
PHYSICAL REVIEW B 90, 165127 (2014)

NMR relaxation in the topological Kondo insulator SmB6
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SmB6 has been predicted to be a strong topological Kondo insulator, and experimentally it has been confirmed
that at low temperatures the electrical conductivity only takes place at the surfaces of the crystal. We study
the temperature and magnetic field dependence of the NMR Knight shift and relaxation rate arising from the
topological conduction states. For the clean surface the Landau quantization of the surface states gives rise to
highly degenerate discrete levels for which the Knight shift is proportional to the magnetic field B and inversely
proportional to the temperature T . The relaxation rate 1/T1 is not Korringa-like. For the more realistic case of a
surface with a low concentration of defects (dirty limit) the scattering of the electrons leads to a broadening of
the Landau levels and hence to a finite density of states. The mildly dirty surface case leads to a T -independent
Knight shift proportional to B and a Korringa-like 1/T1 at low T . The wave functions of the surface states are
expected to fall off exponentially with distance from the surface giving rise to a superposition of relaxation times,
i.e., a stretched exponential. It is questionable that the experimental 11B Knight shift and relaxation rate arise
from the surface states of the TKI. An alternative explanation is that the bulk susceptibility and the 11B NMR
properties are the consequence of the in-gap bulk states originating from magnetic exciton bound states proposed
by Riseborough [Phys. Rev. B 68, 235213 (2003)].
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I. INTRODUCTION

Kondo insulators are stoichiometric compounds with small-
gap semiconducting properties [1,2]. Most are nonmagnetic
with a Van Vleck-like low-temperature susceptibility and a
low-T resistivity and electronic specific heat following an
exponential activation law consistent with a gap in the density
of states. Kondo insulators are not perfect semiconductors,
because the gap is frequently only a pseudogap and/or there
are intrinsic in-gap states with a large magnetic response.

SmB6 is a Kondo insulator with a small gap originating
from the hybridization between a narrow 4f band and
broad conduction bands. At ambient pressure, SmB6 is a
homogeneously intermediate valence material of valence ∼2.7
with a ratio of the 4f 6 to 4f 55d configurations of about
3:7 [3,4]. The indirect gap, determined from the resistivity,
is approximately 54 K [5]. There is evidence for intrinsic
“in-gap” bound states from the T dependence of the optical
transmission and reflectivity through films [6,7], Raman
scattering [8], neutron scattering experiments [9,10], low-T
specific heat [11], susceptibility [12], and NMR [13–15].
In earlier days the “in-gap” states have been attributed to
magnetic excitations (excitonlike bound states) due to AF
correlations [16]. The “in-gap” states are very sensitive to an
external magnetic field [15]. Remarkable is also the saturation
of the resistivity below 4 K as the temperature is reduced,
indicating that at very low T SmB6 is not compatible with the
picture of a semiconductor/insulator. The “in-gap” states in
the susceptibility emerge at a higher temperature (∼20 K)
than the temperature at which the low T resistivity saturates.
The gap of SmB6 is also extremely sensitive to pressure [5,17].

Time-reversal invariant band insulators can be classified
by the topological structure of their ground state wave
function [18–21]. In these “topological insulators” a strong
spin-orbit interaction leads to a ground state that is topolog-
ically distinct from vacuum and gives rise to gapless surface

excitations. Examples for quantum spin Hall insulators are
graphene and HgTe/CdTe quantum well structures, and for
3D topological insulators Bi1−xSbx , Bi2Se3 and Bi2Te3 (see
Ref. [21]). Dzero et al. [22] showed that Kondo insulators
can also be topologically classified. Kramers ions with 4f

states have a naturally strong spin-orbit coupling and are states
with odd parity under inversion. Through the hybridization
the strong spin-orbit interaction is embedded as well into
the conduction band. SmB6 has a simple cubic structure and
has been postulated as a candidate for a strong topological
Kondo insulator (TKI) [22–25] (see also Refs. [26–28]).
For Kamers doublet ions intermediate valence is required
for a strong TKI [22,23]. According to Raman scattering
measurements [8], specific heat data [11], band structure
calculations [24], and the analogy to CeB6, the ground state
of bulk SmB6 is a �8 quartet, which further favors a strong
TKI [24,29]. The symmetry for the surface states is tetragonal,
so that the surface ground state corresponds to a doublet
(two Kramers states built from the �8 quartet). SmB6 is a
stoichiometric insulator and samples of high purity have been
grown.

