
PHYSICAL REVIEW B 90, 165114 (2014)

Topology of crystalline insulators and superconductors

Ken Shiozaki1 and Masatoshi Sato2

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

(Received 16 March 2014; revised manuscript received 5 August 2014; published 10 October 2014)

We complete a classification of topological phases and their topological defects in crystalline insulators
and superconductors. We consider topological phases and defects described by noninteracting Bloch and
Bogoliubov–de Gennes Hamiltonians that support additional order-two spatial symmetry, besides any of 10
classes of symmetries defined by time-reversal symmetry and particle-hole symmetry. The additional order-two
spatial symmetry we consider is general and it includes Z2 global symmetry, mirror reflection, twofold rotation,
inversion, and their magnetic point group symmetries. We find that the topological periodic table shows a
periodicity in the number of flipped coordinates under the order-two spatial symmetry, in addition to the Bott
periodicity in the space dimensions. Various symmetry-protected topological phases and gapless modes will be
identified and discussed in a unified framework. We also present topological classification of symmetry-protected
Fermi points. The bulk classification and the surface Fermi point classification provide a realization of the
bulk-boundary correspondence in terms of the K theory.
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I. INTRODUCTION

Symmetry and topology have been two important principles
in physics, both of which result in quantum numbers and
the conservation laws. In many-body systems, symmetry can
be broken spontaneously as a collective phenomenon. The
spontaneous symmetry breaking, which is characterized by
local order parameters, describes many quantum phases such
as ferromagnetism and superconductivity.

Topology also describes quantum phases that are not
captured by spontaneous symmetry breaking. Instead of local
order parameters, those quantum phases are characterized by
topological numbers of wave functions. Such quantum phases
are called as topological phase [1]. Integer and fractional
quantum Hall systems are two representative examples of
topological phases.1 The ground-state wave functions of these
quantum Hall states host nonzero Chern numbers, which
directly explain the quantization of the Hall conductivity
[2–4]. In general, a topologically nontrivial phase can not
adiabatically deform into a topologically trivial one, and it
is robust under perturbations and/or disorders unless the bulk
gap closes.

It has been recently discovered that topological phases are
enriched by general symmetries of time reversal and charge
conjugation [5–11]. Those nonspatial symmetries can persist

1More specifically, these two states are classified into two different
categories of topological phase: Integer quantum Hall states belong
to a short-range entangled topological phase, but fractional quantum
Hall states belong to a long-range entangled one. Whereas short-range
entangled topological phases do not have topological degeneracy, i.e.,
they have a unique ground state on a closed real-space manifold, long-
range entangled ones show topological degeneracy. The presence of
symmetry crucially enriches possible short-range entangled topologi-
cal phases, which referred to as symmetry-protected topological phase
[150]. In particular, those in the noninteracting fermionic system are
called as topological insulator and superconductor, which we will
discuss in this paper.

even in the presence of disorders and/or perturbations. For in-
stance, nonmagnetic disorders retain time-reversal symmetry
(TRS), and thus a nontrivial topological phase accompanied by
TRS is robust against nonmagnetic disorders. Quantum spin
Hall states [12–14] and topological insulators [15–19] support
such topological phases protected by TRS. In a similar manner,
charge-conjugation symmetry specific to superconductivity
makes it possible to realize a topological state of matters,
topological superconductor [20–46]. Topological phases en-
riched by those general nonspatial symmetries are classified
for noninteracting fermionic systems [27,47–51] in terms of
the Altland-Zirnbauer (AZ) tenfold symmetry classes [52].

Whereas the classification based on the nonspatial sym-
metries successfully captures topological nature of general
systems, real materials often have other symmetries specific
to their structures such as translational and point group
symmetries. Those additional symmetries also give rise to
a nontrivial topology of bulk wave functions and gapless
states on boundaries [17,28,29,53–67]. It had been naively
anticipated that the gapless boundary modes are fragile against
disorders because these specific symmetries are microscop-
ically sensitive to small perturbations, but recent studies
of topological crystalline insulators have shown that if the
symmetries are preserved on average, then the existence
of some gapless boundary states is rather robust [68–71].
Moreover, surface gapless states protected by the mirror re-
flection crystal symmetry have been observed experimentally
[72–76]. Motivated by those progresses, various symmetries
and corresponding topological phases have been elucidated
in insulators [77–83] and superconductors [84–88]. In par-
ticular, various symmetry-protected Majorana fermions have
been predicted in spinful unconventional superconductors or
superfluids [85,86,89,90].

In this paper, we complete a topological classification
of crystalline insulators and superconductors that support
additional order-two spatial symmetry besides 10 classes
of discrete AZ symmetries. Our classification reproduces
previous results for additional reflection symmetry [81,91], but
the symmetry we consider is general, and it also includes global
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Z2 symmetry, twofold rotation, and inversion. Furthermore,
the additional symmetry can be antiunitary. Although ordinary
point group symmetries are given by unitary operators, systems
in a magnetic field or with a magnetic order often support an
antiunitary symmetry as a magnetic point group symmetry.
The magnetic symmetry also has been known to provide
nontrivial topological phases in various systems [31,92–99].

Our approach here provides a unified classification of
topological phases and defects in crystalline insulators and
superconductors with additional order-two symmetry. The
topological classification we obtain indicates that topological
defects can be considered as boundary states in lower-
dimensional systems. The resultant topological periodic table
shows a periodicity in the number of the flipped coordinates
under the order-two additional spatial symmetry, in addition
to the Bott periodicity in the space dimensions. Using the
new topological periodic table, various symmetry-protected
topological gapless modes at topological defects are identified
in a unified manner. In addition, we also present a topological
classification of Fermi points in the crystalline insulators and
superconductors. The bulk topological classification and the
Fermi point classification show the bulk-boundary correspon-
dence in terms of the K theory.

The organization of this paper is as follows. In Sec. II, we
explain the formalism we adapt in this paper. In this paper,
we use the approach based on the K theory [100–103]. Our
main results are summarized in Sec. III. We show relations
between K groups with different order-two additional spatial
symmetries and dimensions. The derivation and proof are
given in Sec. VII. In Sec. IV, we discuss properties of the
obtained K groups in the presence of additional symmetry.
A periodicity in the number of flipped coordinates under the
additional symmetry is pointed out. We also find that the K

groups naturally implement topological defects as boundaries
of lower-dimensional crystalline insulators/superconductors.
Crystalline weak topological indices are argued in Sec. VI.
In Sec. V, we present topological classification tables of
crystalline insulators/superconductors and their defect zero
modes with order-two additional spatial symmetry. The
topological periodic tables are classified into four families.
Various symmetry-protected topological phases and their
gapless defect modes are identified in a unified framework.
We also apply our formalism to a classification of Fermi point
protected by additional order-two symmetry in Sec. VIII. By
combing the results in Secs. III and VIII, the bulk-boundary
correspondence of K groups is presented. In Sec. IX, we
demonstrate that the Ising character of Majorana fermions is a
result of symmetry-protected topological phases. In Sec. X, we
apply our theory to anomalous topological pumps in Josephson
junctions, in which crystalline symmetry is not essential to lead
to a new topological classification. We conclude this paper with
some discussions in Sec. XI.

Some technical details are presented in the Appendices.
In Appendix A, following Ref. [48], we introduce useful
maps between Hamiltonians in different dimensions. The
isomorphic maps introduced here are used in Sec. VII. We
review the dimensional hierarchy of AZ classes in the absence
of additional symmetry in Appendix B. The classifying
spaces of AZ classes with additional order-two symmetry
are summarized in Appendix C. The definition and the basic

properties of Chern numbers, winding numbers, and Z2

topological numbers which are used in this paper are given
in Appendix D. Throughout this paper, we use the notation sμ,
τμ, and σμ (μ = 0,1,2,3) to represent the Pauli matrices in the
spin, Nambu, and orbital spaces, respectively.

II. FORMALISM

In this section, we briefly give our setup of the classification
problem. For the reader who only concerns the classification
table with an additional symmetry, please see Sec. V.

A. Spatially modulated Hamiltonian

In this paper, we consider band insulators and superconduc-
tors which are described by Bloch and Bogoliubov–de Gennes
(BdG) Hamiltonians, respectively. In addition to uniform
ground states, we also consider topological defects of these
systems. Away from the topological defects, the systems are
gapped, and they are described by spatially modulated Bloch
and BdG Hamiltonians [1,48]

H(k,r). (2.1)

Here, the base space of the Hamiltonian is composed of
momentum k, defined in the d-dimensional Brillouin zone
T d , and real-space coordinates r of a D-dimensional sphere
SD surrounding a defect. For instance, the Hamiltonian of a
point defect in three dimensions is given by H(kx,ky,kz,r1,r2),
where (r1,r2) are the coordinates of a two-dimensional sphere
S2 surrounding the point defect. Another example is a line
defect in three dimensions, in which the Hamiltonian is
H(kx,ky,kz,r1) where r1 is a parameter of a circle S1 enclosing
the line defect. The case of D = 0 corresponds to a uniform
system.

As mentioned above, the exact base space is T d × SD , but
instead we consider a simpler space Sd+D in the following.
This simplification does not affect the “strong” topological
nature of the system. Although the difference of the base
space may result in “weak” topological indices of the system,
they can be obtained as “strong” topological indices in lower
dimensions, as will be argued in Sec. VI. Therefore, generality
is not lost by the simplification.

In the following, we treat k and r in the Hamiltonian as
classical variables, i.e., momentum operators k̂ and coordinate
operators r̂ commute with each other. This semiclassical
approach is justified if the characteristic length of the spatial
inhomogeneity is sufficiently longer than that of the quantum
coherence. A realistic Hamiltonian would not satisfy this
semiclassical condition, but if there is no bulk gapless mode,
then the Hamiltonian can be adiabatically deformed so as to
satisfy the condition. Because the adiabatic deformation does
not close the bulk energy gap, it retains the topological nature
of the system [48,59,104,105].

B. Symmetries

1. Altland-Zirnbauer symmetry classes

In this paper, we classify the topological phases that have an
additional symmetry, aside from any of the 10 AZ symmetry
classes. Here, we briefly review the AZ symmetry classes. The
AZ symmetry classes are defined by the presence or absence of
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TABLE I. AZ symmetry classes and their classifying spaces. The top two rows [s = 0,1 (mod 2)] are complex AZ classes, and the bottom
eight rows [s = 0,1, . . . ,7 (mod 8)] are real AZ classes. The second column represents the names of the AZ classes. The third to fifth columns
indicate the absence (0) or the presence (±1) of TRS, PHS, and CS, respectively, where ±1 means the sign of T 2 = εT and C2 = εC . The sixth
column shows the symbols of the classifying space.

s AZ class TRS PHS CS Cs or Rs Classifying space π0(Cs) or π0(Rs)

0 A 0 0 0 C0 [U (n + m)/U (n) × U (m)] × Z Z
1 AIII 0 0 1 C1 U (n) 0

0 AI +1 0 0 R0 [O(n + m)/O(n) × O(m)] × Z Z
1 BDI +1 +1 1 R1 O(n) Z2

2 D 0 +1 0 R2 O(2n)/U (n) Z2

3 DIII −1 +1 1 R3 U (2n)/Sp(n) 0
4 AII −1 0 0 R4 [Sp(n + m)/Sp(n) × Sp(m)] × Z 2Z
5 CII −1 −1 1 R5 Sp(n) 0
6 C 0 −1 0 R6 Sp(n)/U (n) 0
7 CI +1 −1 1 R7 U (n)/O(n) 0

TRS, particle-hole symmetry (PHS), and/or chiral symmetry
(CS). The AZ symmetries TRS, PHS, and CS imply

TH(k,r)T −1 = H(−k,r),

CH(k,r)C−1 = −H(−k,r), (2.2)

�H(k,r)�−1 = −H(k,r),

respectively, where T and C are antiunitary operators and � is a
unitary operator. For spin- 1

2 fermions, time-reversal operator T

is given by T = isyK with the Pauli matrix si in the spin space
and the complex-conjugation operator K, which obeys T 2 =
−1. In the absence of the spin-orbit interaction, spin rotation
symmetry allows a different time-reversal symmetry T = K
with T 2 = 1. PHS is naturally realized in superconductors
as C = τxK with the Pauli matrix τi acting on the Nambu
space of the BdG Hamiltonian, where C2 = 1, but again spin-
rotation symmetry can introduce another PHS with C2 = −1.
Finally, CS can be obtained by combination of TRS and PHS,
� = eiαT C. With a suitable choice of the phase α, one can
always place the relation �2 = 1.

In terms of the sign of T 2 and C2, the Hamiltonians are
classified into 10 symmetry classes listed in Table I. The AZ
symmetry classes are further divided into two complex classes
and eight real classes: In the absence of time-reversal invari-
ance and particle-hole symmetry, the Hamiltonian belongs to
one of two complex classes: A or AIII. The presence of the
antiunitary symmetries T and C introduces a real structure
of the Hamiltonian, and thus the remaining eight classes are
called as real AZ classes.

Following, we choose a convention that T and C commute
with each other, i.e., [T ,C] = 0: Because Eq. (2.2) yields
[T CT −1C−1,H(k,r)] = 0 for any Hamiltonians with TRS and
PHS, the unitary operator T CT −1C−1 should be proportional
to the identity T CT −1C−1 = eiβ1. The phase β can be
removed by a redefinition of the relative phase between T

and C without changing the sign of T 2 and C2, which leads to
[T ,C] = 0.

2. Order-two spatial symmetry

In addition to the AZ symmetries, we assume an additional
symmetry of Hamiltonians. As an additional symmetry, we

consider general order-two spatial symmetry. Order-two sym-
metry S implies that the symmetry operation twice trivially
acts on the Hamiltonian

[S2,H(k,r)] = 0, S = U,A, (2.3)

where S can be either unitary U or antiunitary A. The order-two
unitary symmetry includes reflection, twofold spatial rotation,
and inversion. It also permits global Z2 symmetry such as a
twofold spin rotation. The antiunitary case admits order-two
magnetic point group symmetries.

Under an order-two spatial symmetry, the momentum k in
the base space of the Hamiltonian transforms as

k →
{

Ok for S = U,

−Ok for S = A
(2.4)

with an orthogonal matrix O satisfying O2 = 1. Note that
like time-reversal operator, the antilinearity of A results in the
minus sign of the transformation law of k. In a diagonal basis
of O, this transformation reduces to

k →
{

(−k‖,k⊥) for S = U,

(k‖,−k⊥) for S = A
(2.5)

with k‖ = (k1,k2, . . . ,kd‖ ) and k⊥ = (kd‖+1,kd‖+2, . . . ,kd ).
In contrast to nonspatial AZ symmetries, the spatial coordi-

nate r of the D-dimensional sphere surrounding a topological
defect also transforms nontrivially under order-two spatial
symmetry. To determine the transformation law, we specify
the coordinate r of the D-dimensional sphere. First, to keep
the additional symmetry, the topological defect should be
invariant under S. Therefore, the additional symmetry S maps
the D-dimensional sphere (with a radius a > 0) given by

n2 = a2, n = (n1,n2, . . . ,nD+1), (2.6)

into itself, inducing the transformation

n → O ′n, (2.7)

where O ′ is an orthogonal matrix with O
′2 = 1. The transfor-

mation of n can be rewritten as

n → (−n‖,n⊥), (2.8)
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with n‖ = (n1,n2, . . . ,nD‖ ) and n⊥ = (nD‖+1,nD‖+2, . . . ,

nD+1) in a diagonal basis O ′. When D‖ � D, we can
introduce the coordinate r of the D-dimensional sphere by
the stereographic projection of n:

ri = ni

a − nD+1
(i = 1, . . . ,D), (2.9)

which gives a simple transformation law of r as

r → (−r‖,r⊥), (2.10)

with r‖ = (r1,r2, . . . ,rD‖ ) and r⊥ = (rD‖+1,rD‖+2, . . . ,rD).
Following, we assume D‖ � D since the bulk-boundary
correspondence for topological defects works only in this case.

Now, the order-two unitary symmetry is expressed as

UH(k,r)U−1 = H(−k‖,k⊥,−r‖,r⊥), (2.11)

and the order-two antiunitary symmetry is

AH(k,r)A−1 = H(k‖,−k⊥,−r‖,r⊥). (2.12)

We suppose that

S2 = εS = ±1, (2.13)

and S commutes or anticommutes with coexisting AZ sym-
metries

ST = ηT T S, SC = ηCCS, S� = η��S, (2.14)

where ηT = ±1, ηC = ±1, and η� = ±1. For a faithful
representation of order-two symmetry, the sign εS of S2 must
be 1, but a spinor representation of rotation makes it possible to
obtain εS = −1. For instance, twofold spin rotation S = eiπsi/2

(i = 1,2,3) obeys S2 = −1. Note that when S = U , we can
set εS = 1 by multiplying S by the imaginary unit i, but this
changes the (anti)commutation relations with T and/or C at
the same time.

Our classification framework also works even for order-two
antisymmetry S defined by

UH(k,r)U
−1 = −H(−k‖,k⊥,−r‖,r⊥), (2.15)

AH(k,r)A
−1 = −H(k‖,−k⊥,−r‖,r⊥), (2.16)

where S can be either unitary U or antiunitary A. Such an
antisymmetry can be realized by combining any of order-two
symmetries with CS or PHS. In a similar manner as S, we
define εS , ηT , ηC , and η� by

(S)2 = εS, ST = ηT T S, SC = ηCCS, S� = η��S.

(2.17)

C. Stable equivalence and K group

In principle, the classification of topological insulators and
superconductors are provided by a homotopy classification of
maps from the base space (k,r) ∈ Sd+D to the classifying
space of Hamiltonians H(k,r), subject to a given set of
symmetries: If the maps are smoothly connected to each other,
they belong to the same topological phase, but if not, they are
in topologically different phases.

Hamiltonians we consider here support an energy gap
separating positive and negative energy bands, relative to

the Fermi level. Such Hamiltonians H(k,r) are adiabatically
deformed so that the all empty (occupied) bands have the
same energy +1 (−1). If there are no symmetries, the flattened
Hamiltonians are characterized by unitary matrices U (n + m)
that diagonalize the Hamiltonians, divided by unitary rotations
U (n) × U (m) of the conduction bands and valence bands.
The classifying space is therefore U (n + m)/U (n) × U (m).
Symmetries impose some constraints on the classifying space.

