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Motivated by puzzling aspects of spin-glass behavior reported in frustrated magnetic materials, we theoretically
investigate effects of magnetoelastic coupling in geometrically frustrated classical spin models. In particular, we
consider bond-disordered Heisenberg antiferromagnets on a pyrochlore lattice coupled to local lattice distortions.
By integrating out the lattice degree of freedom, we derive an effective spin-only model, the bilinear-biquadratic
model with bond disorder. The effective model is analyzed by classical Monte Carlo simulations using an extended
loop algorithm. First, we discuss the phase diagrams in detail by showing the comprehensive Monte Carlo data for
thermodynamic and magnetic properties. We show that the spin-glass transition temperature Tf is largely enhanced
by the spin-lattice coupling b in the weakly disordered regime. By considering the limit of strong spin-lattice
coupling, this enhancement is ascribed to the suppression of thermal fluctuations in semidiscrete degenerate
manifold formed in the presence of the spin-lattice coupling. We also find that, by increasing the strength
of disorder �, the system shows a concomitant transition of the nematic order and spin glass at a temperature
determined by b, being almost independent of �. This is due to the fact that the spin-glass transition is triggered by
the spin collinearity developed by the nematic order. Although further-neighbor exchange interactions originating
in the cooperative lattice distortions result in spin-lattice order in the weakly disordered regime, the concomitant
transition remains robust with Tf almost independent of �. We find that the magnetic susceptibility shows
hysteresis between the field-cooled and zero-field-cooled data below Tf , and that the nonlinear susceptibility
shows a negative divergence at the transition. These features are common to conventional spin-glass systems.
Meanwhile, we find that the specific heat exhibits a broad peak at Tf , and that the Curie-Weiss temperature
varies with �, even in the region where Tf is insensitive to �. In addition, we clarified that the concomitant
transition remains robust against a substantial external magnetic field. These features are in clear contrast to the
conventional spin-glass behavior. Furthermore, we show that the cubic susceptibility obeys a Curie-Weiss–type
law and the estimated “Curie-Weiss” temperature gives a good measure of the spin-lattice coupling even in
the presence of bond randomness. We also show, by studying single-spin-flip dynamics in the nematic phase, that
the glassy spin dynamics may be observed at a rather high temperature in a realistic situation for weak disorder.
All these results are discussed in comparison with experiments for typical pyrochlore magnets, such as Y2Mo2O7

and ZnCr2O4.
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I. INTRODUCTION

In magnets, competition between magnetic interactions
suppresses formation of a simpleminded long-range order,
and opens the possibility of unconventional magnetic behavior,
such as an unexpected ordering, glassy behavior, and liquidlike
states. There are two major sources of such magnetic competi-
tion: randomness in the magnetic interactions and geometrical
frustration of the lattice structures [1].

Randomness typically appears in the form of spatially
random distribution of the strength and sign of magnetic
interactions. Sufficiently strong randomness prevents the
system from forming a long-range magnetic order, and instead,
induces a new magnetic state called spin glass (SG). A
spin-glass state is a disordered state in which spins are
frozen randomly without any spatial periodicity [2]. It is
distinguished from the paramagnetic state by the dynamical
freezing of spin moments. A typical example of SG is found in
dilute magnetic metallic alloys, in which randomly distributed
magnetic moments interact with each other via the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [3–6]. The RKKY
interaction is long ranged and oscillating (changing the sign)

with distance and, hence, the magnetic sector of the system can
be mapped onto a localized spin model with random exchange
couplings being both ferromagnetic and antiferromagnetic.
Such randomness in the magnetic interactions is responsible
for the SG behavior in these compounds.

On the other hand, geometrical frustration describes the
competition arising from the geometry of lattice structures. It
occurs even in the case in which the system is translationally
invariant and magnetic interactions are not spatially random.
A typical example is the Ising antiferromagnet on a triangular
lattice. In this model, it is impossible to satisfy all three nearest-
neighbor antiferromagnetic interactions in every triangle. The
frustration suppresses long-range ordering and leads to a
disordered ground state with macroscopic degeneracy when
the system has the nearest-neighbor interactions only [7–10].
Such a degenerate ground-state manifold is extremely sensitive
to perturbations, such as small additional further-neighbor
interactions and an external magnetic field. The macroscopic
degeneracy and the sensitivity to perturbations are the source
of unconventional magnetic behavior [11].

In the last two decades, systems which include both sources
of magnetic competition, randomness, and geometrical
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FIG. 1. (Color online) (a) 16-site cubic unit cell of the pyrochlore
lattice. (b) Schematic illustration of the coupling of spins to a
bond distortion ρij . The antiferromagnetic exchange interactions are
enhanced on shorter bonds. (c) Schematic illustration of a cooperative
aspect of bond distortions; A shift of the B site while elongating
(shortening) the AB (BC) bond enhances an antiferromagnetic spin
correlation between the next-nearest-neighbor spins A and C.

frustration have been attracting growing interest. Experimen-
tally, SG behavior is widely seen in many magnets with
geometrical frustration, ranging from quasi-two-dimensional
systems such as SrCr8Ga4O19 [12] to three-dimensional
systems such as cubic spinels [13,14] and pyrochlores [15–17].
While randomness inevitably existing in real materials might
be relevant to the SG behavior, it has been intensively
argued to what extent the geometrical frustration plays a role.
Specifically, on the theoretical side, it is still controversial if
geometrical frustration alone can induce SG behavior. Thus,
it is desirable to study the effect of geometrical frustration by
controlling the randomness. It is also intriguing how the SG
behavior in geometrically frustrated magnets is different from
the canonical one driven solely by randomness.

To address these issues, we here focus on a typical
geometrically frustrated system, an antiferromagnet on a
pyrochlore lattice. As shown in Fig. 1(a), the pyrochlore lattice
consists of a three-dimensional network of corner-sharing
tetrahedra. Antiferromagnets on the pyrochlore lattice are
strongly frustrated. For example, when considering classical
Heisenberg spins with nearest-neighbor exchange interactions,
no long-range ordering occurs down to zero temperature (T ),
and the ground state has continuous macroscopic degener-
acy [18,19] (see Sec. II C 1 for details). Recently, the effect of
randomness in the exchange interactions was studied on such
extensively degenerate manifold [20–22]. It was found that
the randomness immediately lifts the degeneracy and induces
a SG transition. The transition temperature Tf is proportional
to the disorder strength � as Tf ∝ � in the weakly disordered
regime. This implies that, in general, degenerate manifolds in
geometrically frustrated magnets are sensitive to randomness,
potentially possessing an instability toward SG. This gives a
clue to explain why SG is prevailing in geometrically frustrated
materials.

However, several characteristics of the SG in geomet-
rically frustrated magnets still remain puzzling. Insulating
molybdate pyrochlores R2Mo2O7 (R = Dy,Tb,Gd,Lu) are
typical SG materials with geometrical frustration [23–27].
In these compounds, the magnetic Mo4+ cations constitute
a pyrochlore lattice. Among them, Y2Mo2O7 is one of the

most intensively studied compounds for its SG behavior. The
compound exhibits a SG transition at Tf � 22 K which is
identified by a bifurcation of field-cooled (FC) and zero-field-
cooled (ZFC) magnetic susceptibilities [24]. The SG behavior
resembles that of the canonical SG theory at first glance: the
transition is second order and the nonlinear susceptibility χ3

shows a negative divergence [23]. Furthermore, the estimated
critical exponents do not contradict with those of the canonical
ones [23]. There are, however, several aspects that cannot
be explained by the conventional SG theory. One concerns
the critical temperature Tf . Tf remains unchanged for the
substitution of Y3+ by La3+ up to 50%, despite random lattice
distortions induced by the substitution and a substantial in-
crease of the Curie-Weiss temperature θCW [28]. This indicates
that Tf does not strongly depend on either the randomness � or
the dominant magnetic interactions. Moreover, Tf appears to
be much higher than that theoretically expected for a moderate
strength of disorder �; e.g., the experimental value is about
20–30 times higher than a numerical estimate of Tf/J �
0.01 for a nearest-neighbor Heisenberg antiferromagnet with
�/J = 0.1 [20,21,29]. Another unconventional aspect is the
specific heat. In Y2Mo2O7, a broad peak is observed in the
specific heat at Tf [26,30]. This is in contrast to the canonical
SG which has no clear anomaly at Tf , except for a broad hump
at a higher temperature [2]. Last but not least is the robustness
against an external magnetic field. The peak in the specific heat
as well as the bifurcation of the FC and ZFC susceptibilities is
almost unaffected by a magnetic field up to several Tesla [26].
This is also in contrast to the canonical SG which is strongly
disturbed by the magnetic field [2,31,32].

Similar puzzling SG behavior, in particular, the insensitive
Tf , is observed in other frustrated magnets, e.g., spinel oxides
(Zn1−xCdx)Cr2O4. In this case also, the magnetic Cr3+ cations
comprise a pyrochlore lattice. The stoichiometric compound
with x = 0 exhibits a long-range antiferromagnetic order
accompanied by a lattice distortion at Tc � 13 K [33,34].
The order, however, is destroyed by a small amount of Cd
substitution at x � 0.03, and for larger x, the compounds
exhibit SG behavior [34]. In the SG region, the SG transition
temperature Tf is weakly dependent on x; Tf remains �10 K
up to x ∼ 0.1. This also indicates the robustness of Tf against
the randomness �, as in (Y1−xLax)2Mo2O7. Similar robust
behavior of Tf is also seen in another spinel CoAl2O4, in which
magnetic CO3+ cations form a diamond lattice, while changing
the fraction of intersite mixing between Co and nonmagnetic
Al sites [35]. In this case, although the diamond lattice is
bipartite, the frustration may come from the competition
between the nearest- and second-neighbor interactions.