It has been proposed that the low T plateau in the resistivity
of SmB6 arises from the topological surface states. This has
been experimentally verified by Wolgast et al. [30] who
designed a contact configuration for a thin filmlike sample
and were able to distinguish bulk-dominated conduction
from surface-dominated conduction. Below 4 K the bulk
conductivity is frozen out and only the surface conduction
remains. This shows that the low T plateau of the resistivity
is due to surface conduction with a fully insulating bulk.
Further evidence for surface conductivity has been reported
in Refs. [31,32], where the electric conductivity and the Hall
effect are proven thickness independent, and magnetic and
nonmagnetic doping results in contrasting behaviors [32]. The
effects of Kondo holes and nonmagnetic impurities on the TKI
states has been investigated theoretically in Ref. [33].
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The topology of the Fermi surface of the surface states has
been mapped using torque magnetometry [34]. The observed
Fermi surface suggests two pockets of 2D surface states on the
(101) plane denoted with α and β, respectively. The α pocket
displays the characteristic angular dependence of a cylindrical
2D band, while the angular dependence of the β pocket is
flat. The masses are light and the Dingle temperatures rather
large [34]. Furthermore, extrapolating the Landau levels to
the infinite magnetic field limit leads to an intercept of −1/2
for both pockets, which is characteristic of 2D electronic
systems. The surface electronic structure was also probed
using laser-based ARPES [35,36]: At low T the low-lying
states form electronlike Fermi surface pockets enclosing the
X (possibly the α-pocket) and � (possibly the β-pocket)
points of the surface Brillouin zone and disappear above
15 K [35]. Angular-dependent magnetoresistance measure-
ments reveal periodicities of 90◦ at 5 K and 180◦ at low
temperature [37,38] and that the surface states are dependent
on the surface roughness [37]. Weak antilocalization and a
linear magnetoresistance was observed in Ref. [39]. Further
ARPES and scanning tunneling microscopy studies of the
insulating gap of SmB6 and surface states can be found in
Refs. [40,41]. The surface of SmB6 has also been studied via
point-contact spectroscopy [42].

The question of the exact topological nature of the surface
states of SmB6 is still open, in particular a definite confirmation
of the chirality of these states is still missing [32]. Furthermore,
one question [15] still needs an answer: Are the topological
surface states the magnetic “in-gap” states mentioned above as
observed in the susceptibility and the 11B NMR relaxation? It
has been suggested by Takimoto [24] that since the magnetic
field breaks the time-reversal symmetry, the surface states are
gapped and the in-gap states are just the metallic surface states
of the topological insulator. In this paper we investigate the
possibility of a Korringa-like relaxation of the 11B nuclei
arising from the topological surface states in SmB6. This is
directly related to the in-gap states.

In the temperature range of 20 � T � 100 K, the relaxation
rate is field independent and decreases down to 1/20 of that
at 100 K with decreasing temperature, as a consequence of
the opening of the indirect semiconductor Kondo gap [15].
The relaxation rate is then Korringa-like with the additional
temperature dependence of the density of states. In this
temperature range 1/T1 then follows the electronic bulk
properties. Below 20 K, however, 1/T1 acquires a marked
field dependence. With increasing magnetic field the relaxation
rate is suppressed further leading to long relaxation times,
which was attributed to the suppression of the “in-gap”
states [15]. Hence, it is apparent that there are two different
mechanisms, namely the standard Korringa relaxation for
T > 20 K and a relaxation with the in-gap states at lower
T . There are several open questions: Is this suppression of
the relaxation at low T due to the Landau quantization of the
topological surface states? Since the wave functions of the
surface states are expected to fall off exponentially with
distance from the surface, the 11B nuclei should have different
T1 depending on their distance from the surface. Hence, is
the relaxation a superposition of many exponentials, i.e., a
“stretched” exponential? Are there other states that do not
contribute to the electrical conductivity responsible for the

NMR relaxation, such as the magnetic excitons proposed by
Riseborough [16]?

The remainder of the paper is organized as follows. In Sec. II
we define the model Hamiltonian interpolating between the
Dirac cone and a parabolic dispersion as a function of the Fermi
level. The energies of the Landau quantized states then changes
with N from a

√
BN dependence to the standard B(N + 1/2)

dependence, where N is the quantum number of the Landau
level. The latter is the dependence observed in the quantum
oscillations of the magnetization [34]. In Sec. III we introduce
the exchange interaction Hamiltonian between the Landau
quantized surface conduction states and the nuclear spin states.
The Knight shift and the relaxation rate are calculated for both a
pure strong TKI and its dirty limit, where nonmagnetic defects
broaden the Landau levels without breaking the time-reversal
symmetry. Conclusions follow in Sec. IV.

II. MODEL

The band structure for SmB6 seems to indicate that the
surfaces have three Dirac cones, one at the � point and the
other two at the X(Y ) points of the surface Brillouin zone [24].
To simplify, we work with only one band and address the
superposition of more bands in the Sec. IV. We consider the
following modified 2D Dirac Hamiltonian

H0 = vF (σxpx + σypy) + 1

2m
σz

(
p2

x + p2
y

)
, (1)

where vF is the Fermi velocity, m is an effective mass, and
σi represent the Pauli matrices. The first term in Eq. (1)
corresponds to a Dirac cone, while the second term represents
a standard parabolic dispersion (Schrödinger limit). In the
absence of a magnetic field the wave functions are plane
waves, ψ(x,y,t) = u exp[i(kxx + kyy) − iEt], where u is a
spinor, and the energy is given by

E2 = (vF k)2 + (k2/2m)2, (2)

where k =
√

k2
x + k2

y . For small k the dispersion is then linear,

E = vF k, while for large k the second term dominates and the
dispersion is parabolic, E = k2/2m.

