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Scenario for delocalization in translation-invariant systems
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2CEREMADE, Université Paris-Dauphine, 75775 Paris Cedex 16, Paris, France

(Received 11 August 2014; revised manuscript received 27 September 2014; published 28 October 2014)

We investigate the possibility of many-body localization in translation-invariant Hamiltonian systems, which
was recently brought up by several authors. A key feature of many-body localized disordered systems is recovered,
namely the fact that resonant spots are rare and far-between. However, we point out that resonant spots are mobile,
unlike in models with strong quenched disorder, and that these mobile spots constitute a possible mechanism for
delocalization, albeit possibly only on very long timescales. In some models, this argument for delocalization
can be made very explicit in first order of perturbation theory in the hopping. For models where this does not
work, we present instead a nonperturbative argument that relies solely on ergodicity inside the resonant spots.
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I. INTRODUCTION

The theory of many-body localization (MBL) is being
shaped and sharpened right now. Briefly said, MBL is a phase
of matter in which equilibrium statistical mechanics does not
apply: there is no thermalization and no transport; see [1]. For
a many-body system consisting of noninteracting fermions in
a disordered potential, MBL is an easy consequence of the fact
that one-fermion wave functions are Anderson localized [2].
Whereas the first systematic treatment of MBL appears
in [3], in the context of interacting electrons in a disordered
potential, recent numerical and theoretical work on disordered
spin chains [4,5], the contrast with the ergodic properties
of eigenfunctions conjectured for “nonlocalized” systems
(ETH: eigenstate thermalization hypothesis; see [6,7]), and
the connection to dynamical phase transitions [8] have added
a lot of appeal to the subject. Recently, a mathematically
rigorous underpinning of the phenomenon has been provided
as well [9].

Whereas most of these considerations concern quenched
disorder, it has recently been suggested that also thermal (or
configurational) disorder could serve the same purpose and
localize a system [10–15]. In other words, it has been suggested
that MBL can occur also in systems where the Hamiltonian
has no random terms and is translation invariant. In such a
scenario, the “effective” randomness is provided by the initial
state. To discuss this issue, we introduce in Sec. II a lattice
quantum model of interacting bosons. This model is very
similar to the Bose-Hubbard model, and it contains the latter as
a special case, but we keep the discussion general to highlight
the basic mechanism at work. At high energy density (high
temperature) and small hopping, resonant spots appear to be
as rare as in some quenched disordered systems. This is the
key observation leading to the conjecture that an MBL phase
exists in translation-invariant systems.

For systems having all their eigenstates localized, a de-
scription of the localized phase in terms of local conserved
quantities was proposed in [16]. Following [16], we refer to
this case as “full MBL.” Such a description does not carry over
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for the putative localized phase of our system, as arbitrarily
large resonant regions may appear everywhere in the system.
This is related to the fact that certainly not all eigenstates can be
localized in our translation-invariant systems; in particular, at
low energy density, we expect an ergodic phase. Nevertheless,
in Sec. III, we provide a hypothetical characterization that
takes this issue explicitly into account, while still retaining
most of the features of a localized phase, such as absence of
thermalization and vanishing transport coefficients.

The main distinction between (quenched) disordered and
translation invariant systems shows up when considering the
effect of resonances. The key question is whether they can
delocalize the system. For quenched disordered Hamiltonians
where full MBL is expected (at strong disorder), as in [4,5,9],
the problem trivializes: resonant spots form small, isolated
islands in physical space, their location determined by regions
of anomalous disorder realization, and, therefore, they produce
no transport. When translation invariance is restored, resonant
spots become possibly mobile, exactly because they are not
tied to particular regions. If this possibility is realized, the
resonant spots, also called “ergodic spots” later, could act as
carriers of energy (or any other conserved quantity, for that
matter) and they could thus delocalize the system. We refer to
this scenario as “percolation in configuration space” since it
corresponds to the case where all states connected via resonant
transitions form a giant cluster in configuration space.

We proceed to a detailed analysis in a few different instances
of the model introduced in Sec. II, varying dimension and the
precise form of the hopping term. In several instances, we find
mobile ergodic spots already in first order in the hopping. In
other cases, no percolation is observed at first order. We then
develop a nonperturbative argument to show that percolation in
configuration space does occur (an argument of a similar flavor
was developed by [17]). Though expressed in a particular
setup, the reasoning is very general, as it only relies on an
ergodicity assumption inside the ergodic spots. We believe that
it applies to all generic translation invariant lattice Hamiltonian
with short-range interaction.

II. THE MODEL

We introduce a quantum lattice system in a large volume
V ⊂ Zd , and study it in the thermodynamic limit V → ∞.
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We will often restrict ourselves to d = 1. Although we work
with a rather abstract model in order to showcase the dominant
features, the considerations developed here apply equally well
to more realistic Hamiltonians [13,14]. For concreteness, we
adopt a vocabulary that is close to the Bose-Hubbard model
in [13], and we think of each lattice site x ∈ V as containing
a variable number of bosons ηx ∈ {0, . . . ,N}, where N is a
cutoff on the occupation number per site. Consequently, we
have a preferred product basis in the many-body Hilbert space,
consisting of classical configurations |η〉 = |(ηx)x∈V 〉.

The bosons interact locally at each site and we assign to
each (local) occupation number n an energyE(n), such that 0 =
E(0) < E(1) < · · · < E(N). The Hamiltonian is of the form

H = E(0) + JU =
∑
x∈V

(
E(0)

x + JUx

)
. (1)

E(0) is a diagonal matrix in the {|η〉} basis, taking account of
the interaction between bosons, while U allows for hopping:

〈η|E(0)
x |η〉 = E(ηx), Ux = 1

2d

∑
y∼x

(b∗
xby + H.c.), (2)

where bx and b∗
x are bosonic annihilation/creation operators

with a cutoff:

bx | . . . ,ηx, . . . 〉 = √
ηx | . . . ,ηx − 1, . . . 〉 if ηx �= 0,

and bx |η〉 = 0 otherwise. The specific form in (2) is examplary:
more generic terms for the interaction and the (short range)
hopping can and will be considered.

We choose units such that the highest on-site energy E(N)
is of order 1 and we treat J as a dimensionless perturbative
parameter. The smallest on-site energy spacing will be of order
1/N and we assume to be in the regime of strong interactions
compared to the hopping:

0 � JN � 1

N
� 1. (3)

For J = 0, the eigenstates of H are the classical configurations
|η〉. They are perfectly localized in physical space (a more
precise definition of localization will be given in Sec. III).