These experimental results indicate that the SG transition
temperature Tf is not set by the strength of randomness �, but
by another energy scale. In other words, some important factor
is missing in the previous theories, in which Tf was predicted
to be proportional to � [20–22,29]. A possible candidate for
the missing energy scale is the magnetoelastic coupling to
local lattice distortions. Indeed, the importance of local lattice
distortions has been pointed out for Y2Mo2O7 by various
microscopic probes such as x-ray-absorption fine-structure
(XAFS) technique [36], neutron pair distribution function
analysis [37], nuclear magnetic resonance (NMR) [38,39], and
muon spin rotation and relaxation (μSR) techniques [39,40].
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Meanwhile, the importance of the magnetoelastic coupling
in (Zn1−xCdx)Cr2O4 is obvious as the compound at x = 0
shows the spin-lattice coupled ordering [33]. Theoretically, it
was shown that the randomness in the strength of magnetic
interactions destroys the spin-lattice order and induces a SG
state [41]. However, the argument was limited to a uniform
global lattice distortion, and Tf was deduced to behave
similarly to the case in the absence of the magnetoelastic
coupling, i.e., Tf ∝ �, after the uniform lattice distortion is
destroyed.

Motivated by the puzzling SG behavior and the implication
of magnetoelastic coupling, the authors recently investigated
the SG behavior in bond-disordered classical Heisenberg
antiferromagnets on the pyrochlore lattice [42,43]. The main
conclusion was that the spin-lattice coupling enhances Tf , and
induces a concomitant transition with nematic order and spin
glass. In this concomitant transition, Tf(= Tc) becomes almost
independent of �. The results give a reasonable account of the
puzzling behavior of Tf in the frustrated magnets.

The aim of this paper is to provide a comprehensive
description of the characteristic properties of the SG transition
in pyrochlore antiferromagnets coupled with local lattice
distortions. For the comparison with experiments in a broader
viewpoint than in the previous studies [42,43], we investigate
thermodynamic and magnetic observables, such as the specific
heat, spin collinearlity, SG susceptibility, and sublattice mag-
netization, by systematically controlling the bond randomness,
temperature, and magnetic field. We show the detailed analyses
of the phase diagrams and critical properties; the tables for
the critical temperatures and exponents are presented. For the
linear magnetic susceptibility, we show that the Curie-Weiss
temperature is dependent on the strength of bond randomness
as well as the temperature range for the fitting. We also
find that it exhibits a bifurcation between the FC and ZFC
measurements below the concomitant transition temperature.
From the analysis of the nonlinear magnetic susceptibility, we
find that it shows a negative divergence at the concomitant
transition, whereas it is positively divergent at the nematic
transition. In addition, we show that the cubic susceptibility
obeys a Curie-Weiss–type law and the estimated Curie-Weiss
temperature gives a good measure of the spin-lattice coupling
even in the presence of bond randomness. The hysteresis in
the magnetic susceptibility and the negative divergence of the
nonlinear susceptibility are consistent with the experimental
results in Y2Mo2O4 [23,24]. We also clarify effects of an
external magnetic field on the specific heat and magnetic sus-
ceptibility. We find that, in sharp contrast to the conventional
SG, the transition is robust against the magnetic field. This
is also consistent with the experimental results [26]. Finally,
we show that spin relaxation suffers from severe dynamical
freezing in the nematic phase due to the spin-ice-type manifold
even when Tc > Tf . This suggests that glassy spin dynamics
or slow relaxation may appear at a rather high temperature in
a realistic situation even for an extremely weak disorder.

This paper is organized as follows. In Sec. II, we introduce
the models studied in this paper with qualitative arguments
on the phase diagrams. In Sec. III, we describe the classical
Monte Carlo (MC) method used for this study. In Sec. IV,
we show the results on the phase diagrams obtained by MC
simulation. In Sec. V, we investigate linear and nonlinear

magnetic susceptibilities. In Sec. VI, we discuss effects of an
external magnetic field on the specific heat and the magnetic
susceptibility. In Sec. VII, we investigate single-spin-flip spin
relaxation in the nematic phase. In Sec. VIII, we discuss our
theoretical results in comparison with existing experimental
results. Summary is given in Sec. IX.

II. MODEL

In this section, we introduce the microscopic models studied
in this paper. In Sec. II A, we introduce an antiferromagnet
on a pyrochlore lattice coupled to local lattice distortions.
In Sec. II B, we show the derivation of effective spin-only
models by integrating out the lattice degree of freedom,
whose procedure was described only briefly in our previous
paper [42]. In Sec. II C, we present qualitative arguments
expected for the phase diagrams of the effective spin-only
models, and show what we will clarify in the rest of this paper.

A. Pyrochlore antiferromagnet coupled to local
lattice distortions

To consider effects of spin-lattice coupling, we start with
a classical Heisenberg antiferromagnet coupled with lattice
distortions:

H =
∑
〈i,j〉

[
Jij (1 − αρij )�Si · �Sj + K

2
ρ2

ij

]
, (1)

where �Si (| �Si | = 1) denotes a Heisenberg spin at site i, and
the sum runs over nearest-neighbor bonds of the pyrochlore
lattice [Fig. 1(a)]. Here, ρij is the change in distance between
nearest-neighboring spins �Si and �Sj , relative to the equilibrium
lattice constant; we treat the distortions as classical objects and
neglect the kinetic energy of phonons. The model incorporates
the magnetoelastic coupling up to the linear order of bond
distortion ρij . We take the coupling constant α being positive;
namely, the exchange interaction is enhanced on a shorter bond
than a longer bond, as illustrated in Fig. 1(b). In addition to the
magnetoelastic coupling, we introduce quenched randomness
in the coupling constant Jij as an extrinsic bond disorder. Here,
we assume the distribution of Jij to be uniform as

Jij ∈ [J − �,J + �] (2)

with 0 � � < J . Consequently, all the exchange couplings
are antiferromagnetic in the model (1), while the amplitudes
are modulated by both magnetoelastic coupling and quenched
disorder. The last term in Eq. (1) represents the elastic energy
of lattice distortions in the harmonic approximation (K > 0).
Hereafter, Boltzmann constant kB is set to unity, and all the
energy scales including T are measured in units of J .

B. Effective spin model by integrating out lattice
degrees of freedom

In general, the lattice distortions ρij depend on each
other through, e.g., the movement of an ion shared by
two neighboring bonds and a long-range strain effect. Such
cooperative aspect may lead to spin-lattice ordering in which
a structural transition and magnetic ordering take place in a
coupled manner. The spin-lattice ordering in ZnCr2O4 is a
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typical example [33,34]. When the cooperative aspect is less
important and can be ignored, the model (1) is much simplified;
integrating out ρij by completing the squares, we end up with
the spin-only model

H =
∑
〈i,j〉

[Jij
�Si · �Sj − bij (�Si · �Sj )2]. (3)

The second term describes the biquadratic coupling generated
by the coupling to local lattice distortions. It tends to align
the direction of spins (but not the orientation), i.e., favors
spin collinearity. Here, bij (≡ J 2

ij α
2/2K > 0) is the biquadratic

coupling constant, which is also a bond-disordered variable.
Hereafter, we use b ≡ α2/2K as a parameter which measures
the strength of the spin-lattice coupling. The model (3) is
considered as a fundamental model to unveil intrinsic effects
of the coupling to independent local lattice distortions. We
discuss the results in comparison with the experimental data
for Mo pyrochlores which show no uniform lattice distortion.

On the other hand, when the cooperative aspect of lattice
distortions becomes important as in ZnCr2O4, it is necessary
to include additional contributions beyond the model in
Eq. (3). Effects of the cooperative aspect were discussed in
previous theoretical studies [44–46]. In particular, Bergman
et al. showed that a cooperative lattice distortion induces
effective multiple-spin interactions [46]. They also found that
the multiple-spin interactions bring about effective further-
neighbor interactions for collinear spin states that are favored
by b at low T . In general, such effective exchange interactions
are complicated and dependent on the details of materials.
Tchernyshyov et al. showed that several Néel ordered phases,
including collinear, coplanar, and noncoplanar ones, can
appear as a result of cooperative couplings [44,45]. Indeed,
Cr spinels ACr2O4 exhibit a variety of different spin-lattice
orderings for different cations A; e.g., Cr spinels ACr2O4 show
complex different �q 
= 0 coplanar magnetic orderings for A =
Zn [47] and Hg [48,49], and noncollinear ordering for A =
Cd [50]. However, the study of material-dependent magnetic
structures is out of the scope of this study. Our aim is to extract
an intrinsic effect of the cooperative aspect. For this purpose,
we take into account one of the simplest contributions, the
effective antiferromagnetic interaction for second neighbors
J

coop
2 :

Hcoop ≡ J
coop
2

∑
〈〈i,j〉〉

�Si · �Sj , (4)

where the sum is over the second-neighbor pairs [see Fig. 1(a)].
The physical meaning of J

coop
2 can be understood intuitively

by considering two neighboring bonds, as shown in Fig. 1(c).
Once the center site is shifted toward one of the neighboring
sites, antiferromagnetic spin correlations are enhanced on
the shorter bond by the magnetoelastic coupling, while they
are reduced on the other elongated one. These two effects
cooperatively enhance antiferromagnetic correlations between
the second-neighbor spins, which are effectively represented
by J

coop
2 .

C. Qualitative arguments on the effective model

In this study, we investigate effects of the spin-lattice cou-
pling by using the bilinear-biquadratic model that incorporates

Eq. (4) into Eq. (3):

H =
∑
〈i,j〉

[Jij
�Si · �Sj − b(Jij )2(�Si · �Sj )2]

+ J
coop
2

∑
〈〈i,j〉〉

�Si · �Sj . (5)

In this section, giving qualitative arguments on the expected
phase diagram of the model (5), we present our motivations in
the current study.