The semiclassical cyclotron mass is defined as the derivative
of the cross section A of the Fermi surface with respect to the
energy

m∗ = (∂A/∂E)/(2π ) = E

v2
F

(
1 + E2

m2v4
F

)−1/2

, (3)

which interpolates between the Dirac limit at low E, m∗ =
E/v2

F and Schrödinger case, m∗ = m, for large E. The
Onsager quantization rules (Bohr-Sommerfeld quantization)
are obtained from AN = (2πe/c)B(N + γ ), where e is the
electron charge and γ is a constant less than 1/2, leading
to EN = vF

√
(2e/c)BN in the Dirac limit (γ → 0) and to

EN = (e/mc)B(N + 1/2) in the Schrödinger limit (γ = 1/2).
The crossover energy between the Dirac and Schrödinger
regimes is approximately Ec = mv2

F , which for m = 0.1me

(me is the free electron mass) and vF = 6 × 107 cm/s (from
Ref. [34]) yields Ec = 0.2 eV.

The quantum mechanical solution in the presence of a
magnetic field is obtained using the minimal substitution p →
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FIG. 1. Density of states in arbitrary units as a function of the
Landau level positions according to Eq. (5) for the parameters
discussed in the text. (a) Delta functions in the clean limit, (b) slightly
broadened levels due to scattering off defects, and (c) DOS in the
dirty limit. In (b) and (c) the sharp Landau levels were replaced by
a Lorentzian line shape, i.e., a constant imaginary part of the self
energy, although the real self energy is energy dependent. Note that
the defects introduce a background DOS. The shifts of the peaks due
to the real part of the self energy have been neglected here for clarity.

p + (e/c)A in Eq. (1). Choosing the asymmetric Landau gauge
A = B(−y,0), the wave function has the form ψ(x,y,t) =
u exp(ikxx − iEt), where we denote with φ1(y) and φ2(y) the
two components of the spinor u. Equation (1) then leads to
two coupled differential equations for φ1(y) and φ2(y) [43]

vF [(kx − mωy) − ipy]φ2(y)

+ 1

2m

[
(kx − mωy)2 + p2

y

]
φ1(y) = Eφ1(y),

vF [(kx − mωy) + ipy]φ1(y)

− 1

2m

[
(kx − mωy)2 + p2

y

]
φ2(y) = Eφ2(y), (4)

where ω = eB/mc. Denoting y0 = kx/mω and ȳ = y − y0

the solution of the coupled equations is

φ1(y) = ϕN−1(ȳ), φ2(y) = ϕN (ȳ),(
EN + ω

2

)2

= ω2N2 + 2mωv2
F N, (5)

where ϕN (y) is the normalized harmonic oscillator wave
function of frequency ω and quantum number N . The
expression for the energy contains the Dirac (ω is small)
and Schrödinger (neglecting the last term) cases as special
limits. Dividing the expression for the energy by B2 and
taking the limit B → ∞ (extreme quantum limit, i.e., N = 0)
we obtain that E → −ω/2, which is in agreement with the
corresponding extrapolation of the quantum oscillations in
the torque magnetometry experiment [34]. These levels were
found to be equally spaced [34] as expected for the Schrödinger
limit. The position of the Landau levels for a field of 10 T is
shown in Fig. 1(a).

The Landau levels are highly degenerate. Using periodic
boundary conditions for a linear dimension L of the sample we
have kx = 2πnx/L, where nx is a positive integer. The equilib-
rium position of the oscillators y0 has to lie inside the sample,
so that 0 � y0 = kxc/eB � L. Hence, nmax

x = L2eB/(2πc) is
the degeneracy of the Landau levels at a field B. Assuming
L = 1 mm and B = 10 T the degeneracy is 2.4 × 109. For
the Dirac limit, EN = vF

√
2eBN/c, assuming B = 10 T and

vF = 6 × 107 cm/s [34], we have EN ≈ 70
√

N meV, which
is approximately 1000

√
N K. This corresponds to a rather

large spacing between Landau levels. On the other hand, for
the Schrödinger limit we have EN = ω(N + 1/2), and for
m = 0.1me and B = 10 T this corresponds to a spacing of
11.6 meV or 150 K.

The surface states penetrate the bulk of the sample with
their wave function falling off exponentially with the distance
from the surface, exp(−z/λ). The penetration depth λ depends
on the bulk properties of the system, i.e., the magnitude of
the indirect hybridization gap �. In the Dirac limit, we can
estimate λ through vF /λ ≈ �, which for vF = 6 × 107 cm/s
and � = 54 K, yields λ ≈ 85 nm. In the Schrödinger limit,
on the other hand, 1/(2mλ2) ≈ � and for m = 0.1me we have
λ ≈ 3 nm.