A. Rare resonant spots

We choose the characteristics of our system so as to make
the analogy with (quenched) disordered systems as perfect as
possible in the regime J → 0. In the absence of any external
disorder, randomness manifests itself in the system via the
initial state, or, equivalently, when considering a thermal
ensemble. We will often say that something is true for a typical
configuration η, and this hence refers to the natural counting
(i.e., with equal weights) of configurations as discrete elements
in {0, . . . ,N}V . Alternatively, one can think of this as the
infinite-temperature ensemble, in which ηx , x ∈ V , are i.i.d.
random variables. In any case, considering the ensemble of
configurations should mimic the case of quenched independent
disorder on each site.

We assume the interaction between particles to be strongly
anharmonic (nonlinear); a harmonic (linear) interaction would
mean that E(n) is linear in n. To have a maximally anharmonic
interaction, we imagine E(1), . . . ,E(N) to be a typical realiza-
tion of a process that throws N points at random on an interval

x

E(ηx)

x

E(ηx)

FIG. 1. First order hopping in J for harmonic and anharmonic
interactions in d = 1. On the left, interaction is harmonic: hopping
never results in frequency mismatches. On the right, interaction is
anahormonic: resonances only occur when two levels are swapped
(rightmost interaction).

with length of order 1. Since the set of values E(n) is given by
the same realization at all sites, the model is still translation
invariant. Choosing E in this manner, we make resonances as
rare as possible, as we explain now.

In general, we say that two configurations η and η′ are
resonant in first order in J if

|〈η|E(0)|η〉 − 〈η′|E(0)|η′〉| � J|〈η|U |η′〉|; (4)

see also Sec. IV A for a motivation of this definition. Because
of our choice of E , and inequality (3), we can simplify this:
two configurations η and η′ are resonant (in first order) if they
have the same interaction energy E(0) and they are connected
in first order by the perturbation U :

〈η′|E(0)|η′〉 = 〈η|E(0)|η〉 and

〈η′|Ux |η〉 �= 0 for some x ∈ V. (5)

If the interaction were harmonic, then E(N) − E(N − 1) =
· · · = E(1) − E(0) such that any first-order transition is res-
onant: 〈η′|Ux |η〉 �= 0 for some x ∈ V implies 〈η′|E(0)|η′〉 =
〈η|E(0)|η〉. (See the left panel of Fig. 1). However, for our
anharmonic model, first-order resonances are rare for large N.
In what follows, let us restrict ourselves to d = 1 for notational
convenience. We find that two configurations η,η′ are resonant
if and only if there is some site x ∈ V such that ηy = η′

y for all
y �= x,x + 1 and one of the following two conditions holds:

η′
x = ηx+1 = ηx + 1 = η′

x+1 + 1 or

η′
x = ηx+1 = ηx − 1 = η′

x+1 − 1.

This is illustrated on the right panel of Fig. 1. We call such a
bond (pair of adjacent sites) (x,x + 1) a resonant bond (spot)
for the configuration η (or η′). The important observation here
is that, for a typical configuration η, the resonant spots are
typically isolated and rare, the distances between them being
of order N.

We conclude that our system has the same basic features as
a disordered Hamiltonian, where the on-site disorder takes
values in a discrete set of N + 1 elements. The maximal
number of particles per site, N, serves thus as a control
parameter on the density of resonant spots, which is of order
1/N.

Finally, let us stress that taking E random is a way to
implement anharmonicity, but it is not a necessity. In fact,
a simple choice like E(n) = (n/N)2 would be perfectly suited
as well. In that case, the Hamiltonian defined by (1) and (2) is
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the Bose-Hubbard Hamiltonian, up to the cutoff in occupation
number and rescaling of parameters.

III. A PRIORI RESTRICTIONS ON LOCALIZATION

There are some basic intuitive obstructions to a tentative
localized phase for the system introduced above: the existence
of ergodic states at all energy densities and the translation
invariance of the Hamiltonian. We discuss them and then we
propose a description of the hypothetical localized phase that
takes these objections into account.

A. No uniform localization

In models with strong quenched disorder and a finite
dimensional on-site space, as considered in [4,5,9], the MBL
phase can be characterized by saying that all eigenstates of the
Hamiltonian are, in some sense, close to the eigenstates of the
unperturbed system (J = 0), i.e., to the classical configurations
|η〉. This is the regime of full MBL. Based on this, a description
in terms of a complete set of conserved quantities was proposed
in [16].

This picture cannot survive in our model, since the behavior
of the system will inevitably depend on the initial state. Indeed,
for example, under the additional restriction that the particle
density is much smaller than 1 (the energy density will then
also be much smaller than 1), most of the particles are typically
isolated and do not interact. In this regime, the comparison
with a disordered system breaks down, and there is no reason
to expect anything but normal transport and thermalization.
In fact, in the zero-density limit, as boson-boson scattering
becomes negligible, the transport can even become ballistic (a
ballistic configuration is dep icted in Fig. 3 as η(1)).

Moreover, ergodic behavior cannot be suppressed by just
imposing a high enough particle density, as indeed, in a typical
configuration there will inevitably be regions where the local
density is very low (a large deviation). In fact, we can actually
expect fully delocalized eigenstates at any density of particles
(and thus also at any energy density), originating from “flat”
configurations like the bottom one in Fig. 3, but now not
necessarily with zero occupation, i.e., ηx = n for all x and
some occupation number n.

Such ergodic states occupying the full volume V become
quickly exceptional in the thermodynamic limit V → ∞.
Therefore, they do not need to have any impact on the transport
properties, but their existence rules out a characterization
based on a complete set of local conserved quantities. This
situation is quite analogous to quenched disordered systems
at sufficiently low disorder, where most authors expect a
localization-delocalization transition in function of the energy
density [3,18].1

On the other hand, regions with divergent localization
length also occur in full MBL systems, as in [4,5,9]. In that
case, however, the location of these regions is determined by

1We question this, exactly because of the analogy to the situation
in the present paper, and we [19] are currently investigating whether
ergodic spots can destroy the localized phase in quenched disorder
systems with nonfull MBL.

the realization of disorder (large deviation of the disorder). In
contrast, for translation-invariant systems, such regions appear
everywhere, their location depending on the state in Hilbert
space.

B. Translation invariance and symmetries

For periodic boundary conditions, the Hamiltonian de-
fined by (1) and (2) is translationinvariant. Therefore, as
observed in [14], if one reasonably assumes that there are
no degeneracies in the spectrum, the true eigenstates must
be translation invariant as well, contradicting any notion of
genuine localization. Nevertheless, strict translation invariance
can be broken by another choice of boundary conditions.
MBL in our system amounts then to spontaneous symmetry
breaking of the translation invariance, in complete analogy
with the classical spontaneous symmetry breaking of a local
order parameter by a boundary field.