1. In the absence of bond disorder

First, let us discuss the case in the absence of bond
disorder � = 0. When both b and J

coop
2 are zero, i.e., in the

absence of spin-lattice coupling, the model is reduced to a
simple antiferromagnetic Heisenberg model on the pyrochlore
lattice with nearest-neighbor exchange interactions only. The
Hamiltonian is rewritten into

H =
∑
〈i,j〉

�Si · �Sj = 1

2

∑
t

| �Mt |2 + const, (6)

where �Mt is the sum of four spin moments �Si on a tetrahedron
t . Thus, the ground state is identified by a collection of
local constraints that �Mt vanishes on every tetrahedron. This
set of constraints, however, does not select a unique ground
state, leaving the continuous macroscopic degeneracy at T =
0 [18,19,51]. In addition, thermal fluctuations do not induce
any order. Therefore, the system does not exhibit any magnetic
ordering in the entire range of T [18,19,51].

For b > 0 and J
coop
2 = 0, the model exhibits a weak first-

order transition at Tc ∼ b to a nematic state [52]. Below Tc,
all spins are aligned parallel or antiparallel to a spontaneously
selected axis �Q. This transition is not a magnetic ordering but
a directional ordering of magnetic moments, corresponding to
the ordering of spin quadrupole moments. The ground state is
now identified by a collection of local constraints equivalent
to the so-called ice rule [53,54]; in every tetrahedron, two out
of four spins are aligned parallel to each other and the other
two are antiparallel to them: “two-up two-down” (ice-rule)
configuration as exemplified in Fig. 2(a). The system still
remains magnetically disordered down to T = 0, while the
ground-state degenerate manifold is modified to a semidiscrete
form due to the spin-lattice coupling b. That is, the energy
landscape has a multivalley structure in which the valleys
correspond to different ice-rule configurations [see Fig. 3(a)].

When J
coop
2 is turned on, the system exhibits a magnetic

transition to a spin-lattice (Néel) ordered state at TN ∝ J
coop
2

as a consequence of the lifting of the degeneracy. The ordering
pattern depends on the sign of J

coop
2 in the absence of b [55,56].

The antiferromagnetic J
coop
2 > 0 induces the �q = 0 collinear

four-sublattice Néel order illustrated in Fig. 2(b), while the
ferromagnetic J

coop
2 < 0 induces a multiple-q order [56].

In the following, we focus on the case with J
coop
2 > 0.

When b > 0, the antiferromagnetic J
coop
2 also selects the

�q = 0 collinear order from the semidiscrete manifold. The
system will exhibit two successive transitions in the small J coop

2
region: the nematic transition at Tc and the Néel transition at
lower TN. When J

coop
2 becomes sufficiently large, the nematic

phase will be completely taken over by the spin-lattice order
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(a) (b)

FIG. 2. (Color online) Ground states of the model (5) for (a)
J

coop
2 = 0 and (b) J

coop
2 > 0 (b > 0 and � = 0). In (a), we show

one of the macroscopically degenerate ground states (ice-rules
configurations). The common axis of spins, which is denoted by
a broken arrow �Q, is spontaneously selected below Tc. In every
tetrahedron, two of spins are aligned parallel to �Q and the other
two antiparallel to �Q. In (b), we present the �q = 0 spin-lattice (Néel)
order. The open and filled circles denote two nonequivalent sites with
opposite spins.

and, hence, the system will exhibit only a single transition
at TN. A similar situation was studied for a third-neighbor
ferromagnetic interaction [52].

2. Effects of bond disorder: Motivation of this study

We are interested in how SG appears when the bond disorder
� is turned on. In the absence of the spin-lattice coupling, the
bond disorder � induces effective long-range interactions and
lifts the ground-state degeneracy [20]. Consequently, a SG
transition at a finite T is induced immediately by switching
on �; the transition temperature Tf is proportional to the
strength of disorder � in the small � region [20,21]. This

En
er

gy

Phase space

Ice-rule states

(b)

(a)

FIG. 3. (Color online) (a) Schematic picture of a multiple valley
structure in the spin-ice-type manifold. (b) Two different ice-rule
states are shown. The hexagon with a bold dashed line denotes one of
the shortest loops on which a flip of all spins transforms the ice-rule
state to another ice-rule state. See the text for details.

? ?

(b) (c)

T

Δ

T

Δ

Nematic
order

T

Δ

Néel order

(a)

Spin glass

FIG. 4. (Color online) Schematic phase diagrams of model (5)
for three typical cases: (a) in the absence of the spin-lattice coupling
b = 0, (b) b > 0 and J

coop
2 = 0, and (c) b > 0 and J

coop
2 > 0. Our

interest here is how the SG transition is induced by the bond disorder
� in the competition with the nematic and Néel orderings, as shown
in (b) and (c).

is schematically shown in Fig. 4(a). The value of Tf was
estimated as Tf = 0.02–0.032 at � = 0.1 in the previous MC
studies [20,21].

For b > 0 and J
coop
2 = 0, a SG may appear immediately for

� > 0 because the ground states are also macroscopically de-
generate. However, the energy landscape has a multiple valley
structure and the ground-state manifold is now semidiscrete.
Furthermore, the system has a new energy scale set by the
spin-lattice coupling b. Therefore, it is highly nontrivial how
Tf appears and develops as a function of � [see Fig. 4(b)].

On the other hand, for J
coop
2 > 0, the spin-lattice order is

induced by the cooperative coupling at � = 0. In this case,
a SG appears in competition with the spin-lattice order, as
observed in ZnCr2O4. Although the effect of a uniform lattice
distortion was studied in the previous theoretical work [41], it
is unclear what happens in the case with local lattice distortions
[see Fig. 4(c)].

Our motivation is, therefore, to clarify the SG behavior
induced by the quenched bond disorder � in the presence
of the spin-lattice coupling b. We clarify the �-T phase
diagrams by extensive MC simulations for the two cases: (i)
b > 0 and J

coop
2 = 0 [Fig. 4(b)] and (ii) b > 0 and J

coop
2 > 0

[Fig. 4(c)]. The corresponding MC results are shown in
Figs. 6(a) and 6(b). We will discuss the results for the former
case in comparison with the experiments in R2Mo2O7 in which
no structural transition is observed in even in high-quality
stoichiometric samples. Meanwhile, we compare the latter
with (Zn1−xCdx)Cr2O4 in which the spin-lattice order at x = 0
is destabilized and taken over by SG.

III. MONTE CARLO METHOD

In the following sections, we investigate thermodynamic
properties of the model (5) using classical MC simulation. We
use the conventional single-spin update [57] together with the
overrelaxation update [58]. We also adopt the exchange MC
method [59] for efficient sampling. The single-spin-flip dy-
namics, however, is severely suppressed by dynamical freezing
at low T below the nematic transition temperature Tc because
of the spin-ice-type local constraint (see Sec. VII). Therefore,
in order to ensure the ergodicity at low T , we also adopt a
nonlocal update method called the loop algorithm [60–64].
After a brief review on the loop algorithm originally
developed for Ising modes [62,63] in Sec. III A, we introduce
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Loop update
0. Update of the projection axis

1. Color assignment (black/white)

2. Loop construction

Replica exchange

Sequential single-spin flips

O
ne M

C
 step3. Spin flip on loop

Repeat

Sampling of physical quantities

FIG. 5. Flowchart of the MC simulation in this study. Each MC
step consists of a lattice sweep by single-spin updates, loop flips, and
a replica exchange between neighboring temperatures.

an extended loop algorithm for Heisenberg spin systems which
was recently developed by the authors [60,61] in Sec. III B.
Section III C summarizes the flowchart of MC simulation with
the extended loop algorithm. We describe the system setup and
the definitions of observables for MC simulation in Sec. III D.

A. Loop algorithm for Ising models with
spin-ice-type degeneracy

For Ising models showing spin-ice-type degeneracy in the
ground state, it is hard to clarify low-T properties by single-
spin-flip MC calculations. This is because the single-spin-flip
MC dynamics is frozen out at low T � J due to “multiple
valley” energy structure of degenerate ground-state manifold
[see Fig. 3(a)]; the low-energy ice-rule states are separated
by large energy barriers, which are not able to overpass
by any single-spin flip as it inevitably violates the ice rule.
This is in clear contrast to the nearest-neighbor Heisenberg
antiferromagnet in Eq. (6), in which the ground-state manifold
is continuously connected without any energy barrier; the
degenerate states can be sampled over by single-spin flips
down to low T � J .

The difficulty can be avoided by a nonlocal flip based on the
loop algorithm [62,63]. Let us consider an Ising model on the
pyrochlore lattice with nearest-neighbor antiferromagnetic in-
teractions [see Fig. 3(b)]. This model has the macroscopically
degenerate ground states that satisfy the two-up two-down
constraint on every tetrahedron [65]. The nonlocal flip, called
the loop flip, consists of two steps: first, we identify a closed
loop which consists of alternating alignment of up and down
spins, and next, we flip all Ising spins on the loop. Such a loop
update transforms an ice-rule state to another ice-rule state
bypassing the energy barriers, as it does not cost the exchange
energy. Indeed, the loop algorithm has been successfully
applied to the study of low-T properties of spin-ice-type Ising
models [63,66–68].

B. Extension of the loop algorithm to bilinear-biquadratic
Heisenberg spin models

We have a similar difficulty for the bilinear-biquadratic
model (5) because the energy landscape also has a “multiple
valley” structure below the nematic transition temperature Tc.
The problem becomes serious as we need to determine the SG
transition temperature Tf which is much lower than Tc in the
small-� region [see Fig. 6(a)].

