i) the scattering probability density for both slits open and
(ii) the sum of densities for separate open slits (the black
line in Fig. 4). The perfect correlation r = 1 corresponds to a
complete absence of the interference features in the probability
density map. The lower value of r the more distinct are the
interference features. We can see that for M > 4, r becomes
equal to 1 in consistence with the value of �T tending to 0
[22]. Interference features are present for lower numbers of
subbands, but only for M = 1 the value of r does not depend
on the width of the input channel.

Although the present interpretation is based on the symme-
try of the incident eigenstates with respect to the axis of the
input lead, we found that the absence of the Young interference
is robust (see Fig. 5) against localization of the slits with respect
to the axis. The present discussion of the interference effects
is independent of the parameters of the tip potential. In Fig. 6
we present the conductance maps as obtained for the larger
and wider tip potential with dtip = 20 nm, Utip = 10 meV, i.e.,
for both parameters increased twice as compared to the values
used previously. The maps acquire a larger amplitude for the
increased tip potential [cf. Figs. 2(b) and 2(c)], but G for both
slits open still has the pattern as given by a simple sum of maps
for separate slits.

The above discussion indicates that the absence of the
Young interference for many incident subbands results from
cancellation of terms for various contributions to the total
conductance in terms of the Landauer approach. The present
finding of an absence of the interference in the case of several
subbands is related to the suppression of the Aharonov-Bohm
conductance oscillations with the period of the flux quantum
[23]. Reference [23] indicated a reduction of the amplitude
of the Aharonov-Bohm oscillation which decreases with the
number of subbands as 1/M . On the other hand, in the present

work we demonstrated a complete removal of the interference
effects already at M = 5.

A way to preserve a clear interference signal in the G map
is to filter out all the contributions but one. For that purpose
we considered a channel of width w = 22 nm that feeds both
the QPCs [see Fig. 7(a)]. The conductance maps calculated
for both QPCs open and the 16 subbands incident in the input
lead is given in Fig. 7(b). The horizontal channel has subbands
on its own and at the Fermi energy it transmits current only in
the lowest one. The total conductance map of Fig. 7(b) with
the radial features and maxima collimated into three beams
is similar to the one obtained above for the lowest subband
contribution of Fig. 2(e). For comparison Fig. 7(c) shows the
simple sum of G maps obtained for a single QPC open with
the checkerboard pattern encountered above in Fig. 2(b) before
the filter channel was introduced.

IV. SUMMARY AND CONCLUSIONS

We have discussed the SGM imaging of the Fermi level
wave function interference with the conductance maps ob-
tained by scanning gate microscopy. We solved the coherent
scattering problem and demonstrated that although the double
slit interference is present for each of the incident subbands
separately, the signatures of the interference disappear when
the total conductance is evaluated by the Landauer formula.
We explained the absence of the double slit interference
using symmetry arguments for the incident wave functions.
A geometry in which the Young experiment can be performed
by SGM was indicated.
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