Additionally, several discrete symmetries, such as rotations
or reflections, can leave the Hamiltonian invariant. Since it
is easy to break them in a robust way, i.e., independently of
boundary conditions, by introducing an additional interaction
term at each site, we will not further consider them here.

C. Description of the hypothetical MBL phase

Let us consider a Hamiltonian of the type (1)–(2). We as-
sume that all geometrical symmetries are broken by boundary
conditions and possibly additional interaction terms. Let � be
a unitary change of basis that diagonalizes the Hamiltonian H

in the |η〉 basis,

H = �Hfree�
∗, Hfree = Hfree(η). (6)

Consider now a local operator O ′
x acting on a small spatial set

containing a given point x ∈ V and expand

�∗ O ′
x � =

∑
A�x

OA, (7)

where the sum runs over all connected subsets A ⊂ V

containing x, and where OA is an operator acting locally in
the set A. For full MBL systems, localization amounts to the
statement that � can be chosen such that the action of OA on
any state produces an exponentially small factor e−c|A|, except
in rare resonant regions. Another way to say this is that the
operator norm of OA decays exponentially with |A|, or, that �

acts quasilocally, except in rare resonant regions.
In the translation-invariant case, however, localization

means that the operator OA decays exponentially when acting
on typical states in A (but, for example, not on states with
an anomalously low density of particles in A; states that
are exceptional). A possible way of making this precise is
to consider the Hilbert-Schmidt norm of OA, instead of the
operator norm:

tr (O∗
AOA) ∼ e−c|A|, (8)

with tr(·) = 1
dim Tr(·) the normalized trace. The average over

states that is present in “tr(·)” eliminates the exceptional states.
The above discussion applies in particular to the Hamil-

tonian Hfree, since H was written as a sum of local op-
erators: H = ∑

x Hx . Let us write correspondingly Hfree(η)
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as Hfree(η) = ∑
x Hfree,x(η). Each Hfree,x(η) is a sum local

functions fA(ηA) with A centered on x; cf. (7). For fully
MBL systems, ‖fA‖∞ decays with |A|, but the decay depends
on the site x (via the local disorder realization), whereas
for translation-invariant systems in the hypothetical localized
phase, the decay is uniform in x, but dependent on the
configuration η around x (it becomes arbitrarily slow for
exceptional configurations η).

The properties (7) and (8) suffice to derive physically
meaningful information, such as the vanishing of transport
coefficients at equilibrium or the breakdown of ETH. In [13],
an approximate version of (7) and (8) is used to show that the
thermal conductivity of a chain analogous to the Bose-Hubbard
chain decays faster than any power law as the temperature is
sent to infinity.

IV. RESONANCES: QUENCHED VERSUS
THERMAL DISORDER

Recently, an iterative scheme was proposed [9,20] to
construct explicitly the change of basis � that diagonalizes
H , for strongly disordered spin systems. This strategy is very
similar to the KAM scheme in classical mechanics where
the “localization” of some trajectories on submanifolds of
the phase space is established through successive canonical
transformations. As in these cases, the tendency to localization
in our model is due to typical energy (frequency) mismatches.
Here we first show, adopting the strategy of [9,20], how
nonresonant transitions can be “removed.” A nonperturbative
analysis is necessary to understand the effect of resonances.
We next show why this question trivializes for systems where
a full MBL phase is expected, and why, a priori, it does not
for the translation-invariant system described by (1) and (2),
no matter how favorably the parameters J > 0 and N < +∞
are chosen.

A. Basic picture of the RG scheme

We follow [9,20]. To find � such that �∗H� is diagonal
in the |η〉 basis (recall Sec. III C), we first try to determine
perturbatively a change of basis �̃ = e−JÃ, for some anti-
Hermitian matrix Ã, such that H ′ := �̃∗H�̃ is now diagonal
up to terms of order J2. If that works, the strategy can be
iterated starting from H ′ instead of H , with a coupling constant
that is now J2 instead of J. The scheme would thus converge
very quickly as, after n steps, the Hamiltonian would be
diagonalized up to terms of order J2n

. This very naive picture
will be considerably complicated by resonances.

The first transformation �̃ is obtained as follows. Assuming
Ã to be of order 1, we expand in powers of J:

�̃∗H�̃ = eJÃ(E(0) + JU )e−JÃ

= E(0) + J(U + [Ã,E(0)]) + O(J2). (9)

The first order in J vanishes if Ã solves the equation [E(0),Ã] =
U . Since U = ∑

x Ux , we can write Ã = ∑
x Ãx , such that the

equation [E(0),Ãx] = Ux is satisfied for every x:

〈η′|Ãx |η〉 = 〈η′|Ux |η〉
〈η′|E(0)|η′〉 − 〈η|E(0)|η〉 , (10)

with the convention 0/0 = 0 which means in particular that
〈η|Ãx |η〉 = 0 since the perturbation Ux is off-diagonal. We
see that 〈η′|Ãx |η〉 is well defined provided that η,η′ are not
resonant, in the sense of (5) in Sec. II A. If we neglect those
resonances, we would conclude that the perturbative expan-
sion (9) is a posteriori justified. Moreover, a local observable
rotated by �̃ = e−JÃ will stay local up to exponentially small
corrections, since

�̃ = e−JÃ, Ã =
∑
x∈V

Ãx, Ãx : Ã∗
x = −Ãx, (11)

with Ãx local around x and of order 1, and in particular
the perturbed eigenstates �̃|η〉 are similar to the classical
configurations |η〉.

Let us now see how resonances affect this picture. We split
the interaction in two parts:

U = Ures + Uper,

where Ures collects all resonant transitions, and Uper the rest.
More precisely,

〈η′|Uper|η〉 :=
{〈η′|U |η〉 for η,η′ nonresonant,

0 for η,η′ resonant. (12)

We do the best we can: we solve only the equation [E(0),Ã] =
Uper instead of the full [E(0),Ã] = U . The matrix Ã is now
well defined, and �̃ = e−JÃ is really of the type (11), but we
face the problem that we only obtain

H ′ = E(0) + JUres + O(J2). (13)

We thus need an extra, nonperturbative, step to get rid of
the resonant coupling of order J. In other words, we need
to diagonalize the operator H ′ = E(0) + JUres, which just
amounts to diagonalizing Ures inside blocks of constant E(0).
We will therefore refer to Ures as the “resonant Hamiltonian.”