Due to the finite size of the sample edge states are expected
to appear. We have not considered the edge states here because
they are not relevant to the NMR relaxation.

III. RESULTS

A. NMR Hamiltonian

A local probe, such as NMR, is a useful tool to study the
“in-gap” states of SmB6. The 11B nuclei carry a nuclear total
angular momentum I = 3/2. For a magnetic field parallel to a
crystallographic axis there are two inequivalent sites in the B6

octahedra, which are denoted with B1 and B2 in Ref. [15]. The
quadrupolar splitting at the two sites yields a superposition of
the spectra, so that to separate the lines it is convenient to
measure the |3/2〉 ↔ |1/2〉 NMR transition.

We define spin-1/2 operators for the space spanned by the
nuclear states |3/2〉 and |1/2〉,

S+ = |3/2〉〈1/2|, S− = |1/2〉〈3/2|,
Sz = 1

2 (|3/2〉〈3/2| − |1/2〉〈1/2|). (6)

These operators satisfy the standard spin commutation rela-
tions, [S±,Sz] = ∓S± and [S+,S−] = 2Sz. The interaction of
the nuclear spin with the topological surface states is via a con-
tact exchange, HJ = (J/2)[Szσz + 1

2 (S+σ− + S−σ+)]δ(r).
SmB6 is a cubic intermediate valent Kondo insulator and,

according to specific heat data [11] and Raman scattering
measurements [8], the bulk ground wave function is a �8

quartet. At the surface the symmetry is tetragonal so that
�8 is split into two Kramers doublets. The ground doublet
can be parametrized by a pseudospin 1/2, and the two
states are linear combinations of the true spin components.
The Dirac Hamiltonian locks the true spin perpendicular to
the momentum vector [21,33]. We assume that the exchange
coupling of the nuclear spin is with the true spin. If the
full f states are considered, the orbital degree of freedom
of the crystalline field Kramers doublet has to be traced out,
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yielding renormalizations of the expectation values of the Pauli
matrices, which can be absorbed into the exchange coupling
defined below [33].

We now express the total Hamiltonian H = H0 + HZ +
HJ , where HZ is the Zeeman part, in terms of the eigenstates
of H0. The two spinor components (true spin states) are
denoted with a subindex 1 and 2. The creation and annihilation
operators for states with energy EN are c

†
1,N−1,k , c1,N−1,k and

c
†
2,N,k , c2,N,k , respectively. Here N − 1 and N refer to the

harmonic oscillator wave function and k is the degeneracy
index kx (we drop the subindex x). The Hamiltonian now has
the form

H0 =
∑
N,k

EN [c†1,N−1,kc1,N−1,k + c
†
2,N,kc2,N,k],

HZ = −(he/2)
∑
N,k

[c†1,N−1,kc1,N−1,k − c
†
2,N,kc2,N,k],

HJ = J

2

∑
N,k,N ′,k′

{Sz[c†1,N−1,kc1,N ′−1,k′ψ∗
1,N−1,k

×ψ1,N ′−1,k′ − c
†
2,N,kc2,N ′,k′ψ∗

2,N,kψ2,N ′,k′]

+ S+c
†
2,N,kc1,N ′−1,k′ψ∗

2,N,kψ1,N ′−1,k′

+ S−c
†
1,N−1,kc2,N ′,k′ψ∗

1,N−1,kψ2,N ′,k′ }, (7)

where the normalized wave functions ψ are taken at x = y = 0
(the resonating nucleus is at the origin) due to the contact
interaction, and he = geffμBB with geff being the effective g

factor of the electrons.

B. Knight shift

The Knight shift is the shift of the resonance due to the
polarization of the conduction electrons. It renormalizes the
external magnetic field h = γNμNB to an effective field h′ =
h + δh′, where γN and μN are the nuclear gyromagnetic factor
and magneton, respectively. Here δh′ is given by

δh′ = −J
∑

N,k,N ′,k′
[〈c†1,N−1,kc1,N ′−1,k′ 〉ψ∗

1,N−1,k

×ψ1,N ′−1,k′ − 〈c†2,N,kc2,N ′,k′ 〉ψ∗
2,N,kψ2,N ′,k′]

= −JL

2π

∑
N

[
f (EN − he/2)

∫
dk|ψ1,N−1,k|2

−f (EN + he/2)
∫

dk|ψ2,N,k|2
]
, (8)

where f (E) is the Fermi function. The harmonic oscillator
wave functions are displaced by y0(k) from the origin. We
have then∫

dk|ψ2,N,k|2 = eB

Lc

∫
dy0|ψ2,N,k(y0)|2 = eB

Lc
, (9)

and similarly for the other spinor component. To linear order
in the magnetic field we have then

δh′ ≈ JeBhe

2πT c

∑
N

f ′(EN ), (10)

where f ′ is the derivative of the Fermi function. Hence, in the
clean limit, where there are sharp Landau levels, the Knight
shift is proportional to B and inversely proportional to T . The
factor B arises from the degeneracy of the Landau levels he

from the Zeeman splitting of the surface states, and T −1 is the
Curie susceptibility of the Landau levels.