Following the idea of stable equivalence, we extend the
classifying space by adding extra trivial bands [47]: Two sets
of HamiltoniansH1,H2 are stable equivalentH1 ∼ H2, if they
can be continuously deformed into each other by adding extra
trivial bands. One can then identify a family of Hamiltonians
that are stable equivalent to each other. We use a notation [H]
to represent a set of Hamiltonians that are stable equivalent
to H. The stable equivalence classes make it possible to
supply addition in the classifying space of Hamiltonians:
[H1] ⊕ [H2] := [H1 ⊕ H2], where ⊕ implies the direct sum
of matrices. The identity [0] expresses the trivial insulating
Hamiltonian, and [H ⊕ (−H)] is ensured to be [0]. The last
relation yields that the inverse of [H] is −[H] = [−H]. As
a result, the stable equivalent classes form an Abelian group,
which is called the K group. From the definition, it is evident
that the stable equivalence retains topological natures. The
extended classifying spaces subject to AZ symmetries are
listed in Table I.

For topological insulators and superconductors in 10 AZ
symmetry classes, the following relations summarize their
classification [48]:

KC(s; d,D) = KC(s − d + D; 0,0) = π0(Cs−d+D)

[s = 0,1 (mod 2)], (2.18)

KR(s; d,D) = KR(s − d + D; 0,0) = π0(Rs−d+D)

[s = 0,1, . . . ,7 (mod 8)], (2.19)

where KC(s; d,D) [KR(s; d,D)] denotes the K group of maps
from (k,r) ∈ Sd+D to the extended classifying space Cs (Rs)
of s complex (real) AZ class in Table I. The case of D = 0
corresponds to the bulk topological classification, and the
presence of topological defects shifts the dimension of the
system.

The existence of an order-two spatial symmetry S gives ad-
ditional constraints on the classifying space. In the subsequent
sections, we provide the resulting K group of the homotopy
classification.

III. K GROUP IN THE PRESENCE
OF ADDITIONAL SYMMETRY

In this section, we present the K groups for topological
crystalline insulators/superconductors and their topological
defects protected by an additional order-two symmetry. The
derivation and proof are given in Sec. VII.

A. Complex AZ classes (A and AIII) with additional
order-two unitary symmetry

The complex AZ classes A and AIII are characterized by
the absence of TRS and PHS. Whereas no AZ symmetry is
imposed on Hamiltonians in class A, Hamiltonians in class
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AIII are invariant under CS:

�H(k,r)�−1 = −H(k,r). (3.1)

Now, we impose an additional order-two symmetry U ,

UH(k,r)U−1 = H(−k‖,k⊥,−r‖,r⊥), (3.2)

or order-two antisymmetry U ,

UH(k,r)U
−1 = −H(−k‖,k⊥,−r‖,r⊥) (3.3)

on complex AZ classes. Since there is no antiunitary symmetry,
a phase factor of U and U do not change the topological classi-
fication, and thus the sign of U 2 and (U )2 can be fixed to be 1.
For class AIII, we specify the commutation/anticommutation
relation between U and � (U and �) by Uη�

(Uη�
). Note that

Uη�
in class AIII is essentially the same as Uη�

because they
can be converted to each other by the relation Uη�

= �Uη�
.

We denote the obtained K group by

KU
C (s,t ; d,d‖,D,D‖). (3.4)

Here, d (D) is the total space dimension (defect codimension),
and d‖ (D‖) is the number of the flipping momenta (defect
surrounding parameters) under the additional symmetry trans-
formation, as was introduced in Sec. II B 2. The label s = 0,1
(mod 2) indicates the AZ class (s = 0 for class A and s = 1
for class AIII) to which the Hamiltonian belongs, and t = 0,1
(mod 2) specifies the coexisting additional unitary symmetry
as in Table II.

In Sec. VII, we prove the following relation:

KU
C (s,t ; d,d‖,D,D‖) = KU

C (s − d + D,t − d‖ + D‖; 0,0,0,0).

(3.5)

This relation implies that topological natures of the system
can be deduced from those in 0 dimension. As we show in
Appendix C, the classifying spaces of the 0-dimensional K

group reduce to complex Clifford algebra, and we can obtain

KU
C (s,t = 0; 0,0,0,0) = π0(Cs × Cs) = π0(Cs) ⊕ π0(Cs),

KU
C (s,t = 1; 0,0,0,0) = π0(Cs+1), (3.6)

where Cs (s = 0,1) represents the classifying space of complex
AZ classes (see Table I).

TABLE II. Possible types [t = 0,1 (mod 2)] of order-two addi-
tional unitary symmetries in complex AZ class [s = 0,1 (mod 2)].
U and Ū represent symmetry and antisymmetry, respectively. The
subscript of Uη�

and Ūη�
specifies the relation �U = η�U�.

Symmetries in the same parentheses are equivalent.

s AZ class t = 0 t = 1

0 A U U

1 AIII (U+, U+) (U−, U−)

TABLE III. Possible types [s = 0,1, . . . ,7 (mod 8)] of order-two
additional antiunitary symmetries in complex AZ class. A and Ā

represent symmetry and antisymmetry, respectively. The superscript
of AεA and AεA

η�
represent the sign of the square A2 = εA, and

the subscript of AεA
η�

specifies the (anti)commutation relation �A =
η�A�. Symmetries in the same parentheses are equivalent.

s AZ class Coexisting symmetry Mapped AZ class

0 A A+ AI

1 AIII (A+
+, A

+
+) BDI

2 A A
+

D

3 AIII (A−
−,A

+
−) DIII

4 A A− AII

5 AIII (A−
+, A

−
+) CII

6 A A
−

C

7 AIII (A+
−, A

−
−) CI

B. Complex AZ classes (A and AIII) with additional
order-two antiunitary symmetry

Next, we consider order-two antiunitary symmetry A or A

as an additional symmetry:

AH(k,r)A−1 = H(k‖,−k⊥,−r‖,r⊥), (3.7)

AH(k,r)A
−1 = −H(k‖,−k⊥,−r‖,r⊥). (3.8)

As listed in Table III, two different order-two antiunitary
symmetries A± and their corresponding antisymmetries A

±

are possible in class A, depending on the sign of A2 or (A)2, i.e.,
(AεA)2 = εA, (A

εA)2 = εA. In a similar manner, class AIII has
two different types of additional antiunitary symmetries AεA

η�

(εA = ±1,ηA = ±1) and their corresponding antisymmetries
A

εA

η�
(εA = ±1,ηA = ±1), where εA represents the sign of

A2 or (A)2 and η� indicates the commutation (η� = 1) or
the anticommutation (η� = −1) relation between A and �

or those between A and �. Note that AεA
η�

and A
εAη�

η�
are

equivalent in class AIII since they can be related to each other
as AεA

η�
= �A

εAη�

η�
.

The existence of the antiunitary symmetry introduces real
structures in complex AZ classes. Actually, by regarding
(k⊥,r‖) as “momenta” and (k‖,r⊥) as “spatial coordinates,”
A and A can be considered as TRS and PHS, respectively.
From this identification, a system in complex AZ class with an
additional antiunitary symmetry can be mapped into a real
AZ class, as summarized in Table III. As a result, the K

group of Hamiltonians with the symmetry s [s = 0,1,2, . . . ,7
(mod 8)] of Table III,

KA
C(s; d,d‖,D,D‖), (3.9)

reduces to the K group of real AZ classes in Eq. (2.19),

KA
C(s; d,d‖,D,D‖) = KR(s; d − d‖ + D‖,D − D‖ + d‖).

(3.10)

where d (D) is the total space dimension (defect codimension),
and d‖ (D‖) is the number of the flipping momentum
(defect surrounding parameter) under the additional symmetry

165114-5



KEN SHIOZAKI AND MASATOSHI SATO PHYSICAL REVIEW B 90, 165114 (2014)

transformation. From Eq. (2.19), we have

KA
C(s; d,d‖,D,D‖) = KA

C(s − d + D + 2(d‖ − D‖); 0,0,0,0),

(3.11)

with

KA
C(s; 0,0,0,0) = π0(Rs). (3.12)

C. Real AZ classes with additional order-two symmetry

Hamiltonians in eight real AZ classes are invariant under
TRS,

TH(k,r)T −1 = H(−k,r), (3.13)

and/or PHS,

CH(k,r)C−1 = −H(−k,r). (3.14)

In addition to TRS and/or PHS, we enforce one of order-two
unitary/antiunitary spatial symmetries U , U , A, and A on the
Hamiltonians

UH(k,r)U−1 = H(−k‖,k⊥,−r‖,r⊥), (3.15)

UH(k,r)U
−1 = −H(−k‖,k⊥,−r‖,r⊥), (3.16)

AH(k,r)A−1 = H(k‖,−k⊥,−r‖,r⊥), (3.17)

AH(k,r)A
−1 = −H(k‖,−k⊥,−r‖,r⊥). (3.18)

In classes AI and AII, which support TRS, we have
the following equivalence relations between the additional

symmetries:

UεU

ηT
= iU

−εU−ηT
= T AηT εT εU

ηT
= iT A

ηT εT εU

−ηT
, (3.19)

U
εU

ηT
= iU

−εU

−ηT
= T A

ηT εT εU

ηT
= iT A

ηT εT εU

−ηT
, (3.20)

where the superscript εS = ± of S (S = U,U,A,A) denotes
the sign of S2, and the subscript ηT of S specifies the
commutation (ηT = +) or anticommutation (ηT = −) relation
between S and T . In a similar manner, in classes D and C, PHS
leads to the following equivalence relations:

UεU

ηC
= iU

−εU−ηC
= CA

ηCεCεU

ηC
= iCA

ηCεCεU

−ηC
, (3.21)

U
εU

ηC
= iU

−εU

−ηC
= CAηCεCεU

ηC
= iCA

ηCεCεU

−ηC
, (3.22)

where the superscript εS = ± denotes the sign of S2 and
the subscript ηC = ± denotes the commutation (ηC = +) or
anticommutation (ηC = −) relation between S and C. Finally,
in classes BDI, DIII, CII, and CI, we obtain

UεU

ηT ,ηC
= iU

−εU−ηT ,−ηC
= T AηT εT εU

ηT ,ηC
= iT A

ηT εT εU

−ηT ,−ηC

= CA
ηCεCεU

ηT ,ηC
= iCA

ηCεCεU

−ηT ,−ηC
, (3.23)

U
εU

ηT ,ηC
= iU

−εU

−ηT ,−ηC
= T A

ηT εT εU

ηT ,ηC
= iT A

ηT εT εU

−ηT ,−ηC

= CAηCεCεU

ηT ,ηC
= iCA

ηCεCεU

−ηT ,−ηC
. (3.24)

These equivalence relations classify order-two symmetries into
four families (t = 0,1,2,3), as summarized in Table IV. Here,
one should note that unitary symmetries can be converted
into antiunitary ones by multiplying TRS or PHS. Therefore,

TABLE IV. Possible types [t = 0,1,2,3 (mod 4)] of order-two additional symmetries in real AZ class [s = 0,1, . . . ,7 (mod 8)]. U and
Ū represent unitary symmetry and antisymmetry, respectively, and A and Ā represent antiunitary symmetry and antisymmetry, respectively.
The superscript of S (S = U,Ū,A,Ā) indicates the sign of S2, and the subscript of S specifies the commutation (+)/anticommutation (−)
relation between S and TRS and/or PHS. For BDI, DIII, CII, and CI, where both TRS and PHS exist, S has two subscripts, in which the first
one specifies the (anti)commutation relation between S and T and the second one specifies that between S and C. Symmetries in the same
parentheses are equivalent.

s AZ class t = 0 t = 1 t = 2 t = 3

(U+
+ , U−

− ) (U
+
−, U

−
+) (U+

− , U−
+ ) (U

+
+, U

−
−)

0 AI
(A+

+, A+
−) (A

−
+, A

−
−) (A−

−, A−
+) (A

+
+, A

+
−)

(U+
++, U−

−−, U
+
++, U

−
−−) (U+

+−, U−
−+, U

+
−+, U

−
+−) (U+

−−, U−
++, U

+
−−, U

−
++) (U+

−+, U−
+−, U

+
+−, U

−
−+)

1 BDI
(A+

++, A+
−−, A

+
++, A

+
−−) (A+

+−, A+
−+, A

−
−+, A

−
+−) (A−

−−, A−
++, A

−
−−, A

−
++) (A−

−+, A−
+−, A

+
+−, A

+
−+)

(U+
+ , U−

− ) (U
+
+, U

−
−) (U+

− , U−
+ ) (U

+
−, U

−
+)

2 D
(A

+
+, A

+
−) (A+

+, A+
−) (A

−
−, A

−
+) (A−

+, A−
−)

(U+
++, U−

−−, U
−
++, U

+
−−) (U+

−+, U−
+−, U

+
−+, U

−
+−) (U+

−−, U−
++, U

−
−−, U

+
++) (U+

+−, U−
−+, U

+
+−, U

−
−+)

3 DIII
(A−

++, A−
−−, A

+
++, A

+
−−) (A+

−+, A+
+−, A

+
−+, A

+
+−) (A+

−−, A+
++, A

−
−−, A

−
++) (A−

+−, A−
−+, A

−
+−, A

−
−+)

(U+
+ , U−

− ) (U
+
−, U

−
+) (U+

− , U−
+ ) (U

+
+, U

−
−)

4 AII
(A−

+, A−
−) (A

+
−, A

+
+) (A+

−, A+
+) (A

−
+, A

−
−)

(U+
++, U−

−−, U
+
++, U

−
−−) (U+

+−, U−
−+, U

+
−+, U

−
+−) (U+

−−, U−
++, U

+
−−, U

−
++) (U+

−+, U−
+−, U

+
+−, U

−
−+)

5 CII
(A−

++, A−
−−, A

−
++, A

−
−−) (A−

+−, A−
−+, A

+
−+, A

+
+−) (A+

−−, A+
++, A

+
−−, A

+
++) (A+

−+, A+
+−, A

−
+−, A

−
−+)

(U+
+ , U−

− ) (U
+
+, U

−
−) (U+

− , U−
+ ) (U

+
−, U

−
+)

6 C
(A

−
+, A

−
−) (A−

+, A−
−) (A

+
−, A

+
+) (A+

−, A+
+)

(U+
++, U−

−−, U
−
++, U

+
−−) (U+

−+, U−
+−, U

+
−+, U

−
+−) (U+

−−, U−
++, U

−
−−, U

+
++) (U+

+−, U−
−+, U

+
+−, U

−
−+)

7 CI
(A+

++, A+
−−, A

−
++, A

−
−−) (A−

−+, A−
+−, A

−
−+, A

−
+−) (A−

−−, A−
++, A

+
−−, A

+
++) (A+

+−, A+
−+, A

+
+−, A

+
−+)
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the presence of a unitary symmetry for real AZ classes gives
the same K groups as those with an additional antiunitary
symmetry.

We denote the K group for real AZ class [s = 0,1, . . . ,7
(mod 8)] with additional order-two unitary (antiunitary)
symmetry [t = 0,1,2,3 (mod 4)] as

KU
R (s,t ; d,d‖,D,D‖),

[
KA

R(s,t ; d,d‖,D,D‖)
]
, (3.25)

where d (D) is the total space dimension (defect codimension),
and d|| (D||) is the number of the flipping momentum (defect
surrounding parameter) against the additional symmetry trans-
formation. The equivalence between unitary and antiunitary
symmetries for real AZ classes implies

KU
R (s,t ; d,d‖,D,D‖) = KA

R(s,t ; d,d‖,D,D‖). (3.26)

In Sec. VII, we prove the following relation:

K
U/A

R (s,t ; d,d‖,D,D‖)

= K
U/A

R (s − d + D,t − d‖ + D‖; 0,0,0,0). (3.27)

In Appendix C, we show

K
U/A

R (s,t = 0; 0,0,0,0) = π0(Rs ×Rs) = π0(Rs) ⊕ π0(Rs),

(3.28)

K
U/A

R (s,t = 1; 0,0,0,0) = π0(Rs−1), (3.29)

K
U/A

R (s,t = 2; 0,0,0,0) = π0(Cs), (3.30)

K
U/A

R (s,t = 3; 0,0,0,0) = π0(Rs+1), (3.31)

where Rs [s = 0,1, . . . ,7 (mod 8)] and Cs [s = 0,1 (mod 2)]
represent the classifying spaces of the real and complex AZ
classes.

IV. PROPERTIES OF TOPOLOGICAL TABLE
AND K GROUP

A. New periodicity in flipped dimensions

The K groups (3.5), (3.11), and (3.27) have common
general properties. First, the K groups do not depend on d,
D, d‖, and D‖ separately, but they depend on their differences
δ = d − D and δ‖ = d‖ − D‖. Second, in addition to the mod
2 or mod 8 Bott periodicity in space dimension δ, there
exists a periodic structure in flipped dimensions δ‖, due to
twofold or fourfold periodicity in type t of additional sym-
metries. Consequently, the presence of order-two additional
symmetry provides four different families of periodic tables
for topological crystalline insulators and superconductors and
their topological defects: (i) δ‖ = 0 family: The additional
symmetry in this family includes nonspatial unitary symmetry
such as twofold spin rotation, where no spatial parameter is
flipped in the bulk. (ii) δ‖ = 1 family: This family includes
bulk topological phases protected by reflection symmetry,
where one direction of the momenta is flipped. (iii) δ‖ = 2
family: Bulk topological phases protected by twofold spatial
rotation are categorized into this family. (iv) δ‖ = 3 family:
Inversion-symmetric bulk topological phases are classified
into this family. Note that the correspondence between these
additional symmetries and the families is shifted by D‖ in the
presence of topological defects.

B. Defect gapless states as boundary states

The differences δ = d − D and δ‖ = d‖ − D‖ have sim-
ple graphical meanings: First, we notice that a topological
defect surrounded by SD in d dimensions defines a (δ − 1)-
dimensional submanifold since D is the defect codimension.
For instance, a line defect in three dimensions has δ = 2 (d = 3,
D = 1), and thus it defines one-dimensional submanifold.
Then, we also find that δ‖ indicates the number of flipped coor-
dinates of the submanifold under the additional symmetry. For
instance, see topological defects in δ‖ = 0 family, illustrated in
Fig. 1. Although the surrounding parameters of the topological
defects transform nontrivially under the additional reflection
or twofold rotation, we find that the defects themselves
are unaffected by the additional symmetries. In a similar
manner, for topological defects of δ‖ = 1 (δ‖ = 2) family in
Fig. 2 (Fig. 3), one direction (two directions) in the defect
submanifold is (are) flipped under additional symmetries. In
other words, additional symmetries in δ‖ = 1 (δ‖ = 2) family
act on defect submanifolds in the same manner as reflection
(twofold rotation) whatever the original transformations are.

These graphical meanings provide a natural explanation
why the K groups depend solely on δ and δ‖: As first
suggested by Read and Green [20], the (δ − 1)-dimensional
defect submanifold can be considered as a boundary of
a δ-dimensional insulator/superconductor. Then, the above
geometrical observation implies that additional symmetries
induce an effective symmetry with δ‖ flipped directions in
the (δ − 1)-dimensional defect submanifold, and thus also
induce the same effective symmetry in the δ-dimensional
insulator/superconductor. Consequently, the K group of the
topological defect reduces to that of the δ-dimensional crys-
talline insulator/superconductor with the δ‖ flipped additional
symmetry.