It is the nature of eigenstates of Ures that eventually
determines whether in first order the system is localized or
not. Let ϒ̃ be a unitary transformation that diagonalizes Ures

in the |η〉 basis, such that the total change of basis (in the first
step of the scheme) is ϒ̃�̃ and the new perturbed eigenstates
are given by ϒ̃�̃|η〉. The main question is now whether ϒ̃ can
be chosen such that most of these new eigenstates ϒ̃�̃|η〉 are
still close to the classical configurations |η〉 in most places. If
the answer is “yes,” also in later steps of the scheme, then there
is a strong case2 for MBL in the sense of Sec III. If instead the
answer becomes “no” at some order, it is hard to imagine that
higher orders could restore the localization. One is then led to
the conclusion that the localized phase is absent.

B. Resonances: Systems with quenched disorder

For contrast, we first treat the case of strongly quenched
disordered systems, where it is simple to see why resonances

2This, however, requires some thought. For example, there is the
following issue that is absent in systems with quenched, smoothly
distributed disorder. Since in higher orders, the hopping eventually
becomes of range N, one needs to take into account the renormal-
ization of the interaction by the hopping, as otherwise all transitions
would seem resonant. This is explained in [14].
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do not induce any delocalization. Let us consider as a standard
example a one-dimensional spin-1/2 chain in a disordered
field:

H =
∑
x∈V

{
ωxS

3
x + J

(
S1

xS
1
x+1 + S2

x

)}
, (14)

with S1
x ,S

2
x ,S

3
x the usual Pauli matrices. We assume that

(ωx)x∈V are i.i.d. random variables and, to make the connection
with our model as direct as possible, we assume that the distri-
bution of ωx is concentrated on N + 1 values, that themselves
look random, i.e., they are like the values E(0), . . . ,E(N)
introduced above. The classical configurations (eigenstates
at J = 0) are in this model |(ηx)x∈V 〉 with ηx = ±1, x ∈ V ,
referring to the eigenstates of S3

x (spin up or spin down). A
first-order resonance between configurations η and η′ occurs
when, for some x, it holds that

〈η′|S1
xS

1
x+1 + S2

x |η〉 �= 0 and

ωx(ηx − η′
x) + ωx+1(ηx+1 − η′

x+1) = 0,

Since we assumed that the values E(n) of ωx are chosen in a
generic way, this can only happen when ωx = ωx+1.

Note that the above definition of resonance is identical to
that given in (5), but now, for the sake of simplicity, we proceed
differently: We define the resonant Ures as

Ures =
∑

x: ωx=ωx+1

Ux,

which slightly differs from the definition in (12); for exam-
ple the configurations ηx,x+1 = (1,1),ηx,x+1 = (−1,−1) on a
bond with ωx = ωx+1 would not be resonant according to
definition (12), but the interaction connecting them is included
in Ures. The important point here is that we can characterize
resonant bonds in a purely geometric way, independently
of the configurations η,η′. For large N, these bonds, i.e.,
those satisfying ωx = ωx+1, form small isolated clusters C,
located at a typical distance N from each other. The absence
of percolation (in real space) of the clusters C leads to
localization; see also the left panel of Fig. 2. Indeed, the matrix
ϒ̃ that diagonalizes Ures takes the form

ϒ̃ = e− ∑
C BC , B∗

C = −BC, (15)

x

η

η′

FIG. 2. (Color online) Order resonances in J for quenched versus
thermal disordered systems. Left panel: quenched disorder Hamilto-
nian in d = 2. Resonances form fixed isolated nonpercolating islands.
Right panel: translation invariant Hamiltonian in d = 1, with an extra
second-neighbor interaction b∗

xbx+2 + bxb
∗
x+2. A bit of trial and error

should convince the reader that it is possible to connect η to η′

through a sequence of resonant transitions. The naive resonant spot
in η appears thus as part of a larger resonant cluster.

x

η(1)

η(2)

FIG. 3. Coexistence of classes where percolation does and does
not occur, for d = 1, N � 3. All configurations, where a single
site hosts one particle and all other sites are unoccupied, sit in
the same class as η(1). There is percolation in this class, and the
resonant dynamics restricted to it is in fact ballistic (restriction of
Ures is equivalent to the lattice Laplacian). The state η(2) is such that
neighboring sites always have a difference in occupation number
larger than 2. There is not a single resonant spot and η(2) is the only
configuration in its class.

with C resonant clusters and BC acting within C. Since BC
and BC′ commute for C �= C ′, we see that ϒ̃ acts locally, and
hence the full change of basis ϒ̃�̃ obtained after the first
renormalization step, is quasilocal, it rotates local operators
into quasilocal ones and all perturbed eigenstates ϒ̃�̃|η〉 are
similar to |η〉, away from the clusters C, where they are locally
delocalized.

C. Resonances: Translation-invariant systems

In translation-invariant systems, the above reasoning cannot
be simply copied, and, as we will see in Sec. V, its conclusion
could be wrong.

Consider the graph G in configuration space that connects
two classical configurations η,η′ if and only if they are
resonant. The main, somehow surprising, point is that the
connected components (classes) c of this graph could be very
large even if, for a typical configuration η, resonant spots
are rare; see the right panel of Fig. 2 for a hint. We refer
to such behavior as “percolation in configuration space” or
simply “percolation of resonances,” as opposed to percolation
of resonant spots in real space.

Since, however, it is not straightforward to talk about
the size of the connected components,3 we will define this
phenomenon in a more pictorial way. First, we say that a site
x is frozen for a configuration η if and only if

η′
x = ηx for any η′ ∈ c(η) (the class containing η).

This is a physically meaningful notion because c(η) is the set
of configurations with which η can hybridize (in first order)
and hence a rotated state ϒ̃ |η〉 will be similar to η on all frozen
sites, but a priori not on the unfrozen sites. Note also that the
unfrozen set depends just on the class c, and not on η ∈ c.

3The number of connected components c cannot grow slower than
|V |N (as |V | → ∞) due to the obvious constraint that the resonant
Hamiltonian does not change the number of sites x with ηx = n, for
any n � N. This polynomial constraint is, however, irrelevant for our
question, as the number of vertices of G (number of configurations
η) is exponential, namely (N + 1)|V |.
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Now, we say that a class c has percolation in configuration
space if its unfrozen set percolates in real space.

At finite volume, both type of classes (percolating and not
percolating) coexist, as illustrated in Fig. 3. As V grows large,
the number of configurations contained in either of the two
classes determined by the examples in Fig. 3 becomes quickly
negligible. The real issue is then whether a typical state belongs
to a class with or without percolation. In first order, the answer
to this question appears to depend on detailed characteristics
of the model, while it becomes always “with percolation” at
high enough order, as we show in the next section.