Recently, the authors extended the loop algorithm to
Heisenberg spin systems with spin-ice-type degeneracy:
Heisenberg models with single-ion anisotropy [60] and
bilinear-biquadratic models [61]. We employ the latter in the
following simulations. In the extended algorithm, at each MC
step, all spins are projected onto an axis to define a set of
Ising discrete variables, and spins on a closed loop are flipped
simultaneously, similar to the Ising case. In Ref. [61], the
authors tested the efficiency of three different ways of carrying
out the loop flip. The acceptance rates of the three updates
are affected by thermal fluctuations in different ways and,
therefore, the most efficient method depends on the value of
b. In this study, we adopt rotate, which is the loop update
with a cyclic rotation of spins along the loop, as it has the
highest acceptance rate at low T for the value of b = 0.2 used
throughout the following simulations.

C. Simulation details

We here describe technical aspects of MC simulations
with the loop update. As illustrated in Fig. 5, each MC step
consists of a sweep of the lattice by sequential single-spin flips,
followed by the loop update and replica exchange between
neighboring temperatures.

In the single-spin-flip sweep, on each site, we first try to
update �Si to a randomly chosen new spin state [57]. Then,
we try to rotate the spin around the molecular magnetic field
by an angle of π (overrelaxation update) [58,69]. These two
updates are performed by the standard Metropolis algorithm
sequentially.

In the extended loop algorithm, the projection spin axis is
updated at every MC step being parallel to the common axis
of spins �Q in the nematic phase [see Fig. 2(a)] [61]. We repeat
the loop flip so that the total CPU time spent for the loop flips
is comparable to that for the single-spin-flip sweep.

For the replica exchange MC method, we optimize the
distribution of temperature points in thermalization MC steps
for each configuration of {Jij } so that the exchange rate is
independent of T . Thermodynamic observables are measured
using the reweighting method [70].

D. System setup and observables

In the following MC simulations, we consider finite-size
systems composed of L3 cubic unit cells, in which the total
number of spins are Ns = 16L3, under periodic boundary
conditions [see Fig. 1(a)]. We take the spin-lattice coupling
b = 0.2 throughout this study. The cooperative coupling is
taken to be J

coop
2 = 0 or 0.075.

To identify the SG, nematic, and �q = 0 collinear antiferro-
magnetic transitions, we calculate the SG susceptibility χSG,
nematic order parameter Q2, sublattice magnetization ms, and
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specific heat C. The SG susceptibility χSG is given by

χSG ≡ Nsq
2
EA, (7)

where q2
EA is the Edwards-Anderson order parameter [71] for

SG defined by

q2
EA ≡ 1

N2
s

〈〈 ∑
μ,ν=x,y,z

(
Ns∑
i=1

Sα
iμS

β

iν

)2〉
T

〉
�

. (8)

Here 〈. . .〉T denotes a thermal average and 〈. . .〉� a random
average over the interaction sets {Jij }; the upper suffixes α and
β denote two independent replicas of the system with the same
interaction set. Siμ (μ = x,y,z) are x, y, z components of the
normalized Heisenberg spin �Si at site i.

The nematic order parameter Q2, which measures the spin
collinearity, is defined as

Q2 ≡ 2

N2
s

〈〈
Ns∑

i,j=1

{
(�Si · �Sj )2 − 1

3

}〉
T

〉
�

. (9)

Note that this is given by the summation of the quadrupole
moments and invariant under O(3) rotations [52]. The suscep-
tibility of Q, χQ, is defined as

χQ ≡ NsQ
2. (10)

The linear magnetic susceptibility χ and the nonlinear
magnetic susceptibility χ3 are defined by

χ = ∂m

∂H
, (11)

χ3 = ∂3m

∂H 3
, (12)

respectively. Here, H is an external magnetic field [see
Eq. (24)], and m is the magnetization per spin along the
magnetic field. Note that the susceptibilities are isotropic and
independent of the direction of the magnetic field.

In the following MC simulations, we compute these
susceptibilities by averaging the fluctuations at H = 0 over
the x, y, and z directions as

χ =
∑

μ=x,y,z

βNs

3

(〈
m2

μ

〉 − 〈mμ〉2)

=
∑

μ=x,y,z

βNs

3

〈
m2

μ

〉
, (13)

χ3 =
∑

μ=x,y,z

β3N3
s

3

(〈
m4

μ

〉 − 4〈mμ〉〈m3
μ

〉 − 3
〈
m2

μ

〉2
+ 12〈mμ〉2〈m2

μ

〉 − 6〈mμ〉4)
=

∑
μ=x,y,z

β3N3
s

3

(〈
m4

μ

〉 − 3
〈
m2

μ

〉2)
, (14)

where the magnetization in the μ direction (μ = x,y,z) is
defined by

mμ = 1

Ns

∑
i

Siμ, (15)

and β = 1/T is the inverse temperature. Note that 〈mμ〉 = 0
for all the states considered in this study.

We also compute the cubic susceptibility χ3 defined by [72]

χ3 = 6

(
∂3H

∂m3

)−1

= −6χ4

χ3
. (16)

The sublattice magnetization ms is defined as

ms ≡ 2

Ns

⎛
⎝〈〈∑

l

∣∣∣∣∣
∑
i∈l

�Si

∣∣∣∣∣
2〉

T

〉
�

⎞
⎠

1/2

, (17)

where l labels the four sublattices of the pyrochlore lattice.
The specific heat C is calculated by

C =
〈〈H2〉T − 〈H〉2

T

〉
�

NsT
. (18)

All data shown in the following sections are averaged over
a number of interaction sets varying from 100 to 2000. Typical
MC steps for thermalization vary from 104 to 107 depending
on L and �. Monte Carlo steps for measurement are taken to
be several times longer than those for thermalization. Data
obtained in independent MC runs for different interaction
sets are split into several bins (typically 16). Error bars are
estimated by computing standard deviation for the bins.

IV. PHASE DIAGRAMS AND NATURE
OF PHASE TRANSITIONS

In the following, we present the results for the model in
Eq. (5) obtained by MC calculations. Although some parts of
the results have been already published in our previous pa-
per [42], we include them for making this paper self-contained
and also for discussing the results in a more comprehensive
way. In Sec. IV A, we overview the phase diagrams obtained
by MC simulations. We show that the spin-lattice coupling
induces peculiar SG behavior. A qualitative argument on its
origin is given. In Sec. IV B, we focus on the case without
J

coop
2 . We discuss the nature of the nematic and SG transitions

for J
coop
2 = 0 by showing MC data of the specific heat C,

the spin collinearity Q2, and the SG susceptibility χSG. The
results for J

coop
2 = 0.075 are discussed in Sec. IV C. We show

the data of the sublattice magnetization ms, in addition to the
above three quantities. We discuss the nature of the spin-lattice
order induced by J

coop
2 as well as effects of J

coop
2 on the SG

behavior.

A. Overview of calculated phase diagrams

Figures 6(a) and 6(b) show the phase diagrams obtained
at J

coop
2 = 0 and 0.075, respectively, for b = 0.2. These

phase diagrams illustrate the fate of the nematic and Néel
phases respectively in the presence of disorder [see Figs. 4(b)
and 4(c)]. We start with the results for J

coop
2 = 0. In the

small-� region (� � b), as T is lowered, the system undergoes
successive two transitions: a first-order nematic transition at
Tc � b and a second-order SG transition at Tf ∝ �. We call
this regime the linear regime because Tf grows approximately
linearly with �. A remarkable observation is that Tf is largely
enhanced compared to that in the bilinear limit (b = 0) [20,21];
the enhancement factor reaches about 3–5.
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FIG. 6. (Color online) �-T phase diagrams obtained by MC
simulation at b = 0.2: (a) J

coop
2 = 0.0 and (b) J

coop
2 = 0.075. The

nematic (Tc), antiferromagnetic (TN), and SG transition temperatures
(Tf ) are denoted by squares, triangles, and circles, respectively. In
(a), Tf coincides with Tc for � � 0.3, suggesting a multicritical
point at � � 0.3(� b). The cross in (a) denotes Tf for b = 0 and
� = 0.1 [20,21]. See the text for details.

At � � b, Tf appears to merge into Tc. For larger �,
Tf(= Tc) becomes nearly independent of � and Tf � b, which
we call the plateau regime. This is in sharp contrast to
the previously reported SG behavior in the absence of the
spin-lattice coupling Tf ∝ � [20,21].

Now, we give a qualitative description of the origin of the
two peculiar aspects of the SG behavior: (i) the enhancement
of Tf by b and (ii) the plateau behavior of Tf at Tf � b.
Figure 7 shows a schematic phase diagram for 0 < b < J

and J
coop
2 = 0. In the presence of the spin-lattice coupling

b, the spin collinearity growing in the nematic phase below
Tc enforces spins to satisfy the spin-ice-type local constraints,
leading to the formation of locally correlated collinear objects.
There, the system bears a semidiscrete degenerate manifold
with multivalley energy landscape as illustrated in Fig. 3(a).
This strongly suppresses thermal fluctuations compared to
the bilinear case with b = 0 where the degenerate manifold
is continuously connected. At the same time, the spin-spin
correlations are much enhanced to exhibit quasi-long-range
behavior below Tc due to the spin-ice-type macroscopic
degeneracy [52]. As illustrated in Fig. 7, these effects enhance
Tf from the dotted line of Tf for b = 0 to the broken line
Tf � �. This mechanism, however, does not work above Tc. As
a result, while increasing �, Tf is saturated at Tc � b, leading
to the plateau behavior of Tf for � � b. Note that the plateau

T

Δ

               Spin glass
(concomitant with nematic order)

Nematic phase

Bond disorder

Linear regime Plateau regime

FIG. 7. (Color online) Schematic �-T phase diagram for b > 0
and J

coop
2 = 0 [see Fig. 6(a)]. The nematic transition temperature Tc

is almost independent of � as Tc � b. On the other hand, the SG
transition temperature Tf increases linearly with � in the small-�
region. Tf is enhanced by b compared to that in the bilinear limit
(b = 0) denoted by the dotted line. The nematic and SG transitions
merge into a concomitant transition for � � b.

behavior of Tf is transient; namely, Tf will increase again for
a sufficiently large �, presumably along the extension of the
dotted line of Tf for b = 0. (Such behavior is not observed for
the current parameter sets.)