C. Relaxation rate in a clean strong TKI

Assuming a Lorentzian, the dissipative part of the transver-
sal dynamic spin susceptibility can be written as [44]

χ ′′
T (ω) = ω/T1

(ω − h′)2 + (1/T1)2
χT 0, (11)

where χT 0 is the static transversal susceptibility and T1 is the
relaxation time. Perturbatively, the relaxation rate contributes
to second order in the exchange J .

The transversal spin correlation function is given by
〈〈S+; S−〉〉ω. It is related to the susceptibility by χT (ω) =
−(γNμN )2〈〈S+; S−〉〉ω. Equations of motion for the imaginary
part of this correlation function lead to

(ω − h′)2〈〈S+; S−〉〉′′ω = 〈〈j+
c ; j−

c 〉〉′′ω, (12)

where j± is the spin current, given by [44]

j+ = [S+,HJ ]

= J
∑

N,k,N ′,k′

{
Szc

†
1,N−1,kc2,N ′,k′ψ∗

1,N−1,kψ2,N ′,k′

− 1

2
S+[c†1,N−1,kc1,N ′−1,k′ψ∗

1,N−1,kψ1,N ′−1,k′

− c
†
2,N,kc2,N ′,k′ψ∗

2,N,kψ2,N ′,k′]

}
. (13)

The subindex c denotes the cumulant contraction (Hartree-
Fock factorization) that gives rise to the Knight shift δh′
discussed in Sec. III B [Eq. (8)]. Inserting the spin current
operator, the correlation function to second order in J yields

〈〈j+
c ; j−

c 〉〉′′ω
= J 2

∑
N,k,N ′,k′,N̄,k̄,N̄ ′,k̄′

{
ψ∗

1,N−1,kψ2,N ′,k′ψ∗
2,N̄,k̄

ψ1,N̄ ′−1,k̄′

×〈〈Szc
†
1,N−1,kc2,N ′,k′ ; Szc

†
2,N̄,k̄

c1,N̄ ′−1,k̄′ 〉〉′′ω

+ 1

4
ψ∗

1,N−1,kψ1,N ′−1,k′ψ∗
1,N̄−1,k̄

ψ1,N̄ ′−1,k̄′

×〈〈S+c
†
1,N−1,kc1,N ′−1,k′ ; S−c

†
1,N̄−1,k̄

c1,N̄ ′−1,k̄′ 〉〉′′ω

+ 1

4
ψ∗

2,N,kψ2,N ′,k′ψ∗
2,N̄,k̄

ψ2,N̄ ′,k̄′

×〈〈S+c
†
2,N,kc2,N ′,k′ ; S−c

†
2,N̄,k̄

c2,N̄ ′,k̄′ 〉〉′′ω
}
. (14)
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The correlation functions are now evaluated to zero order
in J using H0 + HZ

〈〈j+
c ; j−

c 〉〉′′ω
= −πJ 2

4

∑
N,N ′,k,k′

{δ(EN − EN ′ + ω − he)

× |ψ1,N−1,k|2|ψ2,N ′,k′ |2(n3/2 + n1/2)

× [f (EN − he/2) − f (EN ′ + he/2)]

+ 2δ(EN − EN ′ + ω − h′)[|ψ1,N−1,k|2|ψ1,N ′−1,k′ |2
× [n3/2f (EN − he/2)(1 − f (EN ′ − he/2)) − n1/2

× f (EN ′ − he/2)(1 − f (EN − he/2))] + |ψ2,N,k|2
× |ψ2,N ′,k′ |2[n3/2f (EN + he/2)(1 − f (EN ′ + he/2))

− n1/2f (EN ′ + he/2)(1 − f (EN + he/2))]]}, (15)

where n3/2 and n1/2 are the occupation numbers of the nuclear
spin states. The sums over k and k′ can be transformed into
integrals and using the orthonormality of the wave functions,
Eq. (9), we obtain

〈〈j+
c ; j−

c 〉〉′′ω

= −πJ 2

4

(
eB

2πc

)2 ∑
N,N ′

{
(n3/2 + n1/2)

× δ(EN − EN ′ + ω − he)[f (EN − he/2)

− f (EN ′ + he/2)] + δ(EN − EN ′ + ω − h′)

×
∑

σ=±1

[n3/2f (EN + σhe/2)(1 − f (EN ′ + σhe/2))

− n1/2f (EN ′ + σhe/2)(1 − f (EN + σhe/2))]

}
. (16)

Through Eqs. (11) and (12) we have that to second order in
J (ω is to be taken at the resonance frequency h′)

1

T1
= −(γNμN )2〈〈j+

c ; j−
c 〉〉′′ω=h′/(h′χT 0). (17)

Due to the delta functions, the expression (16) vanishes
unless EN − EN ′ + ω − he = 0 or EN − EN ′ + ω − h′ = 0
for some N and N ′.