V. PERCOLATION OF RESONANCES

We investigate whether the resonances percolate in con-
figuration space, for large volume V ; that is, whether most
configurations η belong to a percolating class c. We first
address this question in first order in J. Then, the answer is that,
taking the Hamiltonian (2) in d = 1, there is no percolation; see
Sec. V A. Instead, taking d � 2, or even a strip of two lanes, or
allowing for next-to-nearest neighbor hopping in d = 1, there
is percolation; see Sec. V B. Then, in Sec. V C, we investigate
nonperturbative effects and we argue that eventually there is
percolation in all cases.

A. Example without percolation in first order

We first take the model to be precisely given by (2) in d = 1,
so that the resonant Hamiltonian is given by, with nx = b∗

xbx ,

Ures =
∑
x∈V

Ures,x =
∑
x∈V

(
b∗

x1nx=nx+1bx+1 + H.c.
)
. (16)

We prove that, for N not too small, most configurations are
in a class c without percolation, More precisely, we show in
Appendix A that, if the configuration η satisfies

|ηx − ηx−1| � 3 and |ηx − ηx+1| � 3, (17)

then the site x if frozen in η; i.e., for any η′ ∈ c(η), it holds that
η′

x = ηx . The proof is illustrated in Fig. 5 in Appendix A: it
is impossible to swap occupation numbers between two sites,
if their difference is larger than 1. We immediately see that,
for a typical configuration η, condition (17) is satisfied for a
fraction of sites no less than 1 − C/N.

For pedagogical reasons to become clear in Sec. V C, we
also introduce a small modification of our original d = 1
model. Namely we add a two-boson hopping term so that
now

U =
∑
x∈V

(b∗
xbx+1 + (b∗

x)2(bx+1)2 + H.c.)

and the corresponding resonant Hamiltonian is Ures =∑
x∈V Ures,x with

Ures,x = b∗
x1nx=nx+1bx+1 + (b∗

x)21nx=nx+1 (bx+1)2 + H.c. (18)

In this case, an obvious modification of the proof in Ap-
pendix A applies and we see that, if

|ηx − ηx−1| � 5 and |ηx − ηx+1| � 5 (19)

holds, then x is frozen.

xa b

N
N − 1
N − 2

0

FIG. 4. An ergodic spot F for the resonant Hamiltonian (20),
delimited by the points a and b. Let p � 2 (p = 2 in the figure). The
first site on the left has maximal occupation number N, the next p

sites have occupation number N − 1, the next p2 sites have occupation
number N − 2, . . . , and the last pN sites are vacant. Therefore the
size of the spot F is b − a = (pN+1 − 1)/(p − 1).

B. Examples with percolation in first order

First, we consider again d = 1 but we add a hopping term
between next-to-nearest neighbors in the Hamiltonian (2).
This results in a resonant Hamiltonian of the form Ures =∑

x∈V Ures,x with

Ures,x =
∑
x∈V

(
b∗

x1nx=nx+1bx+1 + b∗
x1nx=nx+2bx+2 + H.c.

)
.

(20)
Second, we take the Hamiltonian (2) on a two-lane strip:

S = {(j,0),(j,1) : j ∈ I ⊂ Z},
giving rise to the resonant Hamiltonian

Ures =
∑
x∈S

Ures,x = 1

3

∑
x∈S

∑
y∼x

(
b∗

x1nx=ny
by + H.c.

)
. (21)

Larger strips or dimensions larger than 1 could be considered
too. In all these cases, an overwhelming majority of configu-
rations η belongs to a class with percolation, as soon as the
volume V is large enough (compared to N). We postpone the
proof of this claim to Appendix B, but we explain the idea
here. From the discussion of Sec. III, we know that at low
density our system is ergodic (delocalized). Therefore, we
expect that rare regions of low particle density will behave
in an ergodic way as well, and that they could delocalize the
system. We thus consider a subvolume � ⊂ V with a local
configuration satisfying

∑
x η(x) = ρ|�| with ρ < 1 � N.

One of such configurations, that we callF , is depicted in Fig. 4,
with p ∼ 1/ρ. Note that |�| � pN+1, so that any occupation
number appears in the spot, which is necessary for the mobility.
This spot is shown to be able to travel across the system if
p � 3; i.e., we can move F to a translation of �, as well as
move particles from any place to any other one. The way the
spot moves is strongly reminiscent of motion in kinetically
constrained models [21,22].

It is worth pointing out that, since the length of the ergodic
spot is |�| ∼ CN, we need a volume V � NC|�| for such a
low-density spot to become typical. Therefore, percolation is
only established by the above argument for V � CCN

.

C. Nonperturbative argument for percolation

Up to now, we have investigated the role and mobility of
resonances in first order in the hopping J. In the cases where we
found that resonances do not percolate, as in the examples of
Sec. V A, we can try to repeat the analysis at the second step of
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the scheme described in Sec. IV A, as we show now. It is worth
pointing out that this second-step analysis does not coincide
with a naive second-order analysis, as nonperturbative effects
are incorporated through the rotation ϒ̃ ; precisely these effects
allow us to establish in a robust way that percolation holds in
great generality (similar considerations have been developed
by [17]).

For the sake of simplicity, we consider the second model of
Sec. V A, i.e., with the (b∗)2b2 terms (in Appendix C we argue
that the same idea applies to the first model of Sec. V A, or
any model with short-range interaction, for that matter). After
applying the transformation �̃, introduced in Sec. IV A, to the
Hamiltonian H , we obtain the transformed Hamiltonian

H ′ = �̃∗H�̃ = H ′
0 + J2U ′

= (E(0) + JUres) + �̃∗(JUper)�̃. (22)

We denote eigenstates of H ′
0 by �,� ′, . . .. Since H ′

0 was found
to be localized, the eigenstates can be written as � = ϒ̃ |η〉 for
some η, with ϒ̃ (see Sec. IV B) identity in most places and
nonlocal at rare resonant spots. We now implement the same
percolation analysis as in Secs. V A and V B. We declare a pair
(�,� ′) resonant if

|〈�|J2U ′|� ′〉| � |〈�|H ′
0|�〉 − 〈� ′|H ′

0|� ′〉|, (23)

in analogy to the condition (4) of the first step. We choose a �

that has a resonant spot S∗ = [a,b] (discrete interval), with size
roughly |b − a| � C|ln(JN3/4)| and particle density of order
1. In the thermodynamic limit V → ∞, an overwhelming
majority of the eigenstates contain such a spot. Assuming
ergodicity in the resonant spot (more precisely, assuming
ETH), we can find sequences �1, . . . ,�n with �1 = �,
(�i,�i+1) resonant pairs, and n ∼ N, and such that �n

now contains the resonant spot shifted to [a − 1, b − 1]. By
increasing S∗ further, we can improve the inequality (23) and
make the ratio of left-hand side to right-hand side as large as
desired, and we can exponentially (in the size of S∗) increase
the number of choices for the sequence �2, . . . ,�n. We have
gathered all details of this quite straightforward analysis in
Appendix C. In fact, we can simply summarize it by saying
that a large ergodic spot can act as a thermal bath for the
localized sites next to it. Of course, by the same token, we
can then connect � via resonant transitions to some � ′ having
the ergodic spot in any desired place. Likewise, we can also
slightly change the number of particles in the spot, as long as
the density is low enough to remain in the ergodic phase and the
spot is large enough so that (23) holds. Therefore, the ergodic
spot can transport particles from one place to another and �

can eventually be connected resonantly to an overwhelming
majority of the eigenstates. This suggests that ergodic bubbles
can act as mobile carriers of particles and energy and destroy
the localization.