Let us move onto the results for J
coop
2 = 0.075 [Fig. 6(b)]. In

this case, the nematic phase is taken over completely by the �q =
0 spin-lattice (Néel) order, whose transition temperature TN is
in the energy scale of J

coop
2 . As � increases, the spin-lattice

order vanishes around � � TN. For larger �, a concomitant
transition of nematic and SG is seen at Tc = Tf � b similarly
to the case with the cooperative coupling. Furthermore, as
discussed later on, the thermodynamic properties in the plateau
regime are essentially the same as at J

coop
2 = 0. These indicate

that the plateau behavior of Tf is robust against the cooperative
aspect of bond distortions.

B. Case without the cooperative coupling: J coop
2 = 0

1. Successive nematic and spin-glass transitions
in the linear regime

We discuss the nature of the successive nematic and SG
transitions in the linear regime in the case of J

coop
2 = 0.

Figures 8(a)–8(d) show the specific heat C, spin collinearity
Q2, and SG susceptibility χSG calculated for � � 0.3. One
can clearly see that C exhibits a sharp peak concurrently with
the onset of Q2 at Tc � 0.2–0.25. These indicate the nematic
transition. Furthermore, the peak value of C, Cpeak, appears to
diverge in the thermodynamic limit; the data are well fitted by

Cpeak ∝ Lp (19)

with p > 0 as shown in Fig. 9(a) (see also Table I). Although
p = 3 is expected for a first-order transition, we obtained p =
1.4(1) at � = 0. This may be due to finite-size effects. Indeed,
some three-dimensional biquadratic models show a weak first-
order transition, where finite-size effects are substantial for
small system sizes [73,74]. We estimated Tc by extrapolating
the peak temperature of C to the thermodynamic limit, as
shown in Fig. 9(b). The resulting values of Tc are summarized
in Table I and plotted in Fig. 6(a). It is noteworthy that Tc

is almost independent of � or even enhanced by � slightly.
This is presumably because of the competition between the
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FIG. 8. (Color online) The specific heat C, spin collinearity Q2, and SG susceptibility χSG calculated at b = 0.2 for (a) � = 0.0, (b) 0.1,
(c) 0.2, (d) 0.3, (e) 0.5, and (f) 0.8. The data are calculated for the system sizes ranging from L = 2 (128 spins) to L = 8 (8192 spins).

randomness in bij and Jij : The former suppresses local spin
collinearity, while the latter does the opposite [22].

On the other hand, χSG shows divergent behavior at a lower
T , as shown in Fig. 8. This is a signature of the SG transition. In
order to estimate the SG transition temperature Tf , we perform
the finite-size scaling analysis by assuming

χSG = Lγ/νf (L1/ν t). (20)

Here, t = (T − Tf)/Tf , ν and γ are the critical exponents for
the correlation length and χSG, respectively. Figures 10(a)–
10(c) show the scaling collapses of MC data obtained at
� = 0.1, 0.2, and 0.3, respectively. All the MC data collapse
onto a single curve within error bars throughout the linear
regime. The resulting Tf and the critical exponents are listed
in Table I (we also show the values of critical exponents in the
literature [20,21,75,76]). The values of the critical exponents
for � = 0.1 are consistent with those in the bilinear limit
b = 0 [20,21] as well as of the canonical SG [75,76] within

the error bars. Note that γ becomes smaller approaching
the multicritical point near � = 0.3. Also, the scaling for
� = 0.2 in Fig. 10(b) shows rather poor convergence. These
are presumably due to finite-size effects, which become more
conspicuous when Tf comes close to Tc.

Now, we examine the effect of spin collinearity induced
by the spin-lattice coupling b on Tf . As listed in Table I, the
estimated Tf in the linear regime is largely enhanced from the
value in the bilinear limit b; e.g., for � = 0.1, Tf = 0.102(14)
at b = 0.2, which is 3–5 times larger than Tf = 0.02–0.032 at
b = 0 [20,21]. In order to clarify the behavior in the collinear
limit b → ∞, we consider an Ising counterpart of the present
model:

H =
∑
〈i,j〉

Jijσiσj . (21)

Here, σi(= ±1) denotes an Ising spin at site i, and Jij are
the bond-disordered antiferromagnetic exchange interactions
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FIG. 9. (Color online) (a) L dependence of the peak values of
the specific heat C, Cpeak. The lines are power-law fitting by Cpeak ∝
Lp . The obtained values of p are shown in Table I. (b) System-size
dependencies of the peak temperature of C. The lines represent the
extrapolations of Cpeak to the bulk limit with Tc(L) − Tc ∝ 1/L3. The
obtained values of Tc are summarized in Table I.

defined in Eq. (2). The ground state has spin-ice-type macro-
scopic degeneracy with discrete energy landscape. Figure 11
shows a scaling collapse of χSG calculated for the model (21)
at � = 0.1. We obtained Tf = 0.151(2), which is 5–8 times
higher than that in the bilinear Heisenberg limit b = 0 [20,21].
This indicates that the discrete structure of the degenerate
manifold enhances Tf . The result supports that the spin
collinearity and associated semidiscrete manifold emergent
below Tc can be responsible for the remarkable enhancement
of Tf by b. Also, it suggests that the enhancement factor of Tf

ranges up to 5–8 at � = 0.1 depending on the value of b.

2. Concomitant transition in the plateau regime

The two successive transitions merge into a single transition
at � � b; that is, for larger �, χSG diverges concurrently
with the onset of Q2, as shown in Fig. 8. We estimated
Tc by extrapolating the peak temperature of C in the same
manner as in the linear regime [see Fig. 9(b) and Table I].
We also performed the finite-size analysis for χSG to estimate
Tf ; we successfully obtained scaling collapses, as shown in
Figs. 10(d) and 10(e). As shown in Table I, Tc and Tf estimated
independently coincide with each other within error bars in the
plateau regime � � 0.3, indicating that the nematic and SG
transitions occur concomitantly. The results also indicate that
the MC data are compatible with the second-order transition,
in contrast to the weak first-order transition at Tc in the linear
regime.

To examine the critical properties of the concomitant
transition in more detail, we perform a finite-size scaling
analysis for χQ at � = 0.8. Similarly to χSG, we assume

χQ = LγQ/νQfQ(L1/νQ t), (22)

where t = (T − Tc)/Tc, and νQ and γQ are the critical
exponents for the correlation length and χQ, respectively.
As demonstrated in Fig. 12(a), we successfully obtained a
scaling collapse of the data for 4 � L � 8 with Tc = 0.249(1),
γQ = 1.6(1), and νQ = 0.78(2). It is worth noting that we
observed no significant system-size dependence in the scaling
results as shown in Table II; the estimates for different ranges
of L, i.e., 2 � L � 4 and 4 � L � 8, coincide with each other
within the error bars. The value of Tc is consistent with that
estimated by the extrapolation of the peak temperature of
C. Furthermore, Tc and the critical exponents are consistent
with those obtained by the finite-size scaling analysis of χSG

within error bars (see Table I). All of these results provide
strong evidence for the concomitant nature of the SG and
nematic transitions; two transitions occur concomitantly, in a
second-order fashion with the identical critical exponents.

As seen in Figs. 8(e) and 8(f), the peak in C is markedly
suppressed and broadened in the plateau regime. Let us focus
on the result at � = 0.8 in Fig. 8(f). As shown in Fig. 12(b), the
peak value Cpeak shows a very weak L dependence. The growth
gets slower as L increases; when we fit the data by Cpeak ∝ Lα ,
the exponent α decreases as L increases [α = 0.076(1) for 2 �
L � 4, and α = 0.046(2) for 5 � L � 8]. Alternatively, the

TABLE I. Transition temperatures and critical exponents for the nematic and SG transitions. We estimated Tc and p by the finite-size
analysis of C (see Fig. 9). The SG transition temperatures Tf and the exponents γ and ν are estimated by finite-size scaling of χSG (see Fig. 10).
For comparison, we show critical exponents for b = 0 and the canonical SG in the literature, respectively.

Nematic transition SG transition

� Tc p Tf γ ν

0.0 0.219(1) 1.4(1)
0.1 0.225(1) 0.88(4) 0.102(14) 2.24(75) 1.16(18)
0.2 0.236(1) 0.75(3) 0.20(2) 2(1) 0.9(3)
0.3 0.246(1) 0.623(5) 0.240(2) 0.6(2) 0.58(6)
0.5 0.256(1) 0.317(6) 0.256(1) 0.71(6) 0.65(1)
0.8 0.2482(4) 0.046(2) 0.248(2) 1.5(1) 0.80(2)
b = 0 (� = 0.1) [20,21] 0.026(6) 1.3(3) 1.05(15)
Canonical SG [75,76] 1.9(4) 1.49(13)
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data can be well fitted by assuming C−1
peak = aLq + C−1

peak(∞)
with q � −1 [see Fig. 12(c)]. These results suggest that C

is nonsingular in the thermodynamic limit. The broad peak
behavior is apparently similar to that observed in the canonical
SG [2], but the peak is located at Tf(= Tc) in the present case.
This is in contrast to the case of the canonical SG in which
the peak temperature Tpeak exceeds Tf typically by 20% [2].
The broad peak at Tf(= Tc) will be of characteristic of the
SG transition concomitant with the nematic transition in the
present system. We will discuss effects of a magnetic field on
the peak structure in Sec. VI. Comparisons with experiments
are given in Sec. VIII.