In a normal metal the NMR relaxation rate is given by the
Korringa relaxation, i.e., it is proportional to T and the square
of the exchange coupling to the s-wave conduction states (at
the site of the NMR ion) times their density of states. It follows
that Eq. (17) does not lead to a Korringa-like relaxation unless
the conduction states have a continuum energy spectrum.
Hence, there is no Korringa-like NMR relaxation with clean
surface states. Similarly, the electrical resistivity is only going
to be nonzero if there is a continuum energy spectrum. This is
not the case for a clean surface in a magnetic field, where the
energy states are sharp and discrete.

The delta functions in Eq. (16) are indicative of a formation
of a bound state of the nuclear spin with the Landau level
closest to the Fermi level. The spin degree of freedom then
resonates within this bound state without being able to relax
into a continuum.

D. Strong TKI with dirty surfaces

The surfaces of a realistic sample have a considerable
amount of defects. Defects can be magnetic impurities or
nonmagnetic scatterers. Magnetic impurities break the time
reversal symmetry and lift the topological protection of the
surface states. We consider here nonmagnetic defects, such as
adsorbed nonmagnetic atoms, missing Sm or B atoms, surface
steps, etc., that do not break the time reversal symmetry, but
only the translational invariance. As a consequence of the
scattering off the defects, the surface quasiparticles acquire a
finite linewidth and the Landau levels are no longer perfectly
sharp. The density of states then has an energy continuum.

The broadening of electron Landau levels in 2D due to
light disorder has been studied previously in the context of
the 2D electron gas [45–47] using a self-consistent averaging
over the positions of the defects. The method is now known
as the fully self-consistent Born approximation (FSBA) and
has been extended to study the effect of impurity scattering
on the magnetoresistance of graphene [43,48]. This extension
involves a Dirac cone dispersion, similar to the present
problem. The real part of the self-consistent approximation
for the electron self energy yields a shift of the Landau level
energy and the imaginary part a linewidth of the state. The real
part is not of primary relevance for the present purposes and
the imaginary part is approximately constant over the energy
range he (≈1 meV) under consideration. The density of states
for a Landau level, which is a delta function in the absence of
defects, is now constant over the relevant energy interval.

For each Landau level we introduce
∫

dεδ(ε − EN ) = 1
and replace the δ function by a broadened density of states∫

dερ(ε − EN ) in Eq. (8) for the Knight shift. Assuming that
ρ is constant over a small interval about EN (of the order of
he) we can carry out the ε integration. Denoting with ρN the
density of states at the Landau level N , we arrive at

δh′ ≈ −JeBhe

2πc

∑
N

ρN. (18)

Hence, in the dirty limit the Knight shift is still proportional
to B, arising from the degeneracy of the Landau levels, but no
longer proportional to 1/T . The most relevant term in Eq. (18)
is for N∗, where N∗ is the Landau level pinning the Fermi level.

For the relaxation rate we again insert
∫

dερ(ε − EN ) for
each Landau level. The Zeeman splitting of the conduction
states does not play a relevant role for this case so that to
simplify we consider he = 0. From Eq. (16) we have then for
the leading contribution to the spin-current correlation function

〈〈j+
c ; j−

c 〉〉′′ω

= −πJ 2

4

(
eB

2πc

)2 ∑
N,N ′

∫
dερ(ε − EN )

×
∫

dε′ρ(ε′ − EN ′ ){δ(ω − ε′ + ε)(n3/2 + n1/2)

×[f (ε) − f (ε′)] + 2δ(ω − h′ − ε′ + ε)

× [n3/2f (ε)(1 − f (ε′)) − n1/2f (ε′)(1 − f (ε))]}.
(19)
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After integrating over ε′ we obtain

〈〈j+
c ; j−

c 〉〉′′ω

= −πJ 2

4

(
eB

2πc

)2 ∑
N,N ′

∫
dερ(ε − EN )

×{ρ(ε − EN ′ + ω)(n3/2 + n1/2)[f (ε) − f (ε + ω)]

+ 2ρ(ε − EN ′ + ω − h′)[n3/2f (ε)(1 − f (ε + ω − h′))

− n1/2f (ε + ω − h′)(1 − f (ε))]}. (20)

Assuming that ρ is constant over a small interval about EN

we can carry out the ε integration. Denoting again with ρN the
density of states at the Landau level N , we arrive at