V. TOPOLOGICAL PERIODIC TABLE IN THE PRESENCE
OF ADDITIONAL ORDER-TWO SYMMETRY

In the previous section, we have presented the K groups
for topological crystalline insulators and superconductors and
their topological defects protected by order-two additional
symmetry. The K groups give exhaustive topological periodic
tables for the symmetry-protected topological phases. We clar-
ify the Abelian group structures such as Z or Z2. Whereas we
do not give all of the explicit expressions of the corresponding
topological invariants, we illustrate how the topological tables
work by using concrete examples. In the following subsections,
we focus on additional unitary and antiunitary symmetries. We
omit here classification tables for additional antisymmetries
because most of the antisymmetries reduce to unitary or
antiunitary symmetries by the symmetry equivalence relation.2

Also, we omit antiunitary symmetry in the time-reversal-
symmetric AZ classes because antiunitary symmetry naturally
realizes as a combination of time-reversal and point group
symmetries, i.e., magnetic point group symmetry, in TRS
broken systems.

2A unitary antisymmetry in classes A, AI, and AII does not reduce
to a conventional symmetry, but the realization of such antisymmetry
is difficult in the condensed matter systems.
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FIG. 1. (Color online) Topological defects and adiabatic pump protected by order-two additional symmetries with δ‖ = d‖ − D‖ = 0. The
additional symmetries are (a) global Z2 symmetry, (b) reflection symmetry, and (c) π -rotation symmetry, respectively. The spatial position of
topological defects is unchanged under the symmetry transformation of δ‖ = 0 family.

A. δ‖ = 0 family

In this section, we consider additional symmetries with δ‖ =
0 (mod 4). In condensed matter contexts, relevant symmetries
include order-two global symmetry such twofold spin rotation
(d‖ = D‖ = 0), reflection with a line and point defect in
the mirror plane (d‖ = D‖ = 1), and twofold spatial rotation
with a point defect on the rotation axis (d‖ = D‖ = 2), as
illustrated in Fig. 1. We summarize the classification table
for δ‖ = 0 (mod 4) with order-two unitary symmetries in
Table V and that with antiunitary symmetries in Table VI,
respectively.

1. Spin Chern insulator (U−
+ in class AII)

The simplest example of the symmetry-protected topo-
logical phases is a quantum spin Hall insulator preserving
the z component of spin. The system has TRS, and it is

also invariant under the twofold spin rotation along the z

axis, which is generated by U = isz. Since the additional
symmetry U = isz commutes with T , the system is cate-
gorized into class AII with U−

+ in two dimensions. Thus,
the topological nature is characterized by Z, as is seen in
Table V.

The corresponding topological number is known as the spin
Chern number: In the presence of nonspatial unitary symmetry
U = isz, the Hamiltonian H(kx,ky) of the system can be block
diagonal in the eigenbasis of U with the eigenvalue U = ±i.
The antiunitarity of T implies that TRS does not close in
the each eigensector, so each block of the Hamiltonian loses
a real structure caused by TRS. In other words, U = isz

plays a role of the imaginary unit i. Such an effect is called
complexification, which induces a complex structure in real
AZ class. As a result, change of symmetry class AII → A
occurs. The class A Hamiltonian is obtained by forgetting the
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FIG. 2. (Color online) Topological defects protected by order-two additional symmetries with δ‖ = d‖ − D‖ = 1. The additional
symmetries are (a) reflection symmetry and (b) π -rotation symmetry, respectively. The spatial position of topological defects is transformed as
reflection under the symmetry transformation of δ‖ = 1 family.

real structure

H̃(kx,ky) := 1
2 Trs[szH(kx,ky)], (5.1)

and the topological invariant is given by the first Chern
character

Ch1 = i

2π

∫
trF̃, (5.2)

where F̃ is the Berry curvature of the complexified Hamil-
tonian H̃(kx,ky). The topological invariant (5.2) is the spin
Chern number.

To illustrate the complexification and the spin Chern
number, consider the model Hamiltonian given by

H(kx,ky) = m(kx,ky)σz + vkxσxsz + vkyσy,

m(kx,ky) = m0 − m2
(
k2
x + k2

y

)
, (5.3)

where m0 is the a mass, and v is a velocity. Here, we have also
introduced a cutoff m2. In terms of U = isz, the Hamiltonian is

FIG. 3. (Color online) Topological defects protected by order-
two additional symmetry with δ‖ = d‖ − D‖ = 2. The additional
symmetry is π -rotation symmetry. The spatial position of topological
defects is transformed as π rotation under the symmetry transforma-
tion of δ‖ = 2 family.

rewritten asH(k) = m(k)σz − ivkxσxU + vkyσy , and thus the
complexified Hamiltonian H̃(k) = m(k)σz + vkxσx + vkyσy

is given by replacing U with i. The spin Chern number Ch1 of
this model is sgn(m0m2).

2. Mirror-odd two-dimensional topological
superconductor (U−

− in class D)

Consider a time-reversal broken (class D) superconductor
in two dimensions:

HBdG(kx,ky) =
(

ε(kx,ky) �(kx,ky)

�†(kx,ky) −εT (−kx,−ky)

)
. (5.4)

As an additional symmetry, we assume here the mirror
reflection symmetry with respect to the xy plane. The reflection
symmetry implies Mε(k)M† = ε(k) with M = isz, but the
gap function �(k) can be mirror even M�(k)MT = �(k) or
mirror odd M�(k)MT = −�(k). Even in the latter case, the
BdG Hamiltonian can be invariant under the mirror reflection
by performing simultaneously the U(1) gauge symmetry
�(k) → �(k)eiθ with θ = π .

First, examine the mirror-odd case. In this case, the BdG
Hamiltonian HBdG(k) commutes with M̃ = iszτ0. Since M̃

anticommutes with PHS, C = τxK, the additional symmetry
M̃ is identified with U−

− in class D. From Table V, thetopological index is Z ⊕ Z. The Z ⊕ Z structure can be
understood as a pair of spinless class D superconductors: From
the commutation relation [H(k),M̃] = 0, the BdG Hamilto-
nian can be block diagonal into a pair of spinless systems
with different eigenvalues of M̃ = ±i. The antiunitarity of C

and the anticommutation relation {C,M̃} = 0 imply that each
spinless system retains PHS, and thus it can be considered as a
spinless class D superconductor. Since each two-dimensional
class D superconductor is characterized by the first Chern
number, we obtain the Z ⊕ Z structure.

165114-9



KEN SHIOZAKI AND MASATOSHI SATO PHYSICAL REVIEW B 90, 165114 (2014)

TABLE V. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional unitary symmetry with flipped parameters δ‖ ≡ d‖ − D‖ = 0 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

U A C0 × C0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0
U+ AIII C1 × C1 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z
U− AIII C0 Z 0 Z 0 Z 0 Z 0

AI R0 × R0 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2

BDI R1 × R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

D R2 × R2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0
U+

+ ,U−
− ,U+

++,U−
−− DIII R3 × R3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z

AII R4 × R4 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0
CII R5 × R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0
C R6 × R6 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0
CI R7 × R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

U+
+−,U−

−+ BDI R0 Z 0 0 0 2Z 0 Z2 Z2

U+
−+,U−

+− DIII R2 Z2 Z2 Z 0 0 0 2Z 0
U+

+−,U−
−+ CII R4 2Z 0 Z2 Z2 Z 0 0 0

U+
−+,U−

+− CI R6 0 0 2Z 0 Z2 Z2 Z 0

U+
− ,U−

+ AI, D, AII, C C0 Z 0 Z 0 Z 0 Z 0
U+

−−,U−
++ BDI, DIII, CII, CI C1 0 Z 0 Z 0 Z 0 Z

U+
−+,U−

+− BDI R2 Z2 Z2 Z 0 0 0 2Z 0
U+

+−,U−
−+ DIII R4 2Z 0 Z2 Z2 Z 0 0 0

U+
−+,U−

+− CII R6 0 0 2Z 0 Z2 Z2 Z 0
U+

+−,U−
−+ CI R0 Z 0 0 0 2Z 0 Z2 Z2

The model Hamiltonian is given by

HBdG(kx,ky)

=
(

k2

2m
− μ − hzsz

�p

kF
(kxsx + kysy)isy

−isy
�p

kF
(kxsx + kysy) − k2

2m
+ μ + hzsz

)

=
(

k2

2m
− μ

)
τz − hzszτz − �p

kF
kxszτx − �p

kF
kyτy, (5.5)

where we have introduced the Zeeman term hzsz in order to
break TRS. In the diagonal basis with M̃ = ±i, we have

H±
BdG(kx,ky) =

(
k2

2m
− μ ∓ hz

)
τz ∓ �p

kF
kxτx − �p

kF
kyτy,

(5.6)

where each of H±
BdG(kx,ky) supports PHS, i.e.,

CH±
BdG(k)C−1 = −H±

BdG(−k). The topological invariant
for each sector is

Ch±
1 = i

2π

∫
trF±, (5.7)

where F± is the Berry curvature of H±
BdG(kx,ky). The Abelian

group Z ⊕ Z is characterized by the two integers (Ch+
1 ,Ch−

1 ).
Note that Ch+

1 and Ch−
1 can be different from each other by

adjusting hz, which also confirms the direct sum structure of
Z ⊕ Z.

The presence of a vortex shifts δ as δ = 1. From
Table V, the topological index of the vortex is given by
Z2 ⊕ Z2. In a thin film of 3He-A under perpendicular Zeeman
fields, one can create an integer quantum vortex, in which a

TABLE VI. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional antiunitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 0 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

A+ A R0 Z 0 0 0 2Z 0 Z2 Z2

A− A R4 2Z 0 Z2 Z2 Z 0 0 0
A+

+ AIII R1 Z2 Z 0 0 0 2Z 0 Z2

A−
− AIII R3 0 Z2 Z2 Z 0 0 0 2Z

A−
+ AIII R5 0 2Z 0 Z2 Z2 Z 0 0

A+
− AIII R7 0 0 0 2Z 0 Z2 Z2 Z

A+
+,A+

− D R1 Z2 Z 0 0 0 2Z 0 Z2

A−
+,A−

− C R5 0 2Z 0 Z2 Z2 Z 0 0

A−
+,A−

− D R3 0 Z2 Z2 Z 0 0 0 2Z
A+

+,A+
− C R7 0 0 0 2Z 0 Z2 Z2 Z
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pair of Majorana zero modes exist due to the mirror symmetry
[90]. The mirror protected Majorana zero mode gives rise to
non-Abelian statistics of integer quantum vortices [90].

3. Mirror-even two-dimensional topological
superconductor (U−

+ in class D)

Now consider the mirror-even case, where the mirror
reflection operator for the BdG Hamiltonian is given by
M̃ = iszτz. From the commutation relation between M̃ and C,

M̃ is identified as U−
+ in class D. The topological index is Z.

Again, the BdG Hamiltonian HBdG(k) can be block diagonal
in the eigenbasis of M̃ . However, in contrast to the mirror-odd
case, each spinless sector does not support PHS, and thus it
belongs to class A. Moreover, because the spinless sectors are
exchanged by C to keep PHS in the whole system, they can
not be independent, and thus they should have the essentially
same structure. Hence, the topological index is not a direct
sum Z ⊕ Z, but a single Z.

The model Hamiltonian is given by

HBdG(kx,ky) =
(

k2

2m
− μ − hzsz i

�p

kF
(kx + iky)szsy

−isy
�p

kF
(kx − iky)sz − k2

2m
+ μ + hzsz

)
=

(
k2

2m
− μ

)
τz − hzszτz + �p

kF
kxsxτx − �p

kF
kysxτy. (5.8)

In the diagonal basis of MBdG = ±i, we obtain

H±
BdG(kx,ky) =

(
k2

2m
− μ

)
τz ± hzτ0 + �p

kF
kxτx − �p

kF
kyτy. (5.9)

Contrary to the mirror-odd case, the Zeeman field hz merely shifts the origin of energy, so the first Chern numbers Ch±
1 of the

two sectors coincide, i.e., Ch+
1 = Ch−

1 .

4. Superconducting nanowire with Rashba SO interaction and Zeeman fields (A+
+, A+

− in class D)

Consider a time-reversal broken (class D) superconductor with the spin-orbit interaction in one dimension [38,39]

HBdG(kx) =
(

k2
x

2m
− μ + λkxsy + h · s �isy

−isy� − k2
x

2m
+ μ − λkxsy − h · sT

)
(5.10)

=
(

k2
x

2m
− μ

)
τz + λkxsyτz − �syτy + hxsxτz + hysy + hzszτz, (5.11)

where λkxsyτz is the Rashba spin-orbit interaction term, � is
an s-wave pairing, and h is the Zeeman field. Equation (5.11)
is the low-energy effective Hamiltonian describing a one-
dimensional nanowire with the Rashba spin-orbit interaction
and a proximity-induced s-wave superconductivity. In the
absence of the Zeeman field, TRS, T = isyK, and mirror
reflection symmetry with respect to the zx plane, Mzx = isy ,
are preserved. The Zeeman field breaks both TRS and the
mirror reflection symmetry, however, if hy = 0 it retains an
antiunitary symmetry which is obtained as their combination
A = MzxT = K [94]: AH(−kx)A−1 = H(kx). This system
hosts topological superconductivity when |h| >

√
�2 + μ2

[32,36].
As the symmetry operator A commutes with the particle-

hole transformation C = τxK, it is labeled as A+
+ in class D

of Table VI. The antisymmetry A = K defines an emergent
spinless TRS [31,94,106] because of A2 = 1, which changes
the AZ symmetry class effectively as D → BDI. The
topological number Z in Table VI ( A+

+ in class D with δ = 1)
is the winding number of the emergent class BDI,

N1 = 1

4πi

∫
tr[τxH−1dH], (5.12)

with the chiral operator τx = CA. Note that since the emergent
class BDI is not accidental but it is originated from the
symmetry of the configuration, the same topological charac-

terization works even for multiband nanowires as far as the
wire configuration respects the symmetry [94].

In the above, we have assumed an s-wave pairing, but even
for other unconventional pairings [86,107,108], one can obtain
a similar topological characterization if the gap function has a
definite parity under the mirror reflection with respect to the zx

plane: If the pairing is even under the mirror reflection Mzx ,
the same antiunitary symmetry A+

+ characterizes the system,
but even if the pairing is mirror odd, a similar emergent TRS
is obtained as A = τzK by combining TRS and the mirror
operator of this case Mzx = isyτz [85]. Because the particle-
hole transformation C = τxK anticommutes with the latter A,
it is labeled as A+

− in class D of Table VI. The corresponding
topological number is Z again in one dimension.

5. Vortex in two-dimensional superconductors with magnetic
in-plane reflection symmetry (A+

+, A+
− in class D)

Consider a two-dimensional time-reversal-invariant super-
conductor

HBdG(kx,ky) =
(

ε(kx,ky) �(kx,ky)
�†(kx,ky) −εT (−kx,−ky)

)
, (5.13)

with in-plane mirror reflection symmetry that flips the x

direction. The mirror symmetry implies

Mxε(kx,ky)M†
x = ε(−kx,ky), Mx = isx, (5.14)
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in the normal part, but in a manner similar to Sec. V A 2, two
different realizations (mirror even and mirror odd) are possible
in the gap function

Mx�(kx,ky)MT
x = ±�(−kx,ky), (5.15)

due to the U(1) gauge symmetry. The mirror symmetry is
summarized as

M̃xHBdG(kx,ky)M̃†
x = HBdG(−kx,ky), (5.16)

with M̃x = isxτz (M̃x = isxτ0) for the mirror-even (-odd) gap
function.

Now, explore topological properties of a vortex in this
system. Applying a magnetic field normal to the system,
one can create a vortex. The adiabatic (semiclassical) BdG
Hamiltonian with a vortex is given by

HBdG(kx,ky,φ) =
(

ε(kx,ky) �(kx,ky,φ)

�†(kx,ky,φ) −εT (−kx,−ky)

)
, (5.17)

where φ denotes the angle around the vortex measured
from the y axis. Since φ transforms as φ → −φ under
the mirror reflection, the vortex configuration �(kx,ky,φ) ∼
�(kx,ky)eiφ breaks the mirror reflection symmetry as well
as TRS, but the combination of these two symmetries
remains,

AxHBdG(kx,ky,φ)A−1
x = HBdG(kx,−ky,−φ) (5.18)

with Ax = T M̃x . The magnetic in-plane reflection symmetry
Ax is labeled as A+

− or A+
+ in class D of Table VI, and thus

the topological index of the vortex (δ = 1, δ‖ = 0) is given
by Z.

A vortex in two-dimensional chiral px + ipy superconduc-
tors also has the same magnetic in-plane reflection symmetry.
Although chiral px + ipy gap functions explicitly break TRS
as well as the in-plane reflection symmetry, they preserve the
magnetic in-plane reflection symmetry up to the U(1) gauge
symmetry. Consequently, a vortex also preserves the magnetic
in-plane reflection symmetry, and thus the topological index
of the vortex is also given by Z.

In the mirror-symmetric subspace defined by kx = 0, φ = 0
or kx = 0, φ = π , the magnetic in-plane reflection symmetry
in class D implies the presence of CS,

�xH(0,ky,φ)�−1
x = H(0,ky,φ) (φ = 0,π ), (5.19)

where �x = CAx with the particle-hole operator C. Us-
ing CS, one can define two one-dimensional winding

numbers as

N
φ=0,π

1 = 1

4πi

∫
tr
[
�xH−1

BdG(0,ky,φ)dky
HBdG(0,ky,φ)

]∣∣
φ=0,π

.

(5.20)

Among these two Z indices, only the difference is relevant
to topologically stable zero modes in the vortex. Indeed, if
they are the same, i.e., N0

1 = Nπ
1 , the vortex can be smoothly

deformed into the bulk without a topological obstruction, and
thus vortex zero modes, even if they exist, disappear. This
means that the Z index of the vortex, which ensures the
topological stability of vortex zero modes, is proportional to
N0

1 − Nπ
1 .