C. Case with the cooperative coupling: J coop
2 > 0

Now, we move onto the results with the cooperative
coupling J

coop
2 = 0.075. In the small-� region (� � 0.3), the

system undergoes a first-order transition to the spin-lattice
(Néel) ordered state at TN. Typical MC data calculated at
� = 0 and 0.2 are shown in Figs. 13(a) and 13(b), respectively.
The square of sublattice magnetization m2

s exhibits a steep rise
at TN � 0.3, and the specific heat C shows a sharp peak at
the same time. These clearly indicate that the transition is first
order. We estimated the Néel transition temperature TN by
extrapolating the peak temperature of C to the bulk limit (see
Fig. 14). The obtained values are TN = 0.293(3), 0.291(3), and
0.275(7) for � = 0, 0.2, and 0.25, respectively; the values are
plotted in Fig. 6(b).

As � increases, the spin-lattice ordered phase is desta-
bilized by disorder; e.g., at � = 0.5, m2

s decreases as L

increases even at the lowest T (� 0.22) investigated, as shown
in Fig. 13(c). To estimate the critical value of �, we plot m2

s
as functions of � at T = 0.25, 0.2, and 0.1 in Fig. 15. We
estimated the phase boundary by the inflection point of m2

s (�)
curve at each T and plotted them in Fig. 6(b).

For larger � � 0.3, the system exhibits a single and
concomitant transition of SG and nematic at T � b similarly
to that in the plateau regime for J

coop
2 = 0. Typical MC data

in this regime are shown in Figs. 13(c) and 13(d). At T � b,
Q2 shows a rapid increase, which is accompanied by a broad
peak in C. Below the same T , χSG shows divergent behavior
as L increases. As shown in Fig. 14, we estimated Tc by
extrapolating the peak temperatures of C to the bulk limit. On
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FIG. 12. (Color online) Finite-size scaling analysis of the ne-
matic transition at � = 0.8 and J

coop
2 = 0. (a) Scaling collapse of

χQ for the data in the range of 0.225 � T � 0.275. We obtained
Tf = 0.248(2), γQ = 1.5(1), and νQ = 0.80(2). (b) Semilogarithmic
plot of the L dependence of Cpeak. (c) 1/Cpeak as a function of 1/L.

the other hand, we estimate the transition temperatures by the
finite-size scaling of χSG and χQ as in the case of J

coop
2 = 0; we

successfully obtained scaling collapses for 0.35 � � � 0.8.
The typical results obtained for � = 0.5 and 0.8 are shown in
Fig. 16. The values of Tc and Tf as well as the critical exponents
are shown in Table III. The values for the exponents obtained
for � = 0.8 are consistent with those for J

coop
2 = 0 listed in

Tables I and II. This indicates that the critical properties of the
concomitant transitions in the plateau regime are essentially
the same for J

coop
2 = 0 and 0.075.

TABLE II. Comparison of Tf , Tc, and critical exponents at � =
0.8 and J

coop
2 = 0.8 for different sets of L used in the finite-size

scaling analysis. The upper row shows the results obtained for the set
of L = 2,3,4, while the lower for L = 4,5,6,8.

χSG χQ

System sizes Tf γ ν Tc γQ νQ

L = 2,3,4 0.248(2) 1.57(7) 0.79(2) 0.242(2) 2.0(3) 0.87(7)
L = 4,5,6,8 0.248(2) 1.5(1) 0.80(2) 0.249(1) 1.6(1) 0.78(2)

V. MAGNETIC SUSCEPTIBILITY

In this section, we investigate effects of the spin-lattice cou-
pling on the magnetic susceptibility in the bilinear-biquadratic
model. In Sec. V A, we discuss the linear susceptibility in
the high-T paramagnetic phase. A difference between the FC
and ZFC susceptibilities in the SG phase are investigated in
Sec. V B. We analyze high-T behavior and critical properties
of nonlinear susceptibilities in Sec. V C. Throughout these
sections, we focus on the case without the cooperative
coupling: J

coop
2 = 0.

A. Linear susceptibility in the paramagnetic phase

Let us first discuss the T dependence of susceptibility χ

defined in Eq. (13). The result calculated at b = 0.2 is shown
in Fig. 17. At high T > 1.0, the data are well fitted by the
Curie-Weiss law:

χ = CCW

T − θCW
, (23)

where θCW is the Curie-Weiss temperature and CCW is the
Curie-Weiss constant. From the fitting in the range of 1.0 <

T < 1.5, we obtain θCW � −3.1 and CCW = 0.39–0.41. The
estimates show deviations from the expected values θCW = −4
and CCW = 1

3 for the present model with the mean value of Jij

unity and | �Si | = 1. The deviations are presumably because the
T range for the fitting is not high enough.

On the other hand, at lower T , the T dependence of
χ deviates from the Curie-Weiss law. In particular, below
T ∼ 0.5, χ is suppressed from the Curie-Weiss behavior for
small �, presumably due to the growth of antiferromagnetic
correlations. Meanwhile, the low-T part is increased as �

increases. This enhancement of χ may be ascribed to the
existence of spins which are weakly coupled to their neighbors
in the presence of randomness.

Figure 17(b) shows an enlarged plot of the T dependence
of χ for T < 1. Interestingly, χ shows Curie-Weiss–type T

dependence with different θCW and CCW in this intermediate-T
range. Figure 17(b) shows the results of fitting in the range
of 0.6 � T � 0.9. We found that the estimated value of
θCW sensitively increases as � increases; for instance, θCW

increases from −4.5 at � = 0.5 to −3.5 at � = 0.8. On
the other hand, the estimated value of CCW decreases as �
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FIG. 13. (Color online) The specific heat C, spin collinearity Q2, SG susceptibility χSG, and the square of sublattice magnetization m2
s ,

calculated at b = 0.2 and J
coop
2 = 0.075: (a) � = 0.0, (b) 0.2, (c) 0.5, and (d) 0.8.

increases; from CCW = 0.53 at � = 0.5 to 0.43 at � = 0.8.
Comparisons with experiments are given in Sec. VIII.

B. Hysteresis in the susceptibility in the SG phase

Now, we discuss the hysteresis of magnetic susceptibility in
the SG phase. In the canonical SG, the magnetic susceptibility
shows hysteresis below Tf , i.e., different T dependence be-
tween FC and ZFC susceptibilities. Such magnetic hysteresis
was seen also in frustrated SG materials, e.g., Y2Mo2O7 [23]
and CoAl2O4 [35].

To compare the SG behavior in the present model with
experiments, we compute the FC and ZFC susceptibilities
by MC simulation as follows. For the FC susceptibility, we
first thermalize the system in the paramagnetic phase in an
external magnetic field H by adding the Zeeman term to the
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T N
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1/L3

Δ=0.0 
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FIG. 14. (Color online) Extrapolation of the peak temperatures
of the specific heat C to the bulk limit. The data are calculated with
b = 0.2 and J

coop
2 = 0.075.

Hamiltonian:

HZeeman = −H
∑

i

Siz. (24)

Then, the system is cooled down in steps of �T = 0.05. The
system is equilibrated at each T for 1000 MC steps, in which
magnetization is measured simultaneously. On the other hand,
for the ZFC susceptibility, we cool down the system in a similar
manner to the FC case but in the absence of magnetic field.
We store the spin configurations at each T in the cooling
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m
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FIG. 15. (Color online) Squared sublattice magnetization m2
s as

a function of � at (a) T = 0.25, (b) 0.2, and (c) 0.1. We take b = 0.2
and J

coop
2 = 0.075.
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FIG. 16. (Color online) Scaling collapses of the SG susceptibility χSG and nematic susceptibility χQ at (a) � = 0.5 and (b) 0.8 for
J

coop
2 = 0.075 and b = 0.2 in the plateau regime [see Fig. 6(b)]. We take b = 0.2 and J

coop
2 = 0.075. The estimated values for the transition

temperatures and the critical exponents are presented in Table III.

processes. Then, we apply a magnetic field to the system at
each T and measure the magnetization for 1000 MC steps.
In the simulations, we use only the single-spin update and
overrelaxation. We omit the loop algorithm, as such global
relaxation process is presumably absent in real systems.

We show the results for the FC and ZFC susceptibilities
in the plateau regime in Fig. 18. At � = 0.5, which is close
to the multicritical point, the FC and ZFC susceptibilities are
suppressed below Tf due to the spin collinearity induced by
b. At the same time, a difference appears between the FC
and ZFC susceptibilities below Tf , reflecting spin freezing. As
� increases, the suppression of the susceptibility below Tf

becomes less pronounced, while the difference between the
FC and ZFC data becomes more apparent. In particular, at
� = 0.8, the FC susceptibility increases continuously below
the transition temperature, being in contrast to the result for
� = 0.5. Thus, our model reproduces the hysteresis behavior
of the magnetic susceptibility observed in the frustrated SG
materials.

TABLE III. Comparison of the transition temperatures and
critical exponents of the SG and nematic transitions for b = 0.2 and
J

coop
2 = 0.075. The values are estimated from the finite-size scaling

in Fig. 16.

χSG χQ

� Tf γ ν Tc γQ νQ

0.5 0.256(1) 1.02(2) 0.65(1) 0.258(1) 1.15(3) 0.62(1)
0.8 0.27(2) 1.1(4) 0.97(5) 0.255(5) 1.4(1) 0.83(2)
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FIG. 17. (Color online) T dependence of the inverse of the
magnetic susceptibility χ calculated at b = 0.2 and J

coop
2 = 0 for

L = 3. The data are plotted for 0.0 � T � 1.5 and 0.2 � T � 1.0 in
(a) and (b), respectively. The lines in (a) and (b) denote the fits by
the Curie-Weiss law in Eq. (23) in the range of 1.2 � T � 1.5 and
0.6 � T � 0.9, respectively.
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2 = 0. The data are calculated at H = 0.1 for L = 3.