〈〈j+
c ; j−

c 〉〉′′ω

= −πJ 2

4

(
eB

2πc

)2 ∑
N,N ′

ρNρN ′

×
{
ω(n3/2 + n1/2) + 2n3/2(ω − h′)

exp((ω − h′)/T )

exp((ω − h′)/T ) − 1

− 2n1/2(ω − h′)
1

exp((ω − h′)/T ) − 1

}
. (21)

The static transversal susceptibility for the free nuclear spin
is χT 0 = (γNμN )2(n3/2 + n1/2)/h′, so that

1

T1
= −(γNμN )2〈〈j+

c ; j−
c 〉〉′′ω=h′/(h′χT 0)

= π

4

(
eBJ

2πc

)2 ∑
N,N ′

ρNρN ′

[
2T + h′ n3/2 + n1/2

n3/2 − n1/2

]

≈ πT

(
eBJ

2πc

)2 ∑
N,N ′

ρNρN ′ , (22)

where we used that (n3/2 + n1/2)/(n3/2 − n1/2) =
coth(h′/2T ) ≈ 2T/h′, since h′ � T . Hence, the relaxation
rate for nuclei at the surface of a mildly dirty crystal
is Korringa-like. The relaxation rate grows linearly with
temperature and quadratically with the magnetic field. There
is an additional magnetic field dependence arising from the
density of states of the Landau levels. The dominant term in
Eq. (22) is for N = N ′ = N∗, where N∗ is the Landau level
pinning the Fermi level,

1

T1
≈ πT

(
eBJ

2πc
ρN∗

)2

. (23)

We are not presenting an explicit calculation of the self
energy due to defect scattering using the FSBA. The procedure
would be analogous to the one described in Ref. [48] for the
case of graphene. It involves several unknown parameters, such
as the density of impurities (assumed to randomly distributed)
and the scattering strength by the defects. In contrast the
parameters of the clean surface can be estimated from experi-
ments and first principle calculations. The density of states is
obtained numerically by solving coupled equations. Since the
dependence of the surface states on roughness [32,37] is still
an open experimental issue and the input parameters for the

calculation are unknown, an explicit calculation is not going
to add much to the understanding of the problem.

In Figs. 1(b) and 1(c) we show the density of states with
weak impurity scattering and in the dirty limit, respectively.
Here the imaginary part of the self energy was assumed to
be constant (Lorentzians) and the real part of the self energy,
responsible for the shifts of the positions of the peaks, has been
neglected.

IV. CONCLUSIONS

We have studied the NMR Korringa relaxation and Knight
shift of 11B nuclei in the topological Kondo insulator SmB6.
Experimental and theoretical evidence indicates that the bulk
is gapped at low T and only the surface states contribute
to electrical conduction. The observed Korringa relaxation is
then expected to arise from the surface conduction states. In a
magnetic field the clean 2D electron gas has a discrete energy
spectrum as a consequence of the Landau quantization. We
have shown that the Knight shift is proportional to B/T and
the relaxation rate is not Korringa-like in this scenario, which
contradicts the experimental evidence [15].

If the surface has nonmagnetic defects, the scattering of
the conduction states off the defects gives rise to a line width
of the Landau levels. The density of states then consists of
peaks with finite width rather than delta functions as for the
clean surface. A small broadening (of the order of 1 meV)
is sufficient to yield a Korringa rate proportional to the
temperature. The proportionality constant is field dependent,
since the degeneracy of the Landau levels is proportional to
the field.

Since only electronic surface states participate in the
relaxation process of the 11B nuclei, this relaxation is then
expected to be weak. Since the wave function falls off
exponentially into the crystal, depending on their distance
from the surface the 11B nuclei should have different T1 with
T1 becoming really large in the insulating part of the crystal.
Hence, one should expect then a superposition of several
relaxation times arising from the different layers. This gives
rise to a “stretched” exponential time dependence. Although
there is some evidence for a small stretching, the experimental
data is consistent with a single relaxation time [15].

For the sake of simplicity in the present calculation we con-
sidered only one Dirac core. Band structure calculations [24]
(see also Ref. [49] for the electronically similar compound
PuB6) suggest that there are three Dirac cones, one at the
� point and the other two at the X(Y ) points of the surface
Brillouin zone. The latter two are symmetry equivalent. The
energies of the cone vertices are not protected and could shift
with the sample preparation, e.g., with the disorder on the
surface. The exchange Hamiltonian of the nuclear spin with
the conduction states HJ consists then of three terms of the
type described in Eq. (7) with different hyperfine exchange
couplings. The Knight shift and the relaxation rate are then
the superposition of the contributions of the three bands. We
conclude that there is no qualitative change of the results if
several bands are considered in comparison to the single band
results.