To determine the proportional constant, consider a represen-
tative Hamiltonian with the same magnetic in-plane reflection
symmetry

H1 =
(

k2

2m
− μ i�eiφ(kx + iky)

−i�e−iφ(kx − iky) − k2

2m
+ μ

)
, (5.21)

where the particle-hole transformation and the magnetic
reflection are given by C = τxK and A = τzK , respectively.
This model supports a single zero mode localized at the vortex
[109], and its topological index is(

N0
1 ,Nπ

1

)∣∣
H1

= (1,−1). (5.22)

Therefore, in order for the Z index of the vortex Nvortex
1 to be

equal to the number of vortex zero modes, the proportional
constant should be 1

2 :

Nvortex
1 = N0

1 − Nπ
1

2
. (5.23)

6. Zero mode in a magnetic in-plane mirror reflection-symmetric
heterostructure (A+

+ in class D)

In the previous subsection, we considered a vortex in a
two-dimensional superconductor, but a similar zero mode
protected by the magnetic in-plane mirror can be realized
in a heterostructure of a topological insulator, an s-wave
superconductor, and a ferromagnet. Consider a π junction of
an s-wave superconductor on the top of a topological insulator.
At the π junction, there is a one-dimensional helical Majorana
gapless mode [24], which becomes a domain-wall Majorana
zero-energy bound state in the simultaneous presence of a fer-
romagnetic kink [105]. The low-energy effective Hamiltonian
of this model is

H(x,y) =
(−isy∂x + isx∂y + hx(x)sx i�(y)sy

−isy�(y) isy∂x + isx∂y − hx(x)sx

)
= −isyτz∂x + isxτ0∂y − �(y)syτy + hx(x)sxτz, (5.24)

where �(y) is a proximity-induced s-wave superconducting
order of surface Dirac fermions on a topological insulator, and
hx(x) is a ferromagnet-induced exchange field that satisfies
hx(−x) = −hx(x). The system is invariant under the magnetic
in-plane mirror reflection

AxH(x,y)A−1
x = H(−x,y), (5.25)

with Ax = iszτzK . Assuming that �(y > 0) = −�(y < 0) =
�0 > 0, we have a zero-energy state

ξ (x,y) =

⎛
⎜⎝

i

0
1
0

⎞
⎟⎠e− ∫ x

hx (x ′)dx ′
e− ∫ y

�(y ′)dy ′
, (5.26)
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if hx(x > 0) > 0, and

ξ (x,y) =

⎛
⎜⎝

0
1
0
i

⎞
⎟⎠e

∫ x
hx (x ′)dx ′

e− ∫ y
�(y ′)dy ′

, (5.27)

if hx(x > 0) < 0, respectively. The existence of the zero mode
is ensured by the Z index that is defined in a manner similar
to Eq. (5.23): In the semiclassical limit, the Hamiltonian
Eq. (5.24) reads as

H(kx,ky,x,y) = kxsyτz − kysxτ0 − �(y)syτy + hx(x)sxτz,

(5.28)

which is chiral symmetric at kx = x = 0,

{�x,H(0,ky,0,y)} = 0 (5.29)

with �x = szτy . The Z index is given by Eq. (5.23) with the
identification of y = cos φ. By adding a regularization term in
the gap function �(y) → �(y) − δ(k2

x + k2
y) (δ > 0), one can

evaluate the Z index of this model as 1.

7. Z Majorana point defect zero mode protected by magnetic
π -rotation symmetry (A+

+, A+
− in class D)

We argue here Majorana zero modes which are localized at
a point defect in three dimensions and protected by magnetic
π -rotation symmetry around the z axis. The BdG Hamiltonian
is given in the form of HBdG(kx,ky,kz,φ,θ ) where φ and θ are
the azimuthal and polar angles of a sphere surrounding the
point defect. The magnetic π -rotation symmetry around the z

axis is expressed by

AHBdG(kx,ky,kz,φ,θ )A−1 = HBdG(kx,ky,−kz,φ + π,θ ),

(5.30)

where A is either A = sxτ0K or sxτzK, depending on the parity
of the gap function under the magnetic π rotation. As d = 3,
d‖ = 2, D = 2, and D‖ = 2 in this transformation, it is labeled
as A+

+ or A+
− in class D with δ‖ = 0 and δ = 1. From Table VI,

the zero modes are topologically characterized by Z.
The Z index is defined as follows. Because the system

also has the PHS CHBdG(k,φ,θ )C−1 = HBdG(−k,φ,θ ) with
C = τxK, we can obtain

�HBdG(kx,ky,kz,φ,θ )�−1 = −HBdG(−kx,−ky,kz,φ + π,θ ),

(5.31)

with � = AC, by combining the magnetic π rotation and the
PHS. Therefore, the BdG Hamiltonian has a “π -rotation CS”

�HBdG(0,0,kz,θ = 0,π )�−1 = −HBdG(0,0,kz,θ = 0,π )

(5.32)

on the π -rotation symmetric subspace defined by θ = 0,π and
kx = ky = 0. Here, the BdG Hamiltonian does not depend on
φ at θ = 0,π , which are the north and south poles of the sphere
surrounding the point defect. The π -rotation CS enables us to
define two one-dimensional winding numbers

N
θ=0,π
1

= 1

4πi

∫
tr
[
�H−1

BdG(0,0,kz,θ )dkz
HBdG(0,0,kz,θ )

]∣∣
θ=0,π

.

(5.33)

From an argument similar to that in Sec. V A 5, we can show
that only the difference between N0

1 and Nπ
1 is relevant to

the zero modes. The Z topological invariant of Majorana zero
modes is given by

Ndefect
1 = N0

1 − Nπ
1

2
. (5.34)

B. δ‖ = 1 family

In this section, we consider additional symmetries with
δ‖ = 1 (mod 4). In condensed matter contexts, relevant sym-
metries include reflection symmetry (d‖ = 1,D‖ = 0) and
π -rotation symmetry with one flipping defect surrounding
parameter (d‖ = 2,D‖ = 1) as shown in Fig. 2. A common
nature of the δ‖ = 1 family is that the additional symmetries
act on defect submanifolds as reflection. We summarize the
classification table for δ‖ = 1 (mod 4) with additional unitary
symmetry in Table VII and that with antiunitary symmetry in
Table VIII, respectively. A complete classification of the bulk
topological phase with reflection symmetry was given by Chiu
et al. [81] and Morimoto-Furusaki [91]. New results are the
classification of topological defects, and that with antiunitary
symmetry. In the following subsections, we illustrate some
examples.

1. Topological number Z⊕ Z

First, we give a concrete expression of the topological
number Z ⊕ Z in Table VII. This number is denoted by “Z1”
in the classification table by Chiu et al. [81]. The topological
number consists of two topological invariants. For odd (even)
spatial dimensions d, one is the winding number N2n+1 (the
Chern character), and the other is the mirror Chern number
(the mirror winding number). While the former topological
invariant can be defined without the additional symmetry, the
latter cannot.

For example, we consider class AIII system with a U−
additional symmetry in three dimensions. The Hamiltonian
has the following symmetry:

�H(kx,ky,kz)�
−1 = −H(kx,ky,kz), (5.35)

UH(kx,ky,kz)U
−1 = H(−kx,ky,kz), {U,�} = 0. (5.36)

The winding number is defined as

N3 = 1

48π2

∫
S3

tr�[H−1dH]3. (5.37)

Note that reflection symmetry U− does not eliminate the wind-
ing number because U�U−1 = −� and U [H−1dH]3U−1 =
−[H−1dH]3.

In addition to N3, we can introduce the first Chern
number on the mirror-invariant plane with kx = 0: On the
mirror-invariant plane, the Hamiltonian H(0,ky,kz) can be
block diagonal in the basis of eigenstates of U = ± since
it commutes with U , i.e., [U,H(0,ky,kz)] = 0. Then, the first
Chern number is defined as

Ch±
1 = i

2π

∫
S2

trF±, (5.38)

whereF± is the Berry curvature of the HamiltonianH(0,ky,kz)
in the U = ± sector. Here, note that the two Chern numbers
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TABLE VII. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional unitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 1 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

U A C1 0 Z 0 Z 0 Z 0 Z
U+ AIII C0 Z 0 Z 0 Z 0 Z 0
U− AIII C1 × C1 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z

AI R1 Z2 Z 0 0 0 2Z 0 Z2

BDI R2 Z2 Z2 Z 0 0 0 2Z 0
D R3 0 Z2 Z2 Z 0 0 0 2Z

U+
+ ,U−

− ,U+
++,U−

−− DIII R4 2Z 0 Z2 Z2 Z 0 0 0
AII R5 0 2Z 0 Z2 Z2 Z 0 0
CII R6 0 0 2Z 0 Z2 Z2 Z 0
C R7 0 0 0 2Z 0 Z2 Z2 Z
CI R0 Z 0 0 0 2Z 0 Z2 Z2

U+
+−,U−

−+ BDI R1 × R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

U+
−+,U−

+− DIII R3 × R3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z
U+

+−,U−
−+ CII R5 × R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0

U+
−+,U−

+− CI R7 × R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

AI R7 0 0 0 2Z 0 Z2 Z2 Z
BDI R0 Z 0 0 0 2Z 0 Z2 Z2

D R1 Z2 Z 0 0 0 2Z 0 Z2

U+
− ,U−

+ ,U+
−−,U−

++ DIII R2 Z2 Z2 Z 0 0 0 2Z 0
AII R3 0 Z2 Z2 Z 0 0 0 2Z
CII R4 2Z 0 Z2 Z2 Z 0 0 0
C R5 0 2Z 0 Z2 Z2 Z 0 0
CI R6 0 0 2Z 0 Z2 Z2 Z 0

U+
−+,U−

+− BDI, CII C1 0 Z 0 Z 0 Z 0 Z
U+

+−,U−
−+ DIII, CI C1 0 Z 0 Z 0 Z 0 Z

Ch+
1 and Ch−

1 are not independent. In fact, the total first Chern
number should be trivial in the sense of strong topological
index in three dimensions Ch+

1 + Ch−
1 = 0 [110]. Hence,

the meaningful topological invariant is only the difference
between Ch+

1 and Ch−
2 ,

NMZ = Ch+
1 − Ch−

1

2
. (5.39)

Consequently, the K group is characterized by N3 and NMZ:

(N3,NMZ) ∈ Z ⊕ Z. (5.40)

2. Second descendant Z2 index in real AZ classes
with U+

− , U−
+ , U+

−−, U−
++

Consider a system in s real AZ class with U+
− , U−

+ , U+
−−,

U−
++ (t = 2 of Table IV) in d dimensions. The system is

time-reversal invariant

TH(k)T −1 = H(−k), T 2 = εT , (5.41)

and/or particle-hole symmetric

CH(k)C−1 = −H(−k), C2 = εC, (5.42)

TABLE VIII. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional antiunitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 1 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

A+ A R2 Z2 Z2 Z 0 0 0 2Z 0
A− A R6 0 0 2Z 0 Z2 Z2 Z 0
A+

+ AIII R3 0 Z2 Z2 Z 0 0 0 2Z
A−

− AIII R5 0 2Z 0 Z2 Z2 Z 0 0
A−

+ AIII R7 0 0 0 2Z 0 Z2 Z2 Z
A+

− AIII R1 Z2 Z 0 0 0 2Z 0 Z2

A+
+,A+

− D R2 × R2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0
A−

+,A−
− C R6 × R6 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0

A−
+,A−

− D C0 Z 0 Z 0 Z 0 Z 0
A+

+,A+
− C C0 Z 0 Z 0 Z 0 Z 0
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with εT = ± and εC = ±. It is also invariant under the
additional reflection symmetry (because δ‖ = 1)

UH(kx,k⊥)U−1 = H(−kx,k⊥). (5.43)

When d = s − 3 (mod 8), the topological index of this system
is given by the second descendant Z2, as is seen in Table VII.
Now, we would like to discuss how to define this Z2 number.

As was discussed in Ref. [81], the second descendant Z2

cannot be defined on the reflection-symmetric plane with
kx = 0: On the reflection-invariant plane, the Hamiltonian
is decomposed into two eigensectors of U = ±, H(0,k⊥) =
HU=+(k⊥) ⊕ HU=−(k⊥) since H(0,k⊥) commutes with U .
However, because T and/or C interchange two eigensectors
HU=+(k⊥) and HU=−(k⊥), each sector is neither time-
reversal symmetric nor particle-hole symmetric. Therefore,
they belong to a complex AZ class, and thus no Z2 number
can be defined. Furthermore, the original s real AZ class is
topologically trivial in d = s − 3 (mod 8) dimensions. From
these observations, Ref. [81] had concluded that the Z2 index
cannot be properly defined.

To the contrary, however, we find that the Z2 topological
invariant can be defined by generalizing the Moore-Balents
argument [15] if d � 2. For this purpose, it is convenient
to reparametrize the base momentum space (kx,k⊥) ∈ Sd as
(kx,θ⊥,k′

⊥) where θ⊥ ∈ [0,π ] denotes the polar angle of Sd that
is invariant under the reflection U . In this parametrization, the
Hamiltonian obeys

TH(kx,θ⊥,k′
⊥)T −1 = H(−kx,π − θ⊥,−k′

⊥), T 2 = εT ,

(5.44)

and/or

CH(kx,θ⊥,k′
⊥)C−1 = −H(−kx,π − θ⊥,−k′

⊥), C2 = εC,

(5.45)

and

UH(kx,θ⊥,k′
⊥)U−1 = H(−kx,θ⊥,k′

⊥). (5.46)

The Hamiltonian H(kx,π/2,k′
⊥) at the equator θ⊥ = π/2

belongs to the same s real AZ class with the same U (t = 2)
but in d − 1 dimensions, so its K group is

KU
R (s,t = 2; d − 1,d‖ = 1,0,0) = π0(R3) = 0. (5.47)

This means that the equator θ⊥ = π/2 can be smoothly
deformed into a reference Hamiltonian H0 with keeping
the (s,t = 2) symmetries in d − 1 dimensions. We de-
note this deformation as H1(kx,k′

⊥,θ ), θ ∈ [π/2,π ], with
H1(kx,k′

⊥,π/2) = H(kx,π/2,k′
⊥) and H1(kx,k′

⊥,π ) = H0.
Combining with the north hemisphere of the original

Hamiltonian, we obtain an Hamiltonian H̃1(kx,k′
⊥,θ ) on Sd as

H̃1(kx,k′
⊥,θ ) =

{
H(kx,θ⊥ = θ,k′

⊥) (0 � θ � π/2),
H1(kx,k′

⊥,θ ) (π/2 � θ � π ). (5.48)

The combined Hamiltonian H̃1(kx,k′
⊥,θ ) breaks TRS and

PHS, but it keeps the reflection symmetry

UH̃1(kx,k′
⊥,θ )U−1 = H̃1(−kx,k′

⊥,θ ). (5.49)

Also, it has CS

(T C)H̃1(kx,k′
⊥,θ )(T C)−1 = −H̃1(kx,k′

⊥,θ ) (5.50)
when s is odd. So, it belongs to a complex s AZ class with U

(t = 0 mod 2), which K group is

KU
C (s,t = 0; d,1,0,0) = π0(Cs+d+1) = Z (5.51)

for d = s − 3 (mod 8). Hence, H̃1(kx,k′
⊥,θ ) defines an integer

topological invariant N .
In general, this integer N depends on how we extend

H̃1(kx,k′
⊥,θ ). If we choose another extension H̃2(θ,kx,k̃), the

resulting integer N ′ differs from N . We can show, however,
the difference between N and N ′ is even, and thus its parity
(−1)N is defined uniquely: The difference N − N ′ is evaluated
by calculating the same topological number for the following
Hamiltonian H12(kx,k′

⊥,θ ):

H̃12(kx,k′
⊥,θ ) =

{
H2(kx,k

′
⊥,π − θ ) (0 � θ � π/2),

H1(kx,k
′
⊥,θ ) (π/2 � θ � π ).

(5.52)

Then, since H1 and H2 keep the original (s,t = 2) symmetries
in d − 1 dimensions with a coordinate parameter θ , the
obtained topological number of H12(kx,k′

⊥,θ ) is restricted by
the K group

KU
R (s,t = 2,d − 1,1,1,0) = π0(R4) = 2Z, (5.53)

which implies that N − N ′ must be even. Therefore, the parity
of N , i.e., (−1)N provides a well-defined Z2 topological
invariant.

To confirm the validity of the above definition, we cal-
culate the Z2 number of a two-dimensional model. In two
dimensions, the relevant real AZ class is CII (s = 5) and the
model Hamiltonian reads as

H(kx,ky) = kxsxσxτx + kyszσxτ0 + (1 − k2)szσyτz, (5.54)

with T = isyK, C = isyσzK, and U = sz. The equator
θ⊥ = π/2 and the north (south) hemisphere in the above
correspond to the ky = 0 line and the upper (down) plane
with ky > 0 (ky < 0), respectively. On the equator ky = 0,
the Hamiltonian H(kx,0) = kyszσxτx + (1 − k2)szσyτz has an
extra symmetry-preserving mass term M = s0σxτz, which
enables us to deform the Hamiltonian on the south hemisphere
as

H1(kx,ky) = kxsxσxτx + kys0σxτz + (1 − k2)szσyτz (ky < 0). (5.55)

Then, H̃1(kx,ky) is

H̃1(kx,ky) =
{
kxsxσxτx + kyszσxτ0 + (1 − k2)szσyτz (ky > 0),

kxsxσxτx + kys0σxτz + (1 − k2)szσyτz (ky < 0),
(5.56)
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which has CS with � = T C = σz as well as the reflection symmetry with U = sz. The Z topological invariant of H̃1(kx,ky)
is obtained as the mirror winding number: On the mirror-symmetric line kx = 0, H̃1(0,ky) is decomposed into two mirror
eigensectors with U = ±, i.e., H̃1(0,ky) = H̃+

1 (0,ky) ⊕ H̃−
1 (0,ky). Due to [�,U ] = 0, the decomposed Hamiltonians also have

CS. Then, the mirror winding number is defined by NM
1 = (N+

1 − N−
1 )/2 with N±

1 = 1/(4πi)
∫

tr{�[H̃±
1 (0,ky)]−1dky

H̃±
1 (0,ky)},

which is found to be 1. We can also find that if we take another deformation H2(kx,ky) as

H2(kx,ky) = kxsxσxτx − kys0σxτz + (1 − k2)szσyτz (ky < 0), (5.57)

then the corresponding mirror winding number is −1. There-
fore, the parity of the mirror winding number is uniquely
determined to be odd, although the mirror winding number
itself is not determined uniquely. From this calculation, we
can conclude that the original model (5.54) has a nontrivial Z2

topological invariant.
Before closing this section, we would like to mention a

subtle instability of the present symmetry-protected phase.
It has been shown that the present topological phase can be
deformed into a topologically trivial state if one admits a
mass term breaking the translation symmetry [81]. However,
at the same time, it has been argued that surface gapless states
of this phase remain critical when the mass term is random
and spatially uniform on average [91]. Our results here also
indicate the existence of a proper topological number, which
also supports the validity of the topological phase discussed
here.