C. Nonlinear magnetic susceptibilities

As seen in Sec. V A, the spin-lattice coupling b does not
affect the high-T behavior of the linear susceptibility. Instead,
a fingerprint of b appears in the cubic susceptibility χ3 defined
by Eq. (16): at high T , χ3 obeys a Curie-Weiss–type law as

χ3 = 6

(
∂3H

∂m3

)−1

∝ 1

T − θ3
, (25)

where θ3(> 0) is proportional to b in a mean-field argument
for clean systems [72]. This allows us to estimate the spin-
lattice coupling in experiments. It is, however, unclear how
the randomness � affects this high-T behavior.

Figure 19(a) shows χ3 calculated for different values of b

at � = 0. As expected, the data obey the Curie-Weiss–type
law at high T . The estimated value of θ3 by the fitting by
Eq. (25) linearly increases with b, as plotted in the inset of
Fig. 19(a). We further show the T dependence of χ3 while
varying � at b = 0.2 in Fig. 19(b). χ3 is insensitive to �.
Indeed, as shown in the inset of Fig. 19(b), the estimates of
θ3 are almost independent on �. Our results indicate that the
strength of the spin-lattice coupling b can be measured by
nonlinear susceptibility measurements even in the presence of
randomness.

An alternative measure of the nonlinearity in the mag-
netic behavior is the nonlinear susceptibility χ3(≡ ∂3m/∂H 3)
defined in Eq. (12). While this quantity displays a positive
divergence at a nematic transition [77], it shows a negative
divergence at a canonical SG transition as [78,79]

χ3 ∝ −|T − Tf|−γ , (26)

with a positive γ . A negative divergence of χ3 at Tf was
also reported for one of geometrically frustrated SG materials
Y2Mo2O7 [23]. Thus, it is of interest how χ3 behaves at the
concomitant transition of nematic and SG in the plateau regime
in our model.

Figure 20 shows χ3 calculated for different values of � at
b = 0.2. The result in the absence of randomness is shown in
Fig. 20(a). Below Tc, χ3 increases as the system size increases,
indicating that χ3 diverges to +∞ at the nematic transition.
Similar behavior is observed in the nematic transition in the
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FIG. 19. (Color online) T dependence of the inverse of the cubic
susceptibility χ3 calculated at J

coop
2 = 0. The system size is L = 1

(128 spins). (a) The data for different b at � = 0. The straight lines
denote the fits by high-T asymptotic behavior in Eq. (25). The inset
shows the estimated θ3 is shown as a function of b. (b) The data for
different � at b = 0.2. The straight lines denote the fits by Eq. (25).
The inset shows the � dependence of the estimated θ3.
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linear regime, as shown in Fig. 20(b). In contrast, χ3 shows
a negative divergence at the concomitant transition in the
plateau regime. This is clearly seen in the result at � = 0.8 in
Fig. 20(c).

To confirm the negative divergence of χ3 in the bulk limit,
we perform a finite-size scaling analysis by assuming

χ3 = −Lγ/νf (L1/ν t). (27)

Here, we fixed Tf at the value obtained by the scaling analysis
of χSG (see Table I). Figure 21 shows the result at � = 0.8
for L = 2–6. The data collapse onto a single curve within
error bars, indicating that χ3 continuously diverges at Tf .
The large error bars of χ3 are because the MC sampling
of the fourth-order moment in Eq. (14) suffers from bad
statistics. The exponents are estimated to be γ = 2.8 ± 0.5
and ν = 1.7 ± 0.3. These results support that χ3 exhibits a
negative divergence with γ > 0 at the concomitant transition
as in the case of the canonical SG. This is consistent with
the experimental result for Y2Mo2O7 as we will discuss in
Sec. VIII.

VI. EFFECTS OF MAGNETIC FIELD

In this section, we discuss effects of an external magnetic
field on the concomitant transition in the plateau regime.
The canonical SG is sensitively affected by a magnetic field,
even when the energy scale of the field is considerably
smaller than Tf at H = 0. For instance, the transition tem-
perature decreases rapidly for H as Tf(H )/Tf (H = 0) − 1 ∝
−[H/Tf (H = 0)]2/3, which is called the Almeida-Thouless
line, at the mean-field level.1 Although effects of a magnetic
field on canonical SG beyond the mean-field approximation
are still under investigation, it was reported that a weak
magnetic field destroys SG for an Ising three-dimensional

1For more detail, please refer to Sec. II C 3 in Ref. [2].
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FIG. 22. (Color online) (a) H dependence of the specific heat C

at � = 0.5. (b) H dependence of the ZFC (open circles) and FC
(filled squares) susceptibilities at � = 0.8. See also Fig. 18. The data
are calculated at J

coop
2 = 0 for the system size L = 3.

Edwards-Anderson model [31,32]. In contrast, as mentioned
in Sec. I, the SG transition in Y2Mo2O7 is less susceptible to
an external magnetic field [26]. Thus, it is of interest to clarify
how the specific heat and the magnetic susceptibility behave
in an external magnetic field for understanding SG behavior
in frustrated SG magnets.

Figure 22(a) shows the specific heat calculated at different
magnetic fields at b = 0.2, J coop

2 = 0, and � = 0.5. At H = 0,
the T dependence of the specific heat displays a peak around
Tf . For H > 0, the peak shows less change in its position and
height up to H � 1, whose energy scale is much larger than
Tf � 0.25. The peak is slightly broadened and shifted to a
lower T for H � 1, as shown in Fig. 22(a).

Figure 22(b) shows the H dependence of the ZFC and
FC susceptibilities calculated at � = 0.8. The magnetic
susceptibilities were calculated in the same procedures as in
Sec. V B. At H = 0, the ZFC susceptibility shows a cusp
around Tf , below which the ZFC and FC susceptibilities split.
The temperature where the split takes place remains almost
unchanged up to H = 2.0, as shown in Fig. 22(b). We note
that the split becomes smaller as H increases, but it increases
for H � 1, as shown in Fig. 22(b).

The results show that the concomitant transition, i.e., the
peak in the specific heat and the hysteresis in the susceptibility,
are robust against an applied magnetic field. This is in clear
contrast to the canonical SG which is strongly disturbed by the
magnetic field. The results well explain the robust SG behavior
observed in Y2Mo2O7 [26].
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VII. SINGLE-SPIN-FLIP DYNAMICS IN
THE NEMATIC PHASE

As shown in Sec. IV B, the spin-lattice coupling induces the
nematic phase in the weakly disordered region as well as in the
clean case in the absence of the cooperative coupling J

coop
2 .

The system exhibits the semidiscrete spin-ice macroscopic
degeneracy in the nematic phase, which may lead to peculiar
spin relaxation.

Indeed, spin dynamics characteristic to the spin-ice man-
ifold has been extensively investigated for understanding
magnetic properties in 4f pyrochlores, such as DY2Ti2O7

and HO2Ti2O7 (refer to Ref. [15] for a review). The Ising
dipolar spin-ice model, which includes ferromagnetic nearest-
neighbor interactions and long-range dipolar interactions as
well as the local [111] easy-axis anisotropy, is considered to be
the relevant model for these compounds. When the long-range
dipolar interactions are omitted, the low-T state of the system
suffers from the spin-ice macroscopic degeneracy. That is,
the system has the macroscopic number of degenerate ground
states, which are separated by large energy barriers on the
order of the exchange interaction. Although the long-range
parts of the dipolar interactions lift the spin-ice degeneracy,
standard single-spin-flip MC simulations do not observe any
transition down to low T [80]. This is due to the freezing of
the MC dynamics in the spin-ice manifold: once the system
enters into one of the spin-ice degenerate states, the system
is dynamically trapped in the local minimum [62,63]. On
the other hand, the real materials, such as DY2Ti2O7 and
HO2Ti2O7, do not show any magnetic transition down to
the lowest T in experiments [81,82]. Furthermore, low-T
specific-heat measurements are in good agreement with results
of the single-spin-flip MC simulations [82,83]. These results
indicate that they are in a nonequilibrium state and the spin
dynamics becomes local at low T . Indeed, nonequilibrium
dynamics of local excitations from spin-ice states (monopoles)
has been extensively studied for understanding magnetic
and thermodynamic properties in dipolar spin-ice materials
[84–86].

For the present model with the biquadratic interaction,
the spin collinearity emerges in the nematic phase in the
weakly disordered region (see Fig. 3). Since this enforces
spins to follow the ice rule, similar dynamical freezing of
spin dynamics is expected in the nematic phase. To see
how spin dynamics freezes as T is lowered, we perform
MC simulation only with the single-spin-flip update. Spin
relaxation is measured by the autocorrelation function in the
form

A(n) = Cnorm

{〈(∑
i

�Si(n0) · �Si(n0 + n)

)2〉
�

−
〈( ∑

i

�Si(n0) · �Si(n0 + ∞)

)2〉
�

}
, (28)

where �Si(n) is the spin at ith site in the sample at nth MC
step. We take A(0) = 1 (Cnorm is a normalization factor). The
autocorrelation function measures the correlation between the
MC samples in the interval n. We calculate this quantity after
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FIG. 23. (Color online) Autocorrelation functions calculated
with � = 0.1, b = 0.2, and J

coop
2 = 0.0 (linear regime). The MC

dynamics exhibits a dynamical freezing below Tc � b.

the Monte Carlo dynamics is thermalized at each T . In this
study, we fix n0 to the first MC step after the thermalization.

Figure 23 shows the autocorrelation functions calculated
with � = 0.1. We obtained essentially the same data for � = 0
(not shown). At high T > b, e.g., T = 0.38, the autocorrela-
tion functions decay rapidly. The nonzero asymptotic values
A(∞)(>0) are due to a finite-size effect, which vanish as L

increases. At lower T < Tc � 0.225, the emergent multivalley
structure is expected to prevent the single-spin-flip dynamics
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from exploring the whole manifold. Indeed, the autocorrelation
functions exhibit a severe freezing when entering the nematic
phase; the autocorrelation functions do not vanish even after
4 × 105 MC steps at T = 0.15. Note that this T range is still
higher than Tf � 0.102 at � = 0.1. These results indicate that
the spin freezing may appear at Tc � b even for negligibly
small randomness when only single-spin-flip dynamics is
considered. In the next section, we discuss implications of
these results in understanding of the robust glassy dynamics
of spins experimentally observed in frustrated magnets.