Furthermore, we have assumed that the surface electrons
do not interact with each other. Since the kinetic energy of
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FIG. 2. The contribution of the “in-gap” state to the susceptibility
(�χ ) (solid circles) (Ref. [12]), the temperature dependence of the
16 meV magnetic excitation intensities measured by inelastic neutron
scattering IN (open squares) (Ref. [9]), and the intensity of the
Raman transition IR (open triangles) (Ref. [8]) compared to electrical
conductivity data (open small circles) from Ref. [52]. While the
surface states contributing to the conductivity are active below 4 K,
the “in-gap” states are formed at much higher T . (Figure adapted
from Ref. [9].)

the Dirac particles is relatively small, interactions could play a
relevant role at very low T [50]. Experimentally ferromagnetic
long-range order has been found at temperatures far below
the T range of the NMR measurements [51]. Edge states
originating from the finite size of the sample have also been
neglected.

In a standard NMR experiment in a metallic system the
Korringa product, defined as κ = [T1T (δh′/B)2]−1 where
δh′/B is the Knight-shift constant, is a constant. This is not
the case in SmB6, where below 10 K κ is strongly enhanced
and strongly magnetic field and temperature dependent (see
Fig. 4 in Ref. [15]).

While the low T resistivity of SmB6 saturates below
4 K, which is attributed to the topological surface states,
the onset of the in-gap states in the susceptibility [12], in
inelastic neutron scattering [9], the NMR Knight shift and
relaxation [15] and Raman spectroscopy [8] occurs at higher
T , of the order of 25–30 K. This is shown in Fig. 2.
This suggests the possibility of an alternate mechanism to
the surface states for the magnetic properties. The intensity
of the observed effects also appears to be too large to be
attributed solely to surface states. A model to explain the
in-gap bound states in Kondo insulators has been proposed
by Kasuya using a localized Kondo model [53]. The lowest
excitation state is an s-wave exciton, leading to predictions
consistent with neutron scattering results. Along similar lines
Riseborough [16] proposed that the mixed valence nature of
the system gives rise to antiferromagnetic correlations leading
to in-gap magnetic excitations, analogous to antiparamagnons
in a metal [54]. These magnetic excitonlike states exist in the
bulk but do not contribute to the electrical conductivity, since
an electron and a hole are bound in a pair and the bound state
has charge zero. Hence, the electrical conductivity is a property
of the surface states. The in-gap bound states, however, have
their own temperature and field dependence, which should

FIG. 3. (Color online) Low temperature spin lattice relaxation
rates as a function of T for different magnetic fields (adapted from
Ref. [15]). The solid lines are fits to a simple model for “in-gap”
states (Ref. [15]) and can be considered as guides to the eye. The data
shows peaks or shoulders as a function of T and the dashed curve
interpolates between these maxima.

reflect in the magnetic susceptibility and NMR properties. In
particular, at low T the relaxation rate displays a broad peak
that moves to higher temperatures with increasing field, that
could be the signature of such a bound state (see Fig. 3). The
intensity of the peak dramatically decreases with magnetic
field, possibly due to the quenching of the antiferromagnetic
correlations. A very recent calculation of the in-gap collective
mode spectrum of SmB6 can be found in Ref. [55].

It would be of interest to carry out the NMR measurements
on samples of different thickness. A measured relaxation
rate that is independent of the sample thickness would be
convincing evidence for a Korringa relaxation into surface
states and exclude a magnetic exciton mechanism. Low
temperature (T = 1.6 K and 3.8 K) X-band electron spin
resonance (ESR) of Sm in SmB6 shows evidence for several
transitions [56], which have been interpreted as arising from
the �8 quadruplet of Sm3+ defects and �6 states in the crystal.
Earlier measurements of Gd impurities in SmB6 have been
presented in Ref. [57]. Due to the intermediate valence of
SmB6 the Sm ions in the bulk are not expected to resonate.
In the light of TKIs it would be desirable to repeat these
measurements on cleaner samples and higher frequencies than
X band to see if the cyclotron resonances of the electron gas
can be observed.

In summary, there are numerous problems with the in-
terpretation of the NMR data. (1) Magnetic data suggest
the existence of two energy scales, one associated with the
topological surface states and the other with the formation of
bulk in-gap states, possibly excitonlike bound states. (2) If
the NMR relaxation is due to the topological surface states
the contribution of the different surface layers would give a
different T1 depending on the distance from the surface. This
would give rise to a strongly “stretched” exponential time
dependence. Although there is evidence for some stretching
the experiments are consistent with a single relaxation time.
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In addition the intensity of the resonance line would be
faint since only 11B nuclei at the surface would be able to
resonate. (3) Under optimal conditions the sensitivity of an
NMR experiment requires the detection of 1015 spins. The
number of surface 11B atoms in a 2 × 2 × 1 mm3 single crystal
is roughly 1015, i.e., barely within the limits of detection.
(4) At low T the relaxation rate displays a broad peak that
moves to higher temperatures with increasing field as shown
in Fig. 3 by the dashed line. This peak could be the signature
of the excitonic bound state in the relaxation rate. Although

none of the above findings are conclusive, they are evidence
suggesting different mechanisms for the electric transport and
the magnetic properties.
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