3. Mirror-reflection-symmetric vortex in three-dimensional
superconductors (U−

− in class D)

Mirror reflection symmetry may protect Majorana gapless
modes propagating a vortex in three dimensions. Consider a
superconductor in three dimensions

HBdG(k) =
(

ε(k) �(k)
�†(k) −εT (−k)

)
. (5.58)

As was mentioned in Sec. V A 2, mirror reflection symmetry
with respect to the xy plane implies that the normal part is
invariant under the mirror reflection

Mxyε(kx,ky,kz)M
†
xy = ε(kx,ky,−kz), Mxy = isz (5.59)

but the gap function can be either mirror even or mirror odd

Mxy�(kx,ky,kz)M
T
xy = ±�(kx,ky,−kz). (5.60)

When the gap function is mirror even (mirror odd), HBdG(k)
obeys

M̃xyHBdG(kx,ky,kz)M̃
†
xy = HBdG(kx,ky,−kz), (5.61)

with M̃xy = diag(Mxy,M
∗
xy) = iszτz [M̃xy = diag(Mxy,

−M∗
xy) = iszτ0].

A straight vortex extended in the z direction does not
break the mirror reflection symmetry. For the adiabatic
BdG Hamiltonian with the vortex, the mirror symmetry is

expressed as

M̃xyHBdG(kx,ky,kz,φ)M̃†
xy = HBdG(kx,ky,−kz,φ), (5.62)

where φ is the angle around the vortex. For mirror-even gap
superconductors, M̃xy = iszτz is labeled as U−

+ in class D,
while for mirror-odd superconductors, M̃xy = iszτ0 is labeled
as U−

− in class D. Since δ = 2 and δ‖ = 1, the topological
index of the vortex is 0 for mirror-even gap functions and Z2

for mirror-odd gap functions (see Table VII).
The Z2 index in the mirror-odd case is given in the

following manner. On the mirror-symmetric subspace with
kz = 0, the BdG Hamiltonian commutes with M̃xy , and thus it
is decomposed into two mirror eigensectors with Mxy = ±i:

HBdG(kx,ky,0,φ)=
(
Hi

BdG(kx,ky,0,φ)
H−i

BdG(kx,ky,0,φ)

)
.

(5.63)

Each mirror subsector is mapped to itself by the particle-
hole transformation due to the anticommutation relation
{C,M̃xy} = 0 in the mirror-odd case. Therefore, it supports its
own PHS, which enables us to define the mirror Z2 numbers
by

ν±i = 2 × 1

2

(
i

2π

)2 ∫
Q±i

3 (mod 2). (5.64)

Here, Q±
3 is the Chern-Simons 3-form Q3 = tr[AdA + 2

3A3]
of the Mxy = ±i sector, and the integral is performed on the
three-dimensional sphere of (kx,ky,φ). We can also show that
the sum of the mirror Z2 numbers is trivial, i.e., νi + ν−i = 0
(mod 2): First of all, the sum of the mirror Z2 numbers
coincides with the integral of the Chern-Simon 3-form of
the total Hamiltonian, which can be defined on any three-
dimensional sphere of (kx,ky,φ) even with a nonzero kz.
Moreover, the latter integral is also quantized to be 0 or 1
(mod 2) and is independent of kz because of the combined
symmetry of PHS and the mirror reflection symmetry. Its value,
however, should be zero since the Hamiltonian is smoothly
connected into a topologically trivial one by taking kz → ∞.
As a result, the sum of the mirror Z2 numbers is also zero. This
means that we have only a single independent Z2 number.

We can also show that when the Z2 number is nontrivial,
there are a pair of Majorana gapless modes propagating the
vortex. For instance, consider a vortex (o-vortex) in 3He-B
phase [111,112]. The adiabatic Hamiltonian describing the
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o-vortex is

HBdG(kx,ky,kz,φ) =
(

k2

2m
− μ �eiφ

kF
k · sisy

−isy
�e−iφ

kF
k · s − k2

2m
+ μ

)
,

(5.65)

which reduces to

H±i
BdG(kx,ky,0,φ) =

(
k2

2m
− μ �eiφ

kF
(∓kx + iky)

�e−iφ

kF
(∓kx − iky) − k2

2m
+ μ

)

(5.66)

when kz = 0. Since each mirror subsector is nothing but a
spinless chiral p-wave superfluid with a vortex, it supports a
zero mode, which gives a pair of propagating modes totally.
The topological invariant is νi = 1 (mod 2). We also find that
our Z2 number ensures the existence of similar vortex gapless
modes [89,113] in an odd-parity superconducting state of UPt3
[114–116] and CuxBi2Se3 [67,117–121].

4. 2Z chiral doublet edge modes protected by the antiunitary
reflection symmetry (A− in class A)

From Table VIII, two-dimensional class A insulators with
an antiunitary reflection symmetry A− are topologically
characterized by an even integer 2Z, which implies that
topologically protected edge modes appear in a pair. This can
be understood by quasi-Kramers degeneracy originated from
the antiunitary reflection symmetry. To illustrate this, consider
an antiunitary reflection symmetry

AH(kx,ky)A−1 = H(kx,−ky). (5.67)

Note here that it corresponds to reflection of x, x → −x

since antiunitarity changes the sign of momentum k. An edge
parallel to the x direction preserves the reflection symmetry,
and thus if the first Chern number of the system is nonzero,
there exists a chiral edge state akx

described by the effective
Hamiltonian

H =
∑
kx

vkxa
†
kx

akx
. (5.68)

In a manner similar to the Kramers theorem, one can prove
that the antiunitary reflection symmetry with A2 = −1 results
in degeneracy of the edge state, but in contrast to TRS, the
resultant degenerate states bkx

have the same energy dispersion
since the antiunitary reflection A acts as

akx
→ bkx

, bkx
→ −akx

. (5.69)

Indeed, the antiunitary invariance of H leads to double chiral
edge modes with the same energy dispersion:

H =
∑
kx

vkx

(
a
†
kx

akx
+ b

†
kx

bkx

)
. (5.70)

Correspondingly, the first Chern number of the system should
be an even integer.

5. Z⊕ Z superconductor protected by emergent spinless
reflection TRS (A+

+,A+
− in class D)

Two-dimensional class D superconductors with an antiuni-
tary reflection symmetry with A2 = 1 are characterized by a

set of topological numbersZ ⊕ Z. (See A+
−, A+

− in class D with
δ = 2 of Table VIII.) The PHS and the antiunitary symmetry
are expressed as

CH(−kx,−ky)C−1 = −H(kx,ky),

AH(kx,−ky)A−1 = H(kx,ky), A2 = 1, (5.71)

where the reflection in the x direction has been assumed. One
of the topological numbers is the first Chern character Ch1,
which can be nonzero even in the presence of the antiunitary
reflection. The other is the winding number N1 defined on the
high-symmetric line kx = 0, where the Hamiltonian H(0,ky)
effectively supports the class BDI symmetry if one identifies
A with TRS. The K group Z ⊕ Z is spanned by the basis
e1 = (Ch1 = 1,N1 = 1) and e2 = (Ch1 = −1,N1 = 1) where
the representative Hamiltonians H(Ch1,N1) are given by

H(±1,1)(kx,ky) = ±kxτy + kyτx + [
m − ε

(
k2
x + k2

y

)]
τz,

(5.72)

with C = τxK, A = τzK, and m,ε > 0.
Combining the representative Hamiltonians in the above,(

H(1,1)(kx,ky) 0
0 H(−1,1)(kx,ky)

)
, (5.73)

one obtains the system with (Ch1 = 0,N1 = 2). This system
hosts a helical gapless Majorana state protected by the
reflection symmetry A.

6. Vortex in three-dimensional superconductors with magnetic
π -rotation symmetry (A+

+,A+
− in class D)

Consider a three-dimensional time-reversal-invariant su-
perconductor (or superfluid) with an additional π -rotation
symmetry. If one creates a vortex in this system, it breaks TRS,
but if the vortex is straight and perpendicular to the rotation
axis of the π rotation, as illustrated in Fig. 2(b), the system
can be invariant under the combination of time reversal and
the π rotation. Supposing a vortex extended in the z direction
and the magnetic π rotation around the x axis, the magnetic
π -rotation symmetry A is expressed as

AHBdG(kx,ky,kz,φ)A−1 = HBdG(−kx,ky,kz,−φ),

A = τzszK, (5.74)

whereHBdG(kx,ky,kz,φ) is the BdG Hamiltonian with a vortex,
and φ is the angle around the vortex measured from the x axis.
Since A anticommutes with C = τxK, it is labeled as A+

− with
δ = 2 and δ‖ = 1 (d = 3, D = 1, d‖ = 2, and D‖ = 1) in class
D. From Table VIII, the topological index is Z ⊕ Z. One of
the Z indices is the second Chern number

Ch2 = 1

2

(
i

2π

)2 ∫
trF2, (5.75)

where F = F(k,φ) is the Berry curvature of
HBdG(kx,ky,kz,φ), and the trace is taken for all negative
energy states. The other Z index is defined on the kz = 0
plane. On the kz = 0 plane, the magnetic π rotation coincides
with the magnetic in-plane reflection, and thus the BdG
Hamiltonian is topologically the same as that in Sec. V A 5.
Consequently, the BdG Hamiltonian is chiral symmetric at
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φ = 0,π , and zero modes with kz = 0 localized at the vortex
are characterized by

N
strong
1 = N0

1 − Nπ
1

2
, (5.76)

where N
0/π

1 is given by

N
0/π

1 = 1

4πi

∫
tr �H−1

BdG(kx,0,0,0/π )dHBdG(kx,0,0,0/π ),

(5.77)

with the chiral operator � = szτy .
When these Z indices are nonzero, the bulk-boundary cor-

respondence implies that there exist one-dimensional gapless
Majorana modes propagating the vortex. These gapless modes
propagate upward or downward, and we call the former mode
as right mover and the latter as left mover. Also, thanks to
the CS above, each gapless state has a definite chirality of �

at kz = 0. Hence, a gapless state localized at the vortex has
two characters (α,�), where α =R,L) denotes the direction of
the movement and � denotes the chirality of � at kz = 0. If
we express the number of vortex gapless states with (α,�) by
N (α,�), then Ch2 and N

strong
1 are related to N (α,�) as

Ch2 = N (R,+) + N (R,−) − N (L,+) − N (L,−),
(5.78)

N
strong
1 = N (R,+) − N (R,−) + N (L,+) − N (L,−).

Such a magnetic π -rotation symmetric vortex can be realized
in 3He-B phase [111] or CuxBi2Se3 [67,117–121].

C. δ‖ = 2 family

In this section, we discuss topological phases protected by
additional symmetries with δ‖ = 2 (mod 4). Relevant systems
are π -rotation symmetric insulators and their surface defects
(d‖ = 2, D‖ = 0) illustrated in Fig. 3. We summarize the
classification table for d‖ = 2 (mod 4) with additional unitary
symmetry in Table IX and that with additional antiunitary
symmetry in Table X, respectively.

1. π -rotation Chern number and π -rotation winding number

In a manner similar to the mirror Chern number and
the mirror winding number, we can define the π -rotation
Chern number and the π -rotation winding number in the
presence of twofold (π ) rotation symmetry. To define these
topological numbers, we first introduce π -rotation subsectors.
The presence of π -rotation symmetry implies

UH(kx,ky,k⊥)U−1 = H(−kx,−ky,k⊥). (5.79)

On the symmetric subspace kx = ky = 0 of π rotation, the
Hamiltonian is decomposed into two π -rotation subsectors
which are eigenstates of U ,

H(0,0,k⊥) = H+(0,0,k⊥) ⊕ H−(0,0,k⊥), (5.80)

since the Hamiltonian commutes with U on the π -rotation
invariant subspace.

In even 2n dimensions, we can define the π -rotation Chern
number by

Ch�
n−1 := Ch+

n−1 − Ch−
n−1

2
, (5.81)

TABLE IX. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional unitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 2 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

U A C0 × C0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0
U+ AIII C1 × C1 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z
U− AIII C0 Z 0 Z 0 Z 0 Z 0

U+
+ ,U−

− AI, D, AII, C C0 Z 0 Z 0 Z 0 Z 0
U+

++,U−
−− BDI, DIII, CII, CI C1 0 Z 0 Z 0 Z 0 Z

U+
+−,U−

−+ BDI R2 Z2 Z2 Z 0 0 0 2Z 0
U+

−+,U−
+− DIII R4 2Z 0 Z2 Z2 Z 0 0 0

U+
+−,U−

−+ CII R6 0 0 2Z 0 Z2 Z2 Z 0
U+

−+,U−
+− CI R0 Z 0 0 0 2Z 0 Z2 Z2

AI R0 × R0 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2

BDI R1 × R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

D R2 × R2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0
U+

− ,U−
+ ,U+

−−,U−
++ DIII R3 × R3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z

AII R4 × R4 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0
CII R5 × R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0
C R6 × R6 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0
CI R7 × R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

U+
−+,U−

+− BDI R0 Z 0 0 0 2Z 0 Z2 Z2

U+
+−,U−

−+ DIII R2 Z2 Z2 Z 0 0 0 2Z 0
U+

−+,U−
+− CII R4 2Z 0 Z2 Z2 Z 0 0 0

U+
+−,U−

−+ CI R6 0 0 2Z 0 Z2 Z2 Z 0
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TABLE X. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional antiunitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 2 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

A+ A R4 2Z 0 Z2 Z2 Z 0 0 0
A− A R0 Z 0 0 0 2Z 0 Z2 Z2

A+
+ AIII R5 0 2Z 0 Z2 Z2 Z 0 0

A−
− AIII R7 0 0 0 2Z 0 Z2 Z2 Z

A−
+ AIII R1 Z2 Z 0 0 0 2Z 0 Z2

A+
− AIII R3 0 Z2 Z2 Z 0 0 0 2Z

A+
+,A+

− D R3 0 Z2 Z2 Z 0 0 0 2Z
A−

+,A−
− C R7 0 0 0 2Z 0 Z2 Z2 Z

A−
+,A−

− D R1 Z2 Z 0 0 0 2Z 0 Z2

A+
+,A+

− C R5 0 2Z 0 Z2 Z2 Z 0 0

where Ch±
n−1 is the (n − 1)th Chern number of H±(0,0,k⊥).

Since the original Chern number is identically zero in the
presence of TRS or CS in (4p − 2) dimensions, or in the
presence of PHS in 4p dimensions, the meaningful π -rotation
Chern number can be obtained only when H±(0,0,k⊥) does
not have such symmetries. For example, consider a π -rotation
symmetric class DIII system in four dimensions. There are four
types of π rotation with U 2 = 1: U+

++, U+
−−, U+

+−, U+
−+. In the

former two cases U+
++, U+

−−, the π -rotation Chern number is
identically zero because the π -rotation subsectors support CS
in two dimensions, i.e., [�,H±(0,0,k⊥)] = 0 with � = CT .
U+

+− also forbids a nonzero π -rotation Chern number because
TRS in two dimensions remains in the π -rotation subsectors
because of [U,T ] = 0. A nonzero π -rotation Chern number
is possible only in the last case U+

−+ since no AZ symmetry
remains in π -rotation subsectors.

On the other hand, the π -rotation winding number can be
defined in odd (2n + 1) dimensions. In order to define the
π -rotation winding number, we need CS that commutes with
π rotation [U,�] = 0. In this case, CS remains even in the
π -rotation subsectors. Then, the winding number N±

2n+1 for
each π -rotation subsector is given by

N±
2n−1 = n!

(2πi)n(2n)!

∫
tr�[H−1

± dH±]2n−1, (5.82)

with H± = H±(0,0,k⊥). The π -rotation winding number
N�

2n−1 is defined as the difference between N+
2n−1 and N−

2n−1:

N�
2n−1 := N+

2n−1 − N−
2n−1

2
. (5.83)

2. Z2 topological insulator protected by the magnetic π -rotation
symmetry (A+ in class A)

Here, we demonstrate a topologically nontrivial phase
which is protected by the combined symmetry of time reversal
and a π rotation. The combined antiunitary symmetry we
consider is A = −iUT = sxK where U = isz is the π rotation
around the z axis and T = isyK is time reversal. In three
dimensions, the antiunitary symmetry implies

AH(kx,ky,kz)A
−1 = H(kx,ky,−kz). (5.84)

The antiunitary symmetry A is categorized as A+ because
of A2 = 1, and thus the topological index is Z2 in three

dimensions, as is shown in Table X of class A with A+. The Z2

topological invariant is defined by the Chern-Simons 3-form

ν = 2 × 1

2

(
i

2π

)2 ∫
tr

(
AdA + 2

3
A3

)
(mod 2). (5.85)

The model Hamiltonian of this topological phase is given
by

H(kx,ky,kz) = sxσ0(kx − h) + syσ0ky + szσzkz + szσym(k),

m(k) = m0 − [
(kx − h)2 + k2

y + k2
z

]
, (5.86)

where we have introduced orbital degrees of freedom σμ, and
the antiunitary operator A acts on the orbital space trivially
as A = sxσ0K. The sign of m0 provides the Z2 number of
the above model: When m0 is positive (negative), the system
is topologically nontrivial (trivial). Indeed, the nontrivial Z2

number implies the existence of a gapless Dirac fermion on a
surface parallel to the z axis, which preserves the π -rotation
symmetry above. The wave function of the surface Dirac
fermion localized at z = 0 is solved as

ϕ(z) = (eκ+z − eκ−z)

(
1

−1

)
σ

⊗ us(kx,ky) (5.87)

with the boundary condition ϕ(0) = ϕ(−∞) = 0, where κ± =
1/2 ±

√
−m0 + (kx − h)2 + k2

y + 1/4 and (1,1)Tσ is the spinor
in the orbital space. The spinor us=± in the spin space satisfies

HD(kx,ky)u± = ±
√

(kx − h)2 + k2
yu±, (5.88)

where HD(kx,ky) is the low-energy effective Hamiltonian of
the Dirac fermion

HD(kx,ky) = sx(kx − h) + syky. (5.89)

Here, note that m0 needs to be positive in order to satisfy
the boundary condition ϕ(0) = ϕ(−∞) = 0. Otherwise, κ−
becomes negative even for small kx − h and ky , and thus ϕ(z)
never converges when z → −∞.

The Z2 character of this phase is also evident in the
surface state. From the additional symmetry of the low-energy
effective surface Hamiltonian

AHD(kx,ky)A−1 = HD(kx,ky), A = sxK (5.90)
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the Berry phase γ (C), which is defined as a line integral along
the path C enclosing a degenerate point of a surface state

γ (C) = i

∮
C

trA, (5.91)

is quantized as eiγ (C) = ±1. The Berry phase defines a Z2

number of the surface state. Using the Berry curvature A of
the Dirac fermion,

A = u
†
−du−, (5.92)

with u− in Eq. (5.88), we find that the surface Dirac fermion
supports a nontrivial Z2 number, i.e., eiγ (C) = −1, and thus it
cannot be gapped into a topologically trivial state as far as the
additional symmetry is preserved.