D. From percolation to delocalization

Finally, we come to the question whether percolation
necessarily entails delocalization. Strictly speaking, all what
we have argued is that the system does not manifestly break
up in decoupled systems in perturbation theory, i.e., that the
Hamiltonian acts on a truly connected graph of many-body

states and the connections do not come with any small
parameter.

However, in principle it is still conceivable that the system
is localized by interference effects [17], in the same way that
the adjacency matrix of a graph can have localized eigenstates
even if the graph is connected (“quantum percolation”) [23,24].
More concretely, one could think that the ergodic spot
itself will be the entity that gets localized in a disordered
background. However, one should realize that the ergodic spot
is not like a passive particle moving in a fixed background;
rather, as it moves, it can rearrange the background at will.

In addition, one could fear that the ergodic spot will grow
by absorbing bosons, until its density becomes so large that the
spot is not longer ergodic (a variant on this objection is that the
ergodic spot will split into smaller spots that are too small to be
mobile, as we saw above that mobility requires a minimal size).
It is certainly true that these effects will happen in a dynamical
description of the system, but we do not see how they could
avoid mobility of the spots on very long time scales. Indeed, by
reversibility (detailed balance) of the Hamiltonian dynamics,
it must be true that, during the time evolution starting from
equilibrium, any transition occurs equally often as its time-
reversal, hence if (mobile spot → immobile spot) occurs, then
also (immobile spot → mobile spot).

Currently, we are investigating these issues further, also
numerically [19]. Apart from the interest in translation
invariant localization, this might shed a new light on the
localization-delocalization transition in weakly disordered
systems.

VI. CONCLUSION

We have analyzed a model of interacting bosons on the
lattice, introduced in Sec. II. This model can be considered
as a promising candidate for localization without quenched
disorder. The basic reason for this is that, in a typical initial
state at high energy density, the site-dependent boson numbers
provide an effective random potential that could play the role
of quenched disorder. We quantified this by exhibiting the fact
that “resonant spots” (places where resonant transitions can
take place) are sparse. In that respect, the model is similar
to models of strongly disordered spin chains, where MBL is
believed to occur.

We then addressed more precisely the question whether
an MBL phase can be realized in our model. Some obvious
counterarguments were formulated in Sec. III. They can be
summarized by saying that not all eigenstates can be localized
and that, even for those that would be localized, the localization
deteriorates in rare regions with low energy density. However,
we argued that these objections, although they exclude “full
MBL,” are a priori still compatible with MBL. We did this
by providing an abstract charcterization of the putative MBL
phase.

Then, in Sec. IV, we adapted to our model an iterative
diagonalization scheme from [9], based on perturbation theory
in the hopping. The result, stated in Sec. V, is that for some
versions of our model (most notably nearest neighbor hopping
in spatial dimension higher than 1), resonances do constitute
a mechanism for delocalization already in first order. More
precisely, our analysis led to the conclusion that all localized
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eigenstates (present when the hopping is switched off) should
hybridize with each other. However, this analysis rests on a
detailed “percolation” analysis of the “resonant graph” that
does not always (i.e., for all versions of our model) apply in first
order. We then discussed these latter cases (for which a first-
order analysis predicts localization). Taking nonperturbative
effects into account, we found a generic argument leading
to the conclusion that localized eigenstates should hybridize,
where “generic” means that the analysis is no longer dependent
on the fine properties of the model. In both cases, the crucial
phenomenon is the presence of rare resonant spots that are
shown to be mobile, i.e., they can travel through the system and
rearrange the state. When based on nonperturbative effects, this
conclusion relies on the ergodicity of the resonant spots as only
input. Since the mobile resonant spots provide a mechanism
for thermalization and transport, our work suggests a scenario
for delocalization, and hence absence of an MBL phase, in
translation invariant models like ours.
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APPENDIX A: NO PERCOLATION: Ures GIVEN BY (16)

We use the fact that the system is one-dimensional and that
the interaction is strictly between nearest neighbors to deduce
the following result. Consider two configurations η and η′ that
belong to the same class c. That is, there is a finite sequence
η(1), . . . ,η(n) such that

(η,η(1)), (η(1),η(2)), . . . , (η(n−1),η(n)), (η(n),η
′)

are resonant pairs. Then, for any x ∈ V ,

(|ηx−1 − ηx | � 3, |ηx − ηx+1| � 3) ⇒ η′
x = ηx. (A1)

To show (A1), we refer to Fig. 5. Let us assume |ηx−1 −
ηx | � 3 and |ηx − ηx+1| � 3. Let us first remove the terms
Ures,x−1 and Ures,x from the Hamiltonian, so that the site x is

x x + 1

ηx+1

η′
x+1

ηx

FIG. 5. (Color online) Validity of (A1): it is impossible to swap
occupation numbers between two adjacent sites, if their difference is
larger than 1.

decoupled from the rest of the system. This implies |ηx+1 −
η′

x+1| � 1 as, if ηx+1 �= η′
x+1, the occupation number ηx+1

in blue in Fig. 5 needs at some point to get swapped with
the occupation number η′

x+1 in red in Fig. 5. This can only
be if |ηx+1 − η′

x+1| = 1 (in Fig. 5, it is thus not possible).
Similarly |ηx−1 − η′

x−1| � 1. But then, we realize that the same
conclusion could have been reached without removing the
terms Ures,x−1 and Ures,x , implying that the site x is frozen.