VIII. COMPARISONS WITH EXPERIMENTS

In this section, we discuss the results of the peculiar SG
behavior induced by the spin-lattice coupling in comparison
with experiments. Experimentally, even high-quality samples
of the stoichiometric compound Y2Mo2O7 show a SG tran-
sition. The robust SG behavior was recently observed also
for a single crystal [26]. A chemical disorder, introduced
by, e.g., La substitution of Y, does not affect the critical
temperature Tf , while it significantly increases the Curie-
Weiss temperature [28]. Our results presented in this paper
provide a way of understanding the peculiar SG behavior.
An important observation is that many experiments suggest a
substantial bond disorder even in the stoichiometric samples
without chemical disorder [36–38,40]. The relevance of the
spin-lattice coupling was also pointed out [39]. Suppose that
the compounds inevitably include a substantial disorder and
are already in the plateau regime, they undergo a concomitant
phase transition, and the critical temperature Tf can be
large and remain almost constant against additional disorder,
as discussed in Sec. IV B 2. In contrast, the Curie-Weiss
temperature θCW estimated above Tf changes depending on
the additional disorder, as shown in Sec. V A. In Sec. VII,
we further showed that single-spin-flip dynamics freezes even
in the weakly disordered regime once the system enters the
nematic phase. Although it is not obvious how this slowing
down is observed in experiments, the results suggest that, in
the experimental time scale, the glassy spin dynamics might be
observed at around Tc, which is set by the spin-lattice coupling
b, even if randomness is negligibly small.

Our results are also consistent with the experimental results
for the magnetic specific heat. For Y2Mo2O7, a broad peak
was observed around Tf in the T dependence of the specific
heat [30]. Furthermore, the broad peak was recently reported
to be insensitive to an applied magnetic field [26]. These
are in clear contrast to the canonical SG; the specific heat
exhibits a cusp at a slightly higher temperature than Tf ,
and Tf is sensitively suppressed by a magnetic field [2].
The peculiar behavior, however, is reproduced in our results
including the effect of the spin-lattice coupling, as shown in
Secs. IV B 2 and VI. Further experiments on other SG materials
and high-field measurements are desirable to clarify the nature
of the SG.

Our study revealed that the concomitant transition is
consistent with a second-order transition and is accompanied
by the divergent behavior of χ3, i.e., χ3 → −∞ as T → Tf .
This behavior is consistent with the experimental result for
Y2Mo2O7; the SG transition is continuous and accompanied
by the power-law divergence of χ3 ∝ −(T − Tf)−γ with γ �

2.8 [23]. The value of the critical exponent does not contradict
with our estimate of γ = 2.8 ± 0.5 obtained by the finite-size
scaling of χ3 (see Fig. 21).

On the other hand, our results with the cooperative coupling
of local lattice distortions, i.e., for J

coop
2 
= 0, qualitatively

explain the phase competition between the spin-lattice ordered
phase and SG phase in the case of (Zn1−xCdx)Cr2O4. In
these compounds, the doping of Cd quickly destroys the
Néel order with uniform lattice distortions at x � 0.03, and
induces SG behavior at Tf � 10 K; the value of Tf remains
unchanged up to x ∼ 0.1. Similar phase competition and
robust behavior of Tf are also seen in the spinel CoAl2O4.
In CoAl2O4, the magnetic phase diagram is controlled by
intersite mixing between magnetic Co and nonmagnetic Al
sites η as (CO1−ηAlη)[Al2−ηCOη]O4 [35]. For η � 0.08, the
system shows a SG transition at Tf � 4.5 K, which is almost
constant for η � 0.153. Recently, it was reported that a high-
quality sample with η = 0.057(20) shows a Néel transition at
Tc = 9.8(2) K [87]. Thus, in both cases of (Zn1−xCdx)Cr2O4

and (CO1−ηAlη)[Al2−ηCOη]O4, the experimental phase dia-
grams are consistent with our results in Sec. IV C. Further
experiments on the magnetic susceptibility and specific heat
are desired to clarify the nature of the SG transition and the
role of the spin-lattice coupling.

IX. SUMMARY AND CONCLUSION REMARKS

In this paper, we have investigated effects of the spin-lattice
coupling on SG transitions in bond-disordered Heisenberg py-
rochlore antiferromagnets coupled with local lattice distortions
by Monte Carlo simulations. The coupling to lattice distortions
is taken into account in the effective spin-only models in
the form of the nearest-neighbor biquadratic interaction and
further-neighbor bilinear interactions. The latter originates
from the cooperative aspect of the local lattice distortions.

Let us first summarize our findings for the case with
the nearest-neighbor couplings only. The disorder (�)–
temperature (T ) phase diagram exhibits the following char-
acteristics: In the weakly disordered regime, the SG transition
temperature Tf grows linearly with �, showing a remarkable
enhancement by the coupling to local lattice distortions b. As
� increases, the system enters the plateau regime where the
concomitant transition of SG and nematic order takes place
at Tf � b, being almost independent of �. We have also
found that the Curie-Weiss temperature estimated above Tf

sensitively changes as a function of �. All these results well
explain the peculiar SG behavior observed in R2Mo2O7.

We have further investigated thermodynamic properties
near the concomitant transition. We found that the concomitant
transition has the following aspects that resemble the canonical
SG behavior: the nonlinear susceptibility χ3 displays a
negative divergence at the concomitant transition, and the
magnetic susceptibility shows hysteresis behavior between
the FC and ZFC measurements below Tf . On the other hand,
the concomitant transition has the following unconventional
characteristics: the specific heat C displays a broad peak
around Tf , and the transition is robust against an external
magnetic field. These results are also consistent with the
experimental observations for Y2Mo2O7 [23,26,30]. To the
best of our knowledge, however, the robustness of SG states
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FIG. 24. (Color online) Comparison of thermalization processes
of q2

EA from a disordered configuration with and without using the
extended loop update. The data are taken at � = 0.1 and T = 0.08 for
the model (5) with b = 0.2 and J

coop
2 = 0 in the system size L = 2.

The relaxation is remarkably accelerated by the loop update.

has not been examined experimentally for other frustrated
magnets. Systematic experiments in high magnetic fields are
desirable for frustrated SG materials.

Furthermore, we have investigated effects of the spin-lattice
coupling on the nonlinearlity of the magnetic susceptibility
in the high-temperature paramagnetic phase. We have shown
that the high-T measurement of the cubic susceptibility gives
a good measure of the strength of the spin-lattice coupling b

even in the presence of disorder.
We have also studied spin relaxation in the nematic phase

in the weakly disordered regime. We have shown that single-
spin-flip dynamics freezes once the system enters the nematic
phase even if the randomness is negligibly small. This may
explain the glassy spin dynamics experimentally observed in
high-quality samples of many frustrated magnets.

In the case with the cooperative coupling between local
lattice distortions, as discussed in the previous paper [42], the
cooperative coupling J

coop
2 results in the phase competition

between the spin-lattice phase and the SG phase. We have
presented that the critical properties as well as the behavior of
Tf are similar to the case with J

coop
2 = 0. The results give a

reasonable explanation for the phase competition observed in
Zn spinels.

This study suggests possible experimental signatures of
the concomitant transition of SG and nematic. The spin-lattice
coupling b can be estimated in terms of the cubic susceptibility
at high temperatures. Furthermore, the concomitant transition
may be detected experimentally by examining the robustness
of the transition in high magnetic fields as well as the peak
structure of the specific heat at Tf .

Finally, let us discuss future directions of the study of the
SG behavior in frustrated magnets. Y2Mo2O7 and Lu2Mo2O7

show peculiar T 2-temperature dependence in the specific heat
at low temperatures below the spin-glass transition tempera-
ture [26,27]. This is in clear contrast to the canonical SG in
which the specific heat shows linear temperature dependence.
It was speculated that the orbital degree of freedom plays
an important role in this unusual behavior [26]. Similar
T 2-temperature dependence in the specific heat, however, was
observed for some cubic spinels CoAl2O4 and FeAl2O4 with
no orbital degree of freedom [14]. It is left for future study
to clarify the effects of the coupling between spin, orbital,
and lattice on the low-temperature behavior in the specific
heat.

Recent first-principles studies indicate the substantial
role of the orbital degree freedom in the magnetism for
Y2Mo2O7 [26,88]. In particular, two of the authors and
co-workers showed that the effective spin interactions are
strongly anisotropic in spin space due to the strong coupling
between spin and orbital through the relativistic spin-orbit
coupling [88]. It is of great interest to investigate how such
magnetic anisotropy affects the scenario in this study.
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APPENDIX: DEMONSTRATION OF THE EXTENDED
LOOP ALGORITHM

In Fig. 24, we compare thermalization processes of the
Edwards-Anderson order parameter q2

EA in Eq. (8) with and
without the loop update at � = 0.1 and T = 0.08 slightly
below Tf [see Fig. 6(a)]. We take 16 temperature points
uniformly distributed in the range of 0.08 � T � 0.2 for
the exchange MC method. The system size is L = 2, i.e.,
Ns = 128 spins. As shown in Fig. 24, the MC dynamics
without the loop update suffers from severe slowing down;
it is extremely hard to thermalize the single-spin-flip MC
dynamics despite the small system size. When the loop flip
is turned on, the thermalization process is greatly accelerated.
The MC dynamics quickly reaches thermal equilibrium within
2.5 × 103 MC steps as demonstrated in Fig. 24. The results
clearly show the advantage of the extended loop algorithm in
investigating the low-T properties of the present model.
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