3. 3He-B slab with parallel magnetic fields (A+
+ in class D)

In superfluid 3He-B, the gap function �̂ = i(�/kF)k · ssy

preserves the SOL+S(3) rotation symmetry as well as TRS
[122]. The presence of a surface partially breaks the SOL+S(3)
rotation symmetry, but it still preserves the SOL+S(2) rotation
normal to the surface, say the spin-orbit rotation around the z

axis.
If we apply magnetic field parallel to the surface (say in the

y direction), both TRS and the SOL+S(2) symmetry are broken.
However, the magnetic π -rotation symmetry, which operator
acts as combination of time reversal and the π rotation of
SO(2)L+S , remains. It defines the antiunitary symmetry

AHBdG(kx,ky,−kz)A
−1 = HBdG(kx,ky,kz) (5.93)

for the BdG Hamiltonian

HBdG(kx,ky,kz)

=
(

k2

2m
−μ+ hxsx + hysy

�
kF

k · sisy

− �
kF

isy k · s − k2

2m
+ μ− hxsx + hysy

)
,

(5.94)

where A = T U (π ) = isxτzK with T = isyτ0K and U (π ) =
iszτz ∈ SOL+S(2). Considering the sign of A2 and the commu-
tation relation between A and PHS, we find that the additional
symmetry is labeled as A+

+ in the class D of Table X. In three
dimensions, the topological index of this system is Z.

The Z index is the one-dimensional π -rotation winding
number

N1 = 1

4πi

∫
tr

[
�H−1

BdG(0,0,kz)dHBdG(0,0,kz)
]
, (5.95)

with � = −AC = sxτy . For the BdG Hamiltonian (5.94) with
small hy , N1 = −2 sgn(�). The nontrivial value of N1 explains
the reason why helical surface Majorana fermions in 3He-B
can stay gapless under magnetic fields parallel to the surface
[93]: Although the class DIII topological superconductivity of
3He-B is lost by magnetic fields breaking TRS, the additional
magnetic π -rotation symmetry gives an extra topological
superconductivity to 3He-B.

4. Inversion-symmetric quantum (spin) Hall states
(U in class A, U+

+ in class AII)

Here, we consider inversion-symmetric quantum Hall states
which satisfy

PH(kx,ky)P −1 = H(−kx,−ky), P 2 = 1. (5.96)

Since the inversion P is labeled as U in class A of
Table IX, its topological index isZ ⊕ Z. One of theZ indices is
the first Chern number Ch1 = i/(2π )

∫
trF , which is directly

related to the Hall conductance σxy of the system as σxy =
(e2/h)Ch1 [2,3]. The other Z index is defined at symmetric
points of inversion, i.e., k = (0,0) ≡ �0 and k = ∞ ≡ �∞:
As the Hamiltonian H(�i) at �i (i = 0,∞) commutes with
P , it can be block diagonal into two subsectors with different
parity P = ±:

H(�i) = HP=+(�i) ⊕ HP=−(�i). (5.97)

Now let us denote #�±
i to be the number of occupied states of

HP=±(�i). Although a set of numbers {#�±
i } characterizes the

Hamiltonian, there are some constraints. First, for a full gapped
system, the total number of occupied states is momentum
independent, so we have

#�+
0 + #�−

0 = #�+
∞ + #�−

∞. (5.98)

Furthermore, by adding p± trivial bands with P = ±, we
find that two sets of numbers {#�±

i } and {#�±
i + p±} specify

the same stable-equivalent Hamiltonian. Consequently, the
topological index, which should be unchanged under the stable
equivalence, is given by

[�0,∞] = #�+
0 − #�+

∞ = −(#�−
0 − #�−

∞). (5.99)

It has been known that the following formula holds between
Ch1 and [�0,∞] [29,65,123]:

(−1)Ch1 = (−1)[�0,∞]. (5.100)

We find that the K theory simplifies the derivation of this
formula: Let us consider two representative Hamiltonians of
quantum Hall states

H1 = kxσx + kyσx + (
1 − k2

x − k2
y

)
σz,

(5.101)
H2 = kxσx − kyσx + (

1 − k2
x − k2

y

)
σz,

with P = σz, which topological indices are (Ch1,[�0,∞])|H1 =
(1,−1) and (Ch1,[�0,∞])|H2 = (−1,−1), respectively. Then,
because any inversion-symmetric quantum Hall state H is
stable equivalent to a direct sum of H1 and H2,

[H] = l1[H1] ⊕ l2[H2], (5.102)

its topological numbers (Ch1,[�0,∞])|H = (l1 − l2,−l1 − l2),
obey Eq. (5.100) as (−1)Ch1 = (−1)l1−l2 = (−1)−l1−l2 =
(−1)[�0,∞].

If we consider an inversion-symmetric quantum spin Hall
state, instead of a quantum Hall state, the system also supports
TRS. In this case, P is labeled as U+

+ in class AII of Table IX.
Now, the topological index reduces to Z since TRS makes Ch1

to be zero. In a manner similar to Eq. (5.99), the remaining
topological index is given by

[�0,∞] = #�+
0 − #�+

∞
2

= −#�−
0 − #�−

∞
2

. (5.103)

165114-20



TOPOLOGY OF CRYSTALLINE INSULATORS AND . . . PHYSICAL REVIEW B 90, 165114 (2014)

Here, in comparison with Eq. (5.99), theZ index in Eq. (5.103)
is divided by 2, in order to remove the trivial factor 2 caused
by the Kramers degeneracy.

Like ordinary quantum spin Hall states, we can also
introduce the Kane-Mele Z2 invariant (−1)ν [13], but it is
written by [�0,∞]

(−1)ν = (−1)[�0,∞] (5.104)

as was shown by Fu and Kane [16]. Again, the K theory
provides a simple derivation of this formula: Using a repre-
sentative Hamiltonian of inversion-symmetric quantum spin
Hall states

H1 = kxsxσx + kysyσx + (
1 − k2

x − k2
y

)
σz,

T = isyK, P = σz, (5.105)

with the topological indices [(−1)ν,[�0,∞]]|H1 = (−1,−1),
the K theory implies that any inversion-symmetric quantum
spin Hall state H is stable equivalent to a direct sum of H1:

[H] = l1[H1]. (5.106)

Therefore, the topological indices of H are given by
[(−1)ν,[�0,∞]]|H = [(−1)l1 ,−l1], and thus Eq. (5.104) holds.
This parity formula is useful to evaluate the Z2 invariant of
real materials [16].

5. Odd-parity superconductors in two dimensions (U+
− in class D)

Now, consider topological properties of odd-parity super-
conductors in two dimensions [29,31], where the normal
dispersions are inversion symmetric Pε(−k)P † = ε(k), and
the pairing functions are odd under inversion P�̂(−k)P T =
−�̂(k), with a unitary matrix P . Combining with U(1) gauge
symmetry, the inversion symmetry of the BdG Hamiltonian

HBdG(k) =
(

ε(k) �̂(k)
�̂†(k) −εT (−k)

)
(5.107)

is expressed as

P̃HBdG(−k)P̃ † = HBdG(k), P̃ = diag(P,−P ∗). (5.108)

Because P̃ 2 = 1 and {P̃ ,C} = 0, P̃ is labeled as U+
− in class

D. From Table IX, its topological index is Z ⊕ Z in two
dimensions. Like an inversion-symmetric quantum Hall state,
one of the Z ⊕ Z indices is the first Chern number Ch1 =
i/(2π )

∫
trF , and the other is defined at the symmetric points

k = (0,0) ≡ �0 and k = ∞ ≡ �∞ of inversion. Denoting the
number of negative energy states with parity ± at �i as #�±

i ,
the latter topological index is given by

[�0,∞] = #�+
0 − #�+

∞ = −(#�−
0 − #�−

∞). (5.109)

Furthermore, we can also show

(−1)Ch1 = (−1)[�0,∞] (5.110)

in a manner similar to Eq. (5.100) [29].
For ordinary odd-parity superconductors, the gap functions

at �i are often identically zero or they are much smaller than
the energy scale of the normal part. The energy hierarchy
between the normal and superconducting states simplifies the
evaluation of [�0,∞] [29,31]. Under these situations, without

closing the bulk gap, �(�i) can be neglected in H(�i),

H(�i) =
(

ε(�i) 0
0 −εT (�i)

)
, (5.111)

and thus the normal dispersion ε(�i) determines the BdG
spectrum at �i : By using an eigenstate |ϕi〉 of ε(�i), a negative
energy state ofH(�i) is given by (|ϕi〉,0)t [(0,|ϕ∗

i 〉)t ] if the state
|ϕi〉 is below (above) the Fermi level. Therefore, we obtain

#�σ
i = #εσ

−(�i) + #ε−σ
+ (�i), (5.112)

where #εσ
−(�i)[#εσ

+(�i)] denotes the number of P = σ bands
in the normal state below (above) the Fermi level. Conse-
quently, [�0,∞] is recast into

[�0,∞] = #ε+
− (�0) + #ε−

+ (�0) − #ε+
− (�∞) − #ε−

+ (�∞)

= #ε+
− (�0) − #ε+

− (�∞) − [#ε−
− (�0) − #ε−

− (�∞)]

= [ε+
− (�0,∞)] − [ε−

− (�0,∞)], (5.113)

where [εσ
−(�0,∞)] ≡ #εσ

−(�0) − #εσ
−(�∞), and we have

used the relation #εσ
−(�0) + #εσ

+(�0) = #εσ
−(�∞) + #εσ

+(�∞).
From Eqs. (5.110) and (5.113), the parity of the first Chern
number is also evaluated as [29,31]

(−1)Ch1 = (−1)[ε+
− (�0,∞)]+[ε−

− (�0,∞)] = (−1)NF , (5.114)

where NF is the number of the Fermi surfaces enclosing �0.
The Fermi surface formula (5.114) enables us to predict

topological superconductivity of odd-parity superconductors
without detailed knowledge of the gap function. In particular,
remembering that when (−1)Ch1 = −1 a vortex hosts a single
Majorana zero mode so to obey the non-Abelian anyon
statistics [20,124], Eq. (5.114) provides a simple criterion
for non-Abelian topological order [29]: If NF is odd, then
the odd-parity superconductor is in non-Abelian topological
phase.

If odd-parity superconductors support TRS, P̃ is labeled as
U+

+− in class DIII of Table IX, and thus the topological index
reduces to a single Z in two dimensions. This is because Ch1

vanishes due to TRS. Removing the trivial factor 2 caused by
the Kramers degeneracy, the remaining topological index is
given by

[�0,∞] = #�+
0 − #�+

∞
2

= −#�−
0 − #�−

∞
2

. (5.115)

We can also introduce the Kane-Mele Z2 invariant (−1)ν as
in the case of quantum spin Hall states. In a manner similar to
Eq. (5.114), for weak coupling odd-parity Cooper pairs, it is
evaluated by the number NF of the Fermi surfaces enclosing
�0 [29]:

(−1)ν = (−1)NF/2, (5.116)

where the Kramers degeneracy in NF is taken into ac-
count. This formula is also useful to clarify the topolog-
ical superconductivity of time-reversal-invariant odd-parity
superconductors.

D. δ‖ = 3 family

Here, we consider additional symmetries with δ‖ = 3
(mod 4). In condensed matter systems, relevant symmetry is
inversion. We summarize the classification table for δ‖ = 3
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TABLE XI. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional unitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 3 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

U A C1 0 Z 0 Z 0 Z 0 Z
U+ AIII C0 Z 0 Z 0 Z 0 Z 0
U− AIII C1 × C1 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z

AI R7 0 0 0 2Z 0 Z2 Z2 Z
BDI R0 Z 0 0 0 2Z 0 Z2 Z2

D R1 Z2 Z 0 0 0 2Z 0 Z2

U+
+ ,U−

− ,U+
++,U−

−− DIII R2 Z2 Z2 Z 0 0 0 2Z 0
AII R3 0 Z2 Z2 Z 0 0 0 2Z
CII R4 2Z 0 Z2 Z2 Z 0 0 0
C R5 0 2Z 0 Z2 Z2 Z 0 0
CI R6 0 0 2Z 0 Z2 Z2 Z 0

U+
+−,U−

−+ BDI, CII C1 0 Z 0 Z 0 Z 0 Z
U+

−+,U−
+− DIII, CI C1 0 Z 0 Z 0 Z 0 Z

AI R1 Z2 Z 0 0 0 2Z 0 Z2

BDI R2 Z2 Z2 Z 0 0 0 2Z 0
D R3 0 Z2 Z2 Z 0 0 0 2Z

U+
− ,U−

+ ,U+
−−,U−

++ DIII R4 2Z 0 Z2 Z2 Z 0 0 0
AII R5 0 2Z 0 Z2 Z2 Z 0 0
CII R6 0 0 2Z 0 Z2 Z2 Z 0
C R7 0 0 0 2Z 0 Z2 Z2 Z
CI R0 Z 0 0 0 2Z 0 Z2 Z2

U+
−+,U−

+− BDI R1 × R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

U+
+−,U−

−+ DIII R3 × R3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z
U+

−+,U−
+− CII R5 × R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0

U+
+−,U−

−+ CI R7 × R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

with order-two unitary symmetry in Table XI and that with
order-two antiunitary symmetry in Table XII, respectively.

1. Inversion-symmetric topological insulators
(U in class A, U+

+ in class AII)

Class A systems in three dimensions cannot host a strong
topological phase in general. However, the presence of
inversion symmetry admits a strong crystalline Z topological
index [65,66,123]. The inversion symmetry is expressed as

PH(−k)P −1 = H(k) (5.117)

with a unitary matrix P . Since P is labeled as U in class A
of Table XI, its topological index is given by Z in three
dimensions. The Z index is defined at symmetric points of
inversion k = (0,0,0) ≡ �0 and k = ∞ ≡ �∞ in a manner
similar to the two-dimensional case discussed in Sec. V C 4.
Since the Hamiltonian commutes with P at k = �i(i = 0,∞),
the Hamiltonian is decomposed into two eigensectors of P =
± as H(�i) = HP=+(�i) ⊕ HP=−(�i). Then, the Z index is
defined by the number #�±

i of occupied states with parity
P = ± at �i . Using the same argument in Sec. V C 4, we
have #�+

0 + #�−
0 = #�+

∞ + #�−
∞, and the stable equivalence

TABLE XII. Classification table for topological crystalline insulators and superconductors and their topological defects in the presence of
order-two additional antiunitary symmetry with flipped parameters δ‖ = d‖ − D‖ = 3 (mod 4). Here, δ = d − D.

Symmetry Class Cq or Rq δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

A+ A R6 0 0 2Z 0 Z2 Z2 Z 0
A− A R2 Z2 Z2 Z 0 0 0 2Z 0
A+

+ AIII R7 0 0 0 2Z 0 Z2 Z2 Z
A−

− AIII R1 Z2 Z 0 0 0 2Z 0 Z2

A−
+ AIII R3 0 Z2 Z2 Z 0 0 0 2Z

A+
− AIII R5 0 2Z 0 Z2 Z2 Z 0 0

A+
+,A+

− D C0 Z 0 Z 0 Z 0 Z 0
A−

+,A−
− C C0 Z 0 Z 0 Z 0 Z 0

A−
+,A−

− D R2 × R2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0
A+

+,A+
− C R6 × R6 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0
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implies that the index Z depends only on the difference
(#�+

0 − #�−
0 ) − (#�+

∞ − #�−
∞). In three dimensions, however,

there exists an extra global constraint: By regarding kz in H(k)
as a parameter, one can define the first Chern number Ch1(kz),
but for a full gapped system in S3, it must be zero since the
two-dimensional system, which is obtained by fixing kz of S3

in the momentum space, smoothly goes to a topologically
trivial state as kz → ∞. This means that Ch1(kz = 0) = 0
on the inversion-symmetric two-dimensional plane at kz = 0.
Therefore, from Eq. (5.100), #�+

0 − #�+
∞ must be even. Taking

into account this constraint, the Z index is defined as

[�0,∞] = #�+
0 − #�+

∞
2

. (5.118)

For inversion-symmetric insulators, the magnetoelectric
polarizability

P3 = −1

8π2

∫
tr

(
AdA + 2

3
A3

)
(mod 1) (5.119)

with the Berry connectionA ofH(k) also defines a topological
invariant: Because P3 is defined modulo integer and P3 → −P3

under inversion, the value of P3 is quantized to be 0, 1
2

for inversion-symmetric insulators, which means that (−1)2P3

defines a Z2 invariant. This Z2 invariant, however, is not
independent of [�0,∞]. It holds that

(−1)2P3 = (−1)[�0,∞]. (5.120)

Therefore, the Z index [�0,∞] fully characterizes the topolog-
ical phase of three-dimensional inversion-symmetric insula-
tors, as indicated by Table XI.

If we impose TRS on inversion-symmetric insulators, P is
labeled as U+

+ in class AII of Table XI. The topological index
in three dimensions is Z, which is defined in a manner similar
to Eq. (5.118):

[�0,∞] = #�+
0 − #�+

∞
2

. (5.121)

Note here that in contrast to the two-dimensional case in
Sec. V C 4, the Kramers degeneracy does not impose an extra
constraint because of the global constraint mentioned in the
above.

Like an ordinary topological insulator, TRS also admits
to define the three-dimensional Z2 invariant [15,16,125].
However, it is not independent of [�0,∞] again. Indeed, the
Z2 invariant can be expressed in terms of the magnetoelectric
polarizability [126]

(−1)ν = (−1)2P3 , (5.122)

and thus Eq. (5.120) leads to

(−1)ν = (−1)[�0,∞]. (5.123)

By using the relation #�+
0 + #�−

0 = #�+
∞ + #�−

∞ that holds
for full gapped systems, this equation is recast into

(−1)ν = (−1)(#�−
0 +#�−

∞)/2. (5.124)

This is the Fu-Kane’s parity formula for the Z2 invariant [16].