APPENDIX B: PERCOLATION: Ures GIVEN
BY (20) AND (21)

For the model with resonant Hamiltonian given by (20), we
show that if two configurations η,η′ satisfy

(1) |{x ∈ V : ηx = n}| = |{x ∈ V : η′
x = n}| for all n =

0, . . . ,N,
(2) they contain an “ergodic spot” F with p = 3, as

depicted in Fig. 4,
then η,η′ belong to the same class c. For large enough V , a
typical configuration will contain a ergodic spot somewhere,
so that most of the configurations belong to classes with
percolation. The first condition above is merely a manifestation
of the obvious “polynomial” constraint mentioned already in
Sec. IV C. For the model (21), the statement is the same except
that the ergodic spot F is now the one from Fig. 7.

Let us first consider (20). Let us consider the ergodic spotF
shown in Fig. 4, for p = 2,3. The spot F is delimited in space
by two sites a and b, that we take fixed for the moment. In
Fig. 6, it is shown that F is connected via resonant transitions
to several other configurations F1, . . . ,FN, living in the same
volume delimited by a and b. While this alone does not entail
percolation, simple generalizations of our construction will do.

Indeed, let us first see that F can travel through the chain if
p � 3, which means that the two configurations (identical for
all x � a − 1 and all x � b + 2)

(. . . ,ηa−1,F ,ηb+1,ηb+2, . . . ) and
(B1)

(. . . ,ηa−1,ηb+1,F ,ηb+2, . . . )

are connected via resonant transitions. For this, we first
transform F into Fηb+1 as depticted in Fig. 6(a). At this point,
we absorb the site b + 1 into the spot, and then undo all the
previous steps, which is possible for p � 3. Doing so, we
come back to F̃ instead of F , a spot that looks like F , except
that it lives in the interval [a, b + 1] instead of [a,b], and that
it contains one more site with occupation number ηb+1. We
now need to evacuate this occupation number to the left side.
For this we do the successive transformations represented in
Fig. 6(c), up to the moment that the site a has occupation
number ηb+1. We let then site a have occupation number ηb+1,
and we undo the other changes. We end up with the state
(. . . ,ηa−1,ηb+1,F ,ηb+2, . . . ).

Second, F can be used to swap the occupation number of
two near sites if p � 3, whatever these occupation numbers
are: the two states

(. . . ,ηa−1,F ,ηb+1, . . . ), (. . . ,ηb+1,F ,ηa−1, . . . ) (B2)

are connected via resonances, for any value of ηa−1 and ηb+1.
To see this, we apply just a variant of the scheme leading
to (B1). We make the steps illustrated in Figs. 6(a) and 6(c) to
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(a)

F0 F1 FN−2 FN

(b)

Fa b Ga b

(c)

a b

FIG. 6. (Color online) The spots F = F0,F1, . . . ,FN (p = 2).
All of what is depicted in the figure takes place inside the volume
delimited by a and b. (a) We aim to show that the spotsF0, . . . ,FN are
connected. (b) It is enough to establish that F and G are connected,
as the procedure can then be iterated. (c) Half of the way from F
to G; the vacancy is transferred from the rightmost atom to leftmost
site. Once this is accomplished, it is realized that all moves can be
undone, while letting the leftmost site remain vacant. So it is actually
seen how to move from F to G, hence from F to F1, . . . ,FN. The
case p > 2 is analogous.

absorb the two sites a − 1 and b + 1 into the spot, then undo
the steps to get a spot F̃ living on the interval [a − 1, b + 1]
and containing one extra site with occupation number ηa−1 and
one extra site with occupation number ηb+1. This procedure
is then repeated, this time to evacuate the occupation number
ηa−1 on the right and the occupation number ηb+1 on the left.

It is finally seen that, combining mechanisms (B1) and (B2),
it becomes possible to permute the occupation number of any
site with the occupation number any other one. We so arrive
at the desired conclusion for the Hamiltonian given by (20).

To deal with the Hamiltonian given by (21), a corresponding
ergodic spot is constructed in Fig. 7. An inspection of this
figure shows that this spot can play the same role as the ergodic
spot used for (20), and the proof is concluded in an analogous
way.

(b)

(a)

FIG. 7. (Color online) Ergodic spot for the resonant Hamilto-
nian (21). (a) Sites in blue have occupation number N, sites in
magenta have occupation number N − 1, . . . , sites in yellow are
vacant. There are p = 4 times more sites occupied by k particles than
sites occupied by k + 1 particles. As a consequence, sites with k + 1
particles can be diluted among sites with k particles. This spot can
play, for Hamiltonian (21), the role played by the spot depicted in
Fig. 4 for Hamiltonian (20). (b) Example of dilution of the sites with
N and N − 1 particles among sites with N − 2 particles.

APPENDIX C: NONPERTURBATIVE PERCOLATION:
PROOF OF CLAIMS IN SEC. V C

a. Outcome of the first step of the renormalization scheme.
Let us first display H ′

0 + J2U ′ = (E(0) + JUres) + �̃∗(JUper)�̃
from (22) more explicitly. We recall the partition of clas-
sical configurations in classes c defined in Sec. IV C. The
many-body Hilbert space can be decomposed accordingly:
H = ⊕

c Hc. We also denote by Pc the projector on Hc,
Pc = ∑

η∈c |η〉〈η|; ∑
c Pc is a partition of unity. Given a

class c, we denote by F = F (c) the set of frozen sites,
and by S = S(c) ⊂ Fc(c) the connected components of the
complement Fc(c). It holds that H ′

0 = ∑
c PcH

′
0Pc and we

write

PcH
′
0Pc = Pc

( ∑
x

E(0)
x

)
Pc +

∑
S(c)

HS(c)

with HS(c) = J
∑

x: supp(Ures,x )⊂S(c)

PcUres,xPc,

where we keep in mind that HS(c) depends on c as well and
where supp(O), for a local operator O, is the set of sites that O
acts on nontrivially. It is observed that, for any c, the operator
Pc(

∑
x E(0)

x )Pc is simply the number acting on states in c,
because in the first step, two states are declared resonant only
if they have exactly the same uncoupled (J = 0) energy. Let
us determine the eigenstates of H ′

0 = ∑
c PcH

′
0Pc. For each

class c, they are products of classical configurations in F and
HS(c) eigenstates αS in the regions S, i.e.,

� = ηF ⊗ ⊗
S

αS. (C1)

Such an eigenstate is localized in most places, since we know
from Sec. V A that, for most states,

∑
S |S| � |F |. However,

the nature of αS plays a crucial role in the following.
b. Fusing two classes in second order: Exemplary case. As

a first step to establish that all classes c will eventually be fused
in the second step of the scheme, let us consider a class c where
there is at least one “big” (to be quantified later) component
S, that we denote by S∗. This is of course typically the case as
the volume grows large. We write S∗ = [a,b], we fix a certain
ηF and fractions f0,f1,f2 ∈ N/|S∗| (with f0 + f1 + f2 = 1)
and we let c be the class of η coinciding with the prescribed
ηF in F and satisfying

∀x ∈ S∗ : ηx ∈ {0,1,2}, #{x ∈ S∗ : ηx = i} = fi |S∗|
(C2)
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(and of course specifications for the other components S, which
are completely irrelevant for this argument). The resonant
Hamiltonian HS∗ describes a system of interacting bosons.
It seems safe to assume that this system is ergodic (there is
no reason for it to be localized and it is not integrable in any
obvious way).

We show here that, in the second step, this class needs to
be fused with the class c′, which is the same as c except that
η′

a−1 = ηa−1 − 1 and f ′
i |S| = fi |S| + δi,1 (in particular c and

c′ have the same spatial structure, i.e., the same set F and
the same sets S); we remark that we need η′

a−1 � 5, otherwise
a − 1 is not a frozen site and c,c′ are not full classes. The class
c′ is taken as an example: important is that one boson has been
absorbed/ejected into/from S∗ and, for the moment, that c and
c′ have the same spatial structure. Eigenstates of Pc′H ′

0Pc′ are
denoted by

� ′ = η′
F ⊗ ⊗

S
α′

S.

To establish that c and c′ need to be fused in the second
step, we show below that, provided that |S∗| is large enough,
for any eigenstate � of PcH

′
0Pc, there are many eigenstates � ′

of Pc′H ′
0Pc′ resonant with �, i.e., such that they satisfy (23)

|〈�|J2U ′|� ′〉| � |〈�|H ′
0|�〉 − 〈� ′|H ′

0|� ′〉|. (C3)

Indeed, according to the definition of classes given in
Sec. IV C, this inequality indeed implies that the classes c
and c′ have to be fused.

c. Proof of (23). The main point to show (23) is this. Let us
write Hc = HF (c) ⊗ ⊗S(c)HS(c), and let us denote by dS∗ the
dimension of HS∗(c) (we could equally well define dS∗ as the
dimension of HS∗(c′) as these two quantities are of the same
order). We will show that, while the left-hand side of (23)
behaves like 1/

√
dS∗ , for given � one typically finds � ′ such

that the right-hand side behaves like 1/dS∗ , so that (23) holds
for a large enough spot S∗.

Let us first estimate

〈�|J2U ′|� ′〉. (C4)

It is an easy check that all (low order in J) contributions to
PcJ2U ′Pc′ are located near site a and the simplest contri-
bution (namely, consisting of only two creation/annihilation
operators) of order J2 is

J2Pcb
∗
a−1baPc′

so that (C4) is, up to higher orders,

J2〈ηF |b∗
a−1η

′
F 〉 〈αS∗ |baα

′
S∗ 〉.

The first factor is of order
√

N by our choice of ηF ,η′
F . The

squared modulus of the second factor is the expectation value
of

〈αS∗ |P |αS∗ 〉 with P = |baα
′
S∗ 〉〈baα

′
S∗ |.

To estimate this, we invoke the ETH (eigenstate thermalization
hypothesis; see [25], and references therein) claiming that the
ensemble defined by just one eigenvector is in a certain sense
equivalent to an equilibrium ensemble at the appropriate values
of the conserved quantities. In this case, we take as equilibrium

ensemble the uniform (i.e., tracial) state on HS∗ This yields

〈αS∗ |P |αS∗ 〉 ∼ 1

dim(HS∗ )
TrHS∗ (P ) = 1

dS∗
= e−s|S∗|,

where s is the corresponding entropy density. It remains to
estimate the right-hand side of (23): If we choose � ′ so as to
minimize this side, then it is of the order of the level spacing,
which is

W
1

dS∗
∼ e0|S|e−s|S∗|

with W ∼ e0|S∗| the width of the spectrum and e0 the energy
density. Hence (23) reads

J2
√

Ne−s|S∗|/2 � e0|S∗|e−s|S∗|,

which is satisfied provided that, roughly,

|S∗| � C|ln(JN3/4)|,
where we also used that e0 ∼ 1/N since the E(1),E(2) ∼ 1/N,
and we simply wrote C for parameters of order 1. The reason
that we call this argument “nonperturbative” is of course that
the size of spots that we need to consider here grows as J → 0
(recall that JN � 1), unlike in the examples of Sec. V B.

d. Generalization: fusing almost all classes. Up to now, as
our conclusion did not depend on the value of ηa−1 (provided
that ηa−1 � 6), we have shown that localization at site a − 1
is completely loss due to the ergodic spot S∗. We can now
generalize our argument to show that the class c (with ηa−1 =
6) needs also to be fused with classes c′′ having a component
{a − 1} ∪ S∗ = [a − 1, b]. By translation invariance, these
classes have then in turn to be fused with classes with a
component [a − 1, b − 1], allowing us to establish that the
ergodic spot initially located in S∗ can move across the chain.
Clearly, by the same mechanism, the spot can also carry bosons
from any place to any other one, so that the environment can
be modified.

Let us now see how to connect c with c′′. Instead of
considering (for clarity, we omit here all the product over
all S �= S∗, since αS is the same for all vectors involved)

� = ηF ⊗ α′
S∗ , � ′ = η′

F ⊗ α′
S∗

as above, we consider

� = ηF ⊗ α′
S∗ , � ′′ = η′′

F\(a−1) ⊗ α′′
{a−1}∪S∗

with η′′
F\(a−1) equal to the restriction of ηF to F\(a − 1). The

overlap (C4) is now calculated as

|〈�|J2U ′|� ′′〉| = CJ2(〈� ′′|P |� ′′〉)1/2 (C5)

with P the one-dimensional projector with range J2U ′�.
The factor

√
N is now missing (it is replaced by C as

ηa−1 is necessarily small (in fact, equal to 4) in order that
one application of the U ′ term can enlist this site into the
bubble.

e. Application to the first model of Sec. V A. For that
first model, the class specified in (C2) would, for example,
only have ηx ∈ {0,1}. Then HS(c) would describe a system
of one-dimensional hard core bosons with nearest neighbor
hopping, which is integrable. This would have invalidated
the assumption of ETH. However, even if one would have
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concluded that after the second iteration step the Hamiltonian
is localized, then one can continue the procedure and at some
step the resonant Hamiltonians in the delocalized regions S

would generically be ergodic4 because, when sufficiently many

4Of course, this relies on the common belief that ergodicity is
generic.

perturbation terms are included, the range of the hopping and
the boson-boson interaction grows. Hence, all what was really
necessary for our argument is that, everywhere in space, there
are subspaces in Hilbert space in which the system is ergodic.
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