2. Odd-parity superconductors in three dimensions
(U+

− in class D, U+
+− in class DIII)

We examine here topological phases in three-dimensional
odd-parity superconductors. As in two dimensions discussed
in Sec. V C 5, the inversion P̃ of the BdG Hamiltonian
anticommutes with C = τxK, and thus it is labeled as U+

−
in class D of Table XI. In three dimensions, the topological
index is Z. The Z index is defined at symmetric points
k = (0,0,0) ≡ �0 and k = ∞ ≡ �∞, in a manner similar to
that for three-dimensional inversion-symmetric topological
insulators discussed in Sec.V D 1:

[�0,∞] = #�+
0 − #�+

∞
2

, (5.125)

where #�±
i is the number of negative energy states with

parity P̃ = ± at �i . As well as inversion-symmetric topo-
logical insulators, we can also introduce a Z2 index (−1)2P3

with the gravitomagnetoelectric polarizability P3 defined by
Eq. (5.119) for the BdG Hamiltonian, but it is not independent
of [�0,∞], again. The relation

(−1)2P3 = (−1)[�0,∞] (5.126)

holds, and thus the present topological phase is fully charac-
terized by [�0,∞]. The formula (5.126) is useful to discuss
the heat response of odd-parity superconductors by using the
axion-type low-energy effective Hamiltonian [127–130].

Using an argument given in Sec. V C 5, for weak pairing
odd-parity superconductors, one can evaluate [�0,∞] by the
electron spectrum in the normal state

[�0,∞] = [#ε+
− (�0) − #ε−

− (�0)] − [#ε+
− (�∞) − #ε−

− (�∞)]

2
,

(5.127)

where #ε±
− (�i) denotes the number of P = ± bands in the

normal state below the Fermi level at �i . (P is the inversion
operator acting on electron in the normal state; see Sec. V C 5.)

If an odd-parity superconductor has TRS as well, then P̃

is labeled as U+
+− in class DIII. As is seen in Table XI, its

topological number is enriched as Z ⊕ Z in three dimensions.
One of theZ indices is [�0,∞] in Eq. (5.125), and the additional
Z index is the three-dimensional winding number N3 in class
DIII. Although the parity of N3 is equal to the parity of [�0,∞]
[29,67],

(−1)N3 = (−1)[�0,∞], (5.128)

a full description of the present topological phase needs both
of [�0,∞] and N3. We can also relate the parity of N3 to the
gravitomagnetoelectric polarization P3 as (−1)2P3 = (−1)N3

[118,131].
In a weak pairing odd-parity superconductor from

Eq. (5.127), the formula (5.128) is recast into

(−1)N3 = (−1)[
∑

σ=± #εσ
−(�0)−∑

σ=± #εσ
−(�∞)]/2 = (−1)NF/2,

(5.129)

where NF is the number of the Fermi surfaces enclosing
�0 [29,67]. Note here that NF is even due to the Kramers
degeneracy. This formula means that an odd-parity supercon-
ductor automatically realizes topological superconductivity
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with nonzero N3 if it has the Fermi surface with odd NF/2.
Although a boundary breaks inversion symmetry, the Fermi
surface criterion for topological odd-parity superconductivity
predicts the existence of surface helical Majorana fermions
since N3 itself is well defined even in the presence of
boundary.

3. Z2 topological phase protected by antiunitary inversion
symmetry in three-dimensional class AIII system

(A+
− in class AIII)

Finally, we examine a three-dimensional class AIII sys-
tem with an additional antiunitary inversion symmetry A+

−.
As a class AIII system, the winding number N3 can
be introduced by N3 = 1/(48π2)

∫
tr[�(H−1dH)3], but the

presence of A+
− makes N3 identically zero because it im-

poses the constraint A�(H−1dH)3A−1 = −�(H−1dH)3 on
the integral. Alternatively, one can introduce the following
Z2 topological invariant: Because the additional antiunitary
inversion

AH(k)A−1 = H(k), {A,�} = 0, A2 = 1 (5.130)

acts in the same way as the time reversal in the coordinate
space, the system can be identified with those in class CI
with three coordinate parameters. Therefore, the alternative
topological number can be introduced as the third homotopy
group of the classifying space of class CI, i.e., π3(R7) = Z2,
which reproduces the topological index in Table XII.

VI. WEAK CRYSTALLINE TOPOLOGICAL INDICES

Up to now, we have treated the base space of Hamiltonians
as a (d + D)-dimensional sphere Sd+D . For band insulators,
however, the actual base space is a direct product of a
d-dimensional torus T d and a D-dimensional sphere SD , i.e.,
T d × SD , because of the periodic structure of the Brillouin
zone. The torus manifold gives rise to an extra topologi-
cal structure. For example, the K group of d-dimensional
topological band insulators (D = 0) in the real AZ class s

(s = 0,1, . . . ,7) is given as [47]

KR(s; T d ) ∼= π0(Rs−d )
d−1⊕
q=1

(
d

q

)
π0(Rs−d+q ) (d � 1).

(6.1)

The first term reproduces the K group of the Hamiltonians
on Sd , i.e., KR(s; d,D = 0), but there are extra terms that
define weak topological indices. Here, Eq. (6.1) does not
include zero-dimensional indices π0(Rs) since the base space
d-dimensional torus T d does not have Z2 distinct parts [132].

The extra terms in the presence of additional symmetry
are more complicated than those of the above case because
there are two different choices of lowering dimension, i.e.,
the parameters which are flipped by the additional symmetry
transformation or not. The complete K group for topological
crystalline band insulators and superconductors in complex
AZ classes with additional unitary symmetry is given by

KU
C (s,t ; T d ) ∼= ⊕

0�q⊥�d−d‖,0�q‖�d‖,0�q⊥+q‖�d−1

(
d − d‖

q⊥

)(
d‖
q‖

)
KU

C (s,t ; d − q⊥ − q‖,d‖ − q‖,0,0) (d � 1), (6.2)

where s = 0,1 and t = 0,1 denote the AZ class and the unitary symmetry in Table II. Similar results are obtained for those with
additional antiunitary symmetry and those in real AZ classes.

To illustrate weak crystalline topological indices, consider an odd-parity superconductor in three dimensions. The full K

group on the torus T 3 is given by

KU
R (s = 2,t = 2; d = 3,d‖ = 3,0,0; T 3) = KU

R (s = 2,t = 2; d = 3,d‖ = 3,0,0; S3)(=Z)

3⊕
i=1

KU
R

(
s = 2,t = 2; d = 2,d‖ = 2,0,0; S2

i

)( =
3⊕

(Z ⊕ Z)

)

3⊕
i=1

KU
R

(
s = 2,t = 2; d = 1,d‖ = 1,0,0; S1

i

)( =
3⊕

Z

)

=
10⊕

Z, (6.3)

where S2
i and S1

i denote two- and one-dimensional spheres
that are obtained as high-symmetric submanifolds of the
torus. This equation implies that there are 10 Z crystalline
topological indices. Among them, three indices are the weak
first Chern numbers defined at fixed ki plane T 2

i (i = x,y,z)
in the Brillouin zone,

Chi
1 = i

2π

εijk

2

∫
T 2

i

trFjk(k) (i = x,y,z). (6.4)

The other seven Z indices are defined at the eight
symmetric points �i (i = 1, . . . ,8) of inversion, which

satisfy k = −k + G with a reciprocal vector G. In the cubic
lattice, these �i are �1 = (0,0,0),�2 = (π,0,0),�3 = (0,π,0),
�4 = (0,0,π ),�5 = (π,π,0),�6 = (π,0,π ),�7 = (0,π,π ),
and �8 = (π,π,π ). The seven Z indices are

[�i,8] = #�+
i − #�+

8 = −(#�−
i − #�−

8 ) (i = 1, . . . ,7),

(6.5)

where #�±
i is the number of negative energy states with parity

P̃ = ± at �i . Here, we have used the relation #�+
i + #�−

i =
#�+

j + #�−
j for full gapped systems. In a manner similar to
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Eq. (5.100), the parity of Chi
1 can be expressed by [�i,8]:

(−1)Ch1
1=(−1)[�1,8]+[�3,8]+[�4,8]+[�7,8] = (−1)[�2,8]+[�5,8]+[�6,8],

(−1)Ch2
1=(−1)[�1,8]+[�2,8]+[�4,8]+[�6,8] = (−1)[�3,8]+[�5,8]+[�7,8],

(−1)Ch3
1=(−1)[�1,8]+[�2,8]+[�3,8]+[�5,8] = (−1)[�4,8]+[�6,8]+[�7,8].

(6.6)

These relations provide a global constraint that the summation
of all seven [�i,8]’s must be even. From the same argument in
Secs. V C 5 and V D 2, in weak pairing odd-parity supercon-
ductors, we can also show

[�i,8] = [#ε+
− (�i) − #ε−

− (�i)] − [#ε+
− (�8) − #ε−

− (�8)]

(i = 1, . . . ,7), (6.7)

where #ε±
− (�i) denotes the number of P = ± parity bands in

the normal state below the Fermi level at �i .
In odd-parity superconductors, we can define other topo-

logical indices, but they can be expressed by the above
10 indices: First, as was shown in Sec. V D 2, using the
gravitomagnetoelectric polarizability P3, one can define a Z2

index by (−1)2P3 . This index is written as

(−1)2P3 = (−1)
∑8

i=1 Ni/2. (6.8)

Furthermore, PHS enables us to define Z2 indices (−1)νij with

νij = i

π

∮
Cij

trA, (6.9)

where Cij is a closed path that passes through �i and �j in T 3

and is invariant under k → −k. These indices satisfy [29]

(−1)νij = (−1)[�i,8]+[�j,8]. (6.10)

Note that the weak indices Chi
1 and (−1)νij are well

defined even in the presence of boundaries which induce
a parity mixing of Cooper pairs in general. Therefore, the
bulk-boundary correspondence holds for Chi

1 and (−1)νij .
Combining Eqs. (6.6) and (6.10) with (6.7), details of surface
gapless modes can be predicted by the knowledge of the Fermi
surface structure [29].

VII. DIMENSIONAL HIERARCHY WITH ORDER-TWO
ADDITIONAL SYMMETRY

In this section, we establish the relations between the
K groups of topological crystalline insulators and super-
conductors with order-two additional symmetry in different
dimensions.

A. Additional order-two unitary symmetry
in complex AZ classes

In this case, due to the absence of antiunitary symmetry,
the momentum k and coordinate parameters r cannot be
distinguished from each other. Therefore, we have

KU
C (s,t ; d,d‖,D,D‖) = KU

C (s,t ; d+D,d‖+D‖,0,0). (7.1)

We can also derive the following relation:

KU
C (s,t ; d + D,d‖ + D‖,0,0)

= KU
C (s + 1,t ; d + D + 1,d‖ + D‖,0,0)

= KU
C (s + 1,t + 1; d + D + 1,d‖ + D‖ + 1,0,0), (7.2)

which leads to Eq. (3.5).
To prove the dimensional hierarchy of the K groups

[Eq. (7.2)], we use the dimension-raising maps [Eqs. (A1)
and (A2)] and their inverses [Eqs. (A6) and (A8)]. These maps
determine uniquely how order-two unitary symmetry of an
original Hamiltonian acts on the mapped Hamiltonian and, as
a result, we can obtain the relation between the K groups. For
instance, a Hamiltonian H(k,r) in class A (s = 0) is mapped
into a Hamiltonian H(k,r,θ ) in class AIII (s = 1) with CS
� = 1 ⊗ τx by the dimension-raising map

H(k,r,θ ) = sin θH(k,r) ⊗ τz + cos θ1 ⊗ τy. (7.3)

If the class A Hamiltonian H(k,r) has an additional unitary
symmetry U , which is labeled by (s,t) = (0,0) in Table II,

UH(k,r)U−1 = H(−k‖,k⊥,−r‖,r⊥), (7.4)

then the mapped class AIII Hamiltonian H(k,r,θ ) also has the
corresponding symmetries

(U ⊗ τ0)H(k,r,θ )(U ⊗ τ0)−1 = H(−k‖,k⊥,−r‖,r⊥,θ ),

(7.5)

(U ⊗ τz)H(k,r,θ )(U ⊗ τz)
−1 = H(−k‖,k⊥,−r‖,r⊥,π − θ ).

(7.6)

The former (latter) symmetry U ⊗ τ0 (U ⊗ τz) defines U+
(U−) in Table II, which belongs to (s,t) = (1,0) [(s,t) =
(1,1)] in Table II, because it (anti)commutes with the
chiral operator � = 1 ⊗ τx . Also, in the former (latter)
case, the trivial (nontrivial) transformation of θ under the
mapped symmetry implies that θ must be considered as
a k⊥/r⊥-type (k‖/r‖-type) variable for the mapped sym-
metry. Therefore, Eq. (7.3) provides the K-group ho-
momorphism KU

C (0,0; d + D,d‖ + D‖,0,0) → KU
C (1,0; d +

D + 1,d‖ + D‖,0,0) and KU
C (0,0; d + D,d‖ + D‖,0,0) →

KU
C (1,1; d + D + 1,d‖ + D‖ + 1,0,0).
In a similar manner, one can specify how other unitary

symmetries in Table II are mapped, and how θ transforms
under the mapped symmetries, as summarized in Table XIII.
We also find that the dimension-lowering maps [Eqs. (A6) and
(A8)] provide the inverse of these mappings. Consequently,
we have isomorphism between Hamiltonians with different
(s,t)’s of Table II, in the meaning of stable equivalence, which
establishes the K-group isomorphism of Eq. (7.2).

B. Additional order-two antiunitary symmetry
in complex AZ classes

As was explained in Sec. III B, the presence of additional
order-two antiunitary symmetry introduces real structures in
complex AZ classes and, consequently, with mapping of
symmetries in Table III, the K group of this case reduces
to that of real AZ classes,

KA
C(s; d,d‖,D,D‖) = KR(s; d − d‖ + D‖,D − D‖ + d‖).

(7.7)
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TABLE XIII. Homomorphism from KU
C(s,t,d,d‖,0,0) to KU

C(s + 1,t,d + 1,d‖,0,0) and KU
C(s + 1,t + 1,d + 1,d‖ + 1,0,0).

AZ class t Symmetry Hamiltonian mapping Type of θ Mapped AZ class � Mapped t Mapped symmetry

0 U k⊥/r⊥ 0 U+ = U ⊗ τ0

A 1 U k⊥/r⊥ AIII 1 ⊗ τx 1 U− = U ⊗ τysin θH(k,r) ⊗ τz + cos θ1 ⊗ τy0 U k‖/r‖ 1 U− = U ⊗ τz

1 U k‖/r‖ 0 U+ = U ⊗ τx

0 U+ k⊥/r⊥ 0 U = U+
AIII 1 U− k⊥/r⊥ A 1 U = i�U−sin θH(k,r) + cos θ�

0 U+ k‖/r‖ 1 U = �U+
1 U− k‖/r‖ 0 U = U−

From the dimensional hierarchy of real AZ classes [Eq. (B2)],
we have

KA
C(s; d,d‖,D,D‖) = KA

C(s + 1; d + 1,d‖,D,D‖)

= KA
C(s − 1; d,d‖,D + 1,D‖)

= KA
C(s − 1; d + 1,d‖ + 1,D,D‖)

= KA
C(s + 1; d,d‖,D + 1,D‖ + 1). (7.8)

C. Additional order-two symmetry in real AZ classes

We now outline the proof of the following isomorphism:

K
U/A

R (s,t ; d,d‖,D,D‖)

= K
U/A

R (s + 1,t ; d + 1,d‖,D,D‖)

= K
U/A

R (s − 1,t ; d,d‖,D + 1,D‖)

= K
U/A

R (s + 1,t + 1; d + 1,d‖ + 1,D,D‖)

= K
U/A

R (s − 1,t − 1; d,d‖,D + 1,D‖ + 1), (7.9)

which leads Eq. (3.27).
In order to prove Eq. (7.9), we use the dimension-raising

maps [Eqs. (A1) and (A2)] and their inverse [Eqs. (A6)
and (A8)] in a manner similar to Sec. VII A. From these
maps, we can determine how additional symmetries in
Table IV are mapped. We have directly determined the
mapped symmetries for all 128 = 8 (s = 0, . . . ,7) × 4 (t =
0,1,2,3)× 4 (type of θ,k‖,k⊥,r‖,r⊥) possible combinations.
This procedure is straightforward but cumbersome, so we
explain only the case of (s,t) = (4,2) in details. Other cases
can be considered in the same manner.

A representative Hamiltonian of the K group K
U/A

R (s = 4,

t = 2; d,d‖,D,D‖) has the following symmetries:

TH(k,r)T −1 = H(−k,r), T 2 = −1, (7.10)

UH(k,r)U−1 = H(−k‖,k⊥,−r‖,r⊥),

U 2 = 1, {T ,U} = 0, (7.11)

where U = U+
− is one of the equivalent symmetries with

(s,t) = (4,2) in Table IV. (Note that the symmetries U+
− ,

U−
+ , A+

−, and A+
+ are equivalent to each other.) Equation (A2)

provides two different mapped TRS

(T ⊗ τ0)H(k,r,θ )(T ⊗ τ0)−1 = H(−k,r,π − θ ),

(T ⊗ τ0)2 = −1. (7.12)

(T ⊗ τz)H(k,r,θ )(T ⊗ τz)
−1 = H(−k,r,θ ),

(T ⊗ τz)
2 = −1, (7.13)

where θ in each case transforms in a different manner.
By combining with the CS, C = 1 ⊗ τx , of the mapped
Hamiltonian, we automatically obtain the corresponding PHS

(T ⊗ τx)H(k,r,θ )(T ⊗ τx)−1 = −H(−k,r,π − θ ),

(T ⊗ τx)2 = −1, (7.14)

(T ⊗ τy)H(k,r,θ )(T ⊗ τy)−1 = −H(−k,r,θ ),

(T ⊗ τy)2 = 1. (7.15)

The additional symmetry U is also realized in two different
manners

(U ⊗ τz)H(k,r,θ )(U ⊗ τz)
−1 =H(−k‖,k⊥,−r‖,r⊥,π − θ ),

(7.16)

(U ⊗ τ0)H(k,r,θ )(U ⊗ τ0)−1 = H(−k‖,k⊥,−r‖,r⊥,θ ).

(7.17)

Therefore, there are four possible combinations of the mapped
TRS and U , which correspond to four possible types of θ . By
fixing the type of θ , we can select one of the combinations and
determine the type of UεU

ηT ,ηC
. For instance, if one considers k‖-

type θ , then θ transforms nontrivially under the mapped TRS
and U . Hence, the mapped TRS and U are given by Eqs. (7.12)
and (7.16), respectively, which specifies the mapped U as
U+

−,+ labeled by (s,t) = (3,3) in Table IV. This means that the
dimension-raising map [Eq.(A2)] provides a homomorphism
KR(4,2; d,d‖,D,D‖) → KR(3,1; d + 1,d‖ + 1,D,D‖).

One can specify how other symmetries in Table IV are
mapped, and how θ transforms under the mapped symmetries,
as summarized in Tables XIV and XV. We also find that the
dimension-lowering maps [Eqs. (A6) and (A8)] provide the in-
verse of these mappings. Consequently, we have isomorphism
between Hamiltonians with different (s,t)’s of Table IV, which
establishes the K-group isomorphism of Eq. (7.9).

VIII. TOPOLOGICAL CLASSIFICATION OF FERMI
POINTS WITH ADDITIONAL SYMMETRY

A. K group of Fermi points

So far, we have argued topological classification of crys-
talline insulators and superconductors and their topological

165114-26



TOPOLOGY OF CRYSTALLINE INSULATORS AND . . . PHYSICAL REVIEW B 90, 165114 (2014)

TABLE XIV. Homomorphism from K
U/A

R (s,t,d,d‖,D,D‖) to K
U/A

R (s + 1,t,d + 1,d‖,D,D‖), K
U/A

R (s + 1,t + 1,d + 1,d‖ + 1,D,D‖),
K

U/A

R (s − 1,t,d,d‖,D + 1,D‖), and K
U/A

R (s − 1,t − 1,d,d‖,D + 1,D‖ + 1) for nonchiral classes.

AZ class t Symmetry Type of θ Mapped AZ class TRS PHS � Mapped t Mapped symmetry

0 U+
+ k⊥ 0 U+

++ = U+
+ ⊗ τ0

AI/AII 1 U
+
− k⊥ BDI/CII T ⊗ τ0 T ⊗ τx 1 ⊗ τx 1 U

+
−+ = U

+
− ⊗ τz

2 U+
− k⊥ 2 U+

−− = U+
− ⊗ τ0

3 U
+
+ k⊥ 3 U

+
+− = U

+
+ ⊗ τz

0 U+
+ k‖ 1 U+

+− = U+
+ ⊗ τz

AI/AII 1 U
+
− k‖ BDI/CII T ⊗ τ0 T ⊗ τx 1 ⊗ τx 2 U

+
−− = U

+
− ⊗ τ0

2 U+
− k‖ 3 U+

−+ = U+
− ⊗ τz

3 U
+
+ k‖ 0 U

+
++ = U

+
+ ⊗ τ0

0 U+
+ r⊥ 0 U+

++ = U+
+ ⊗ τ0

AI/AII 1 U
+
− r⊥ CI/DIII T ⊗ τz T ⊗ τy 1 ⊗ τx 1 U

+
−+ = U

+
− ⊗ τz

2 U+
− r⊥ 2 U+

−− = U+
− ⊗ τ0

3 U
+
+ r⊥ 3 U

+
+− = U

+
+ ⊗ τz

0 U+
+ r‖ 3 U+

+− = U+
+ ⊗ τz

AI/AII 1 U
+
− r‖ CI/DIII T ⊗ τz T ⊗ τy 1 ⊗ τx 0 U

+
−− = U

+
− ⊗ τ0

2 U+
− r‖ 1 U+

−+ = U+
− ⊗ τz

3 U
+
+ r‖ 2 U

+
++ = U

+
+ ⊗ τ0

0 U+
+ k⊥ 0 U+

++ = U+
+ ⊗ τ0

D/C 1 U
+
+ k⊥ DIII/CI C ⊗ τy C ⊗ τz 1 ⊗ τx 1 U

+
−+ = U

+
+ ⊗ τz

2 U+
− k⊥ 2 U+

−− = U+
− ⊗ τ0

3 U
+
− k⊥ 3 U

+
+− = U

+
− ⊗ τz

0 U+
+ k‖ 1 U+

−+ = U+
+ ⊗ τz

D/C 1 U
+
+ k‖ DIII/CI C ⊗ τy C ⊗ τz 1 ⊗ τx 2 U

+
++ = U

+
+ ⊗ τ0

2 U+
− k‖ 3 U+

+− = U+
− ⊗ τz

3 U
+
− k‖ 0 U

+
−− = U

+
− ⊗ τ0

0 U+
+ r⊥ 0 U+

++ = U+
+ ⊗ τ0

D/C 1 U
+
+ r⊥ BDI/CII C ⊗ τx C ⊗ τ0 1 ⊗ τx 1 U

+
−+ = U

+
+ ⊗ τz

2 U+
− r⊥ 2 U+

−− = U+
− ⊗ τ0

3 U
+
− r⊥ 3 U

+
+− = U

+
− ⊗ τz

0 U+
+ r‖ 3 U+

−+ = U+
+ ⊗ τz

D/C 1 U
+
+ r‖ BDI/CII C ⊗ τx C ⊗ τ0 1 ⊗ τx 0 U

+
++ = U

+
+ ⊗ τ0

2 U+
− r‖ 1 U+

+− = U+
− ⊗ τz

3 U
+
− r‖ 2 U

+
−− = U

+
− ⊗ τ0

defects in the presence of an additional order-two symmetry. In
this section, we will show that a similar but a slightly different
argument works for classification of topological stable Fermi
points in the momentum space.

The topological classification of Fermi points is done by
the homotopy classification of Hamiltonians H(κ) where κ =
(κ1,κ2, . . . ,κd ) is a coordinate of a d-dimensional sphere Sd

surrounding Fermi points in the momentum space. Since the
HamiltonianH(κ) defines a map from Sd to a classifying space
of topological insulators, a similar K-group argument applies
to the classification of Fermi points eventually. However, as
is shown below, the application is not straightforward, but a
careful treatment of symmetry is needed.

The obstruction encountered here is a nontrivial transfor-
mation of κ ∈ Sd under symmetry: Consider a Fermi point
located at the origin in (d + 1) dimensions. A d-dimensional
sphere Sd , which is defined as k2 = k2

1 + k2
2 + · · · k2

d+1 = ε2,

encloses the Fermi point. Although k transforms as k → −k
under TRS and/or PHS, any d-dimensional coordinates κ =
(κ1, . . . ,κd ) of Sd do not transform such a simple way.
Therefore, one cannot directly apply our arguments so far
to the Fermi points.

The key to resolve this difficulty is the dimension-raising
map introduced in Appendix A 1: Formally, one can raise the
dimension of the surrounding d-dimensional sphere, and map
isomorphically a Hamiltonian H(κ) on Sd into H(κ,κd+1)
on Sd+1. Then, topological classification of the original
Hamiltonian H(κ) reduces to that of the mapped Hamiltonian
H(κ,κd+1), which is found to be done in the framework
developed so far.

The map fromH(κ) toH(κ,κd+1) is constructed as follows.
If the original Hamiltonian supports CS �, then the map is

Hnc(κ,κd+1 = θ ) = sin θHc(κ) + cos θ�, θ ∈ [0,π ] (8.1)

165114-27



KEN SHIOZAKI AND MASATOSHI SATO PHYSICAL REVIEW B 90, 165114 (2014)

TABLE XV. Homomorphism from K
U/A

R (s,t,d,d‖,D,D‖) to K
U/A

R (s + 1,t,d + 1,d‖,D,D‖), K
U/A

R (s + 1,t + 1,d + 1,d‖ + 1,D,D‖),
K

U/A

R (s − 1,t,d,d‖,D + 1,D‖), and K
U/A

R (s − 1,t − 1,d,d‖,D + 1,D‖ + 1) for chiral classes.

AZ class t Symmetry Type of θ Mapped AZ class TRS PHS � Mapped t Mapped symmetry

0 U+
++ k⊥ 0 U+

+ = U+
++

BDI/CII 1 U
+
−+ k⊥ D/C C 1 U

+
+ = U

+
−+

2 U+
−− k⊥ 2 U+

− = U+
−−

3 U
+
+− k⊥ 3 U

+
− = U

+
+−

0 U+
++ k‖ 1 U

+
+ = �U+

++
BDI/CII 1 U

+
−+ k‖ D/C C 2 U+

− = i�U
+
−+

2 U+
−− k‖ 3 U

+
− = �U+

−−
3 U

+
+− k‖ 0 U+

+ = i�U
+
+−

0 U+
++ r⊥ 0 U+

+ = U+
++

BDI/CII 1 U
+
−+ r⊥ AI/AII T 1 U

+
− = U

+
−+

2 U+
−− r⊥ 2 U+

− = U+
−−

3 U
+
+− r⊥ 3 U

+
+ = U

+
+−

0 U+
++ r‖ 3 U

+
+ = �U+

++
BDI/CII 1 U

+
−+ r‖ AI/AII T 0 U+

+ = i�U
+
−+

2 U+
−− r‖ 1 U

+
− = �U+

−−
3 U

+
+− r‖ 2 U+

− = i�U
+
+−

0 U+
++ k⊥ 0 U+

+ = U+
++

DIII/CI 1 U
+
−+ k⊥ AII/AI T 1 U

+
− = U

+
−+

2 U+
−− k⊥ 2 U+

− = U+
−−

3 U
+
+− k⊥ 3 U

+
+ = U

+
+−

0 U+
++ k‖ 1 U

+
− = �U+

++
DIII/CI 1 U

+
−+ k‖ AII/AI T 2 U+

− = i�U
+
−+

2 U+
−− k‖ 3 U

+
+ = �U+

−−
3 U

+
+− k‖ 0 U+

+ = i�U
+
+−

0 U+
++ r⊥ 0 U+

+ = U+
++

DIII/CI 1 U
+
−+ r⊥ D/C C 1 U

+
+ = U

+
−+

2 U+
−− r⊥ 2 U+

− = U+
−−

3 U
+
+− r⊥ 3 U

+
− = U

+
+−

0 U+
++ r‖ 3 U

+
− = �U+

++
DIII/CI 1 U

+
−+ r‖ D/C C 0 U+

+ = i�U
+
−+

2 U+
−− r‖ 1 U

+
+ = �U+

−−
3 U

+
+− r‖ 2 U+

− = i�U
+
+−

and if not, then

Hc(κ,κd+1 = θ ) = sin θHnc(κ) ⊗ τz + cos θ1 ⊗ τy,

θ ∈ [0,π ] (8.2)

where the subscripts c and nc of H denote the presence
and absence of CS, respectively. [The chiral operator of
the latter Hamiltonian Hc(κ,κd+1) is given by 1 ⊗ τx .]
Since H(κ,κd+1) = const at κd+1 = 0 and κd+1 = π , the d-
dimensional sphere κ ∈ Sd can be contracted into a point either
at κd+1 = 0 and κd+1 = π . The resultant space of (κ,κd+1)
is identified as a (d + 1)-dimensional sphere Sd+1 where
κ ∈ Sd and κd+1 parametrize the “circles of latitude” and the
“meridian” of the (d + 1)-dimensional sphere, respectively,
and κd+1 = 0 and κd+1 = π point to the “north and south
poles.” Because the inverse map also can be constructed in the

meaning of stable equivalence, as explained in Appendix A 2,
the topological nature of the mapped Hamiltonian is the same
as that of the original one.

Let us now define TRS and/or PHS in the mapped
Hamiltonian. To define them, we need to determine the
transformation law of the new variable κd+1 under these
symmetries since κd+1 is an artificial variable, and thus no
a priori transformation law is given. A convenient way is to
treat the new variable κd+1 as r type, which means that κd+1

is invariant under TRS and/or PHS.
From the construction, it is evident that the TRS and/or

PHS for the original Hamiltonian induce a twofold rota-
tion of the (d + 1)-dimensional sphere: If one represents
the (d + 1)-dimensional sphere Sd+1 as k2

1 + k2
2 · · · + k2

d+1 +
k2
d+2 = ε2, TRS and/or PHS act as (k1,k2, . . . ,kd+1,kd+2) →

(−k1,−k2, . . . ,−kd+1,kd+2) in a suitable basis. Then, the
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following new reparametrization of Sd+1

κi = ki

ε + kd+2
(i = 1, . . . ,d + 1) (8.3)

simplifies the transformation law of (κ,κd+1) as (κ,κd+1) →
(−κ,−κd+1). Therefore, the mapped Hamiltonian is catego-
rized as a Hamiltonian discussed in Sec. III.

Here, note that the mapped Hamiltonian H(κ,κD+1) sup-
ports a different set of AZ symmetries than the original one
since it loses or obtains CS. With a careful analysis of the
symmetry, we find that the dimension-raising map shifts s of
the K groups of the original Hamiltonians by −1. Therefore,
denoting the K group of the Fermi point in AZ class s as
KFP

F (s,d), we obtain

KFP
F (s,d) = KF(s − 1,d + 1), (F = C,R), (8.4)

where the right-hand side is the K group of topological
insulator and superconductors in AZ class s. This relation
reproduces the previous classification of the Fermi points by
Hořava [133] and Zhao-Wang [134,135].

We can also classify Fermi points stabilized by an additional
symmetry besides AZ symmetries: Under the assumption that
the Fermi points are enclosed by a d-dimensional sphere Sd

and they are invariant under the symmetries we consider, the
K groups for the Fermi points can be related to the K groups
for (d + 1)-dimensional topological crystalline insulators and
superconductors in the presence of an additional symmetry:

K
U ;FP
C (s,t ; d,d‖) = KU

C (s − 1,t ; d + 1,d‖,0,0),

K
A;FP
C (s; d,d‖) = KA

C(s − 1; d + 1,d‖,0,0), (8.5)

K
U/A;FP
R (s,t ; d,d‖) = K

U/A

R (s − 1,t ; d + 1,d‖,0,0),

where d‖ is the number of flipped momenta under the
additional symmetry.

B. Bulk-boundary correspondence of K groups

Equations (8.4) and (8.5) provide a realization of the
bulk-boundary correspondence [1,59,135–137] in terms of
the K theory. First, consider Eq. (8.4). From the dimensional
hierarchy in Eqs. (B1) and (B2), Eq. (8.4) is recast into

KFP
F (s,d) = KF(s,d + 2). (8.6)

The relation (8.6) is nothing but the bulk-boundary correspon-
dence: While the right-hand side provides a bulk topological
number of a (d + 2)-dimensional insulator or superconductor,
the left-hand side ensures the existence of topologically stable
surface Fermi points enclosed by a sufficiently large Sd in the
(d + 1)-dimensional surface momentum space.

In a similar manner, we can obtain the bulk-boundary
correspondence of the K group in the presence of an additional
symmetry. From the dimensional hierarchy (7.2) and (7.9) in
the presence of additional symmetry, we obtain

K
U ;FP
C (s,t ; d,d‖) = KU

C (s,t ; d + 2,d‖,0,0),

K
A;FP
C (s; d,d‖) = KA

C(s; d + 2,d‖,0,0), (8.7)

K
U/A;FP
R (s,t ; d,d‖) = K

U/A

R (s,t ; d + 2,d‖,0,0),

where the right-hand sides represent bulk (d + 2)-dimensional
topological numbers of topological crystalline insulators
and superconductors and the left-hand sides give d-
dimensional topological numbers of the corresponding (d +
1)-dimensional surface states. Both topological numbers en-
sure the stability of topological crystalline phases.

Note that the number of the flipped momentum d‖ is the
same in the both sides of Eq. (8.7). Otherwise, the boundary
breaks the additional symmetry in the bulk, and thus the bulk-
boundary correspondence does not hold anymore.

C. Inversion-symmetric Fermi points

To obtain the bulk-boundary correspondence, at least one
direction in the bulk should not be flipped under the additional
symmetry. Indeed, if this happens, surfaces normal to the
nonflipped direction preserve the additional symmetry. This
condition implies that Eq. (8.7) holds only when d‖ � d + 1.

Here, note that the possible d‖ can be larger than d, i.e.,
d‖ = d + 1. In this case, the left-hand side of Eq. (8.7) implies
that the number of flipped coordinates of Sd surrounding
Fermi points becomes larger than the total dimension d of
Sd . This can be understood as follows. As was mentioned
above, the bulk-boundary correspondence holds only for the
surface normal to a nonflipped direction of the additional
symmetry. Therefore, when d‖ = d + 1, the additional sym-
metry flips all directions parallel to the surface. In other
words, the additional symmetry induces inversion k → −k
on the surface. In a manner similar to TRS and PHS, while
the d-dimensional sphere surrounding Fermi points k2 ≡
k2

1 + k2
2 + · · · + k2

d+1 = ε2 preserves the inversion symmetry,
any d-dimensional coordinates κ of Sd transform nontrivially
under the inversion. This makes it possible to realize d‖ > d.
As well as TRS and PHS, the dimension raising is needed
to obtain a simple transformation law of the surrounding
coordinates.

We notice that such an inversion-symmetric Fermi point
may support a topological number in an unusual manner. For
example, consider an inversion-symmetric Fermi point in class
AIII with d = 0, d‖ = 1, and U+. From Eq. (8.7), the relevant
K group K

U ;FP
C (1,0; 0,1) is evaluated as KU

C (1,0; 2,1,0,0) =
π0(C0) = Z. Therefore, the Fermi point can be topologically
stable. Indeed, such a topologically stable Fermi point is
realized in the following model:

H(k) = σxk, (8.8)

with the chiral operator � = σz and inversion operator U = σz,

{�,H} = 0, UH(k)U † = H(−k). (8.9)

The energy of this model is given by E(k) = ±k, and thus there
exists an inversion-symmetric Fermi point at k = 0. Although
the Fermi point can be gapped by the mass terms mσy and
m′σz, these terms are not allowed by the chiral and inversion
symmetries. Therefore, the Fermi point is symmetry protected.
The Hamiltonian of the Fermi point is given by

H(κ0 = ±) = ±σz, (8.10)

where the “sphere” surrounding the Fermi point consists of
just two points κ0 = ± in the present case.
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To calculate the topological number of this class of model,
we use the Hamiltonian mapped by the dimension raising

H(κ0 = ±,κ1 = θ ) = sin θH(κ0 = ±) + cos θ�,

θ ∈ [0,π ]. (8.11)

Inversion of the original Hamiltonian induces the following
additional symmetry:

UH(+,θ )U † = H(−,θ ). (8.12)

Since the mapped Hamiltonian commutes with U at the high-
symmetric points of this symmetry, i.e., at θ = 0,π , the energy
eigenstates at these points are decomposed into two subsets
with different eigenvalues of U . Then, we can introduce a
topological number by

N = [N+(0) − N−(0)] − [N+(π ) − N−(π )]

2
= N+(0) − N+(π ), (8.13)

where N± is the number of negative energy states with the
eigenvalue U = ±. We find that N = 1 in the above model
(8.8), which ensures topological stability of the Fermi point at
k = 0.

Here, note that at the high-symmetric points, the mapped
Hamiltonian reduces to the chiral operator ±� of the original
Hamiltonian. Therefore, in contrast to ordinary topological
numbers, the topological number of the inversion-symmetric
Fermi point is not directly evaluated from the original
Hamiltonian H(κ0 = ±), but it is implicitly encoded in the
chiral operator �.

Now, let us see how the topological number of the chiral
operator stabilizes the Fermi points. In general, a Fermi point
of this class is described by the following Dirac Hamiltonian:

H = γ k, (8.14)

with the chiral operator � and the inversion U

{�,H} = 0, UH(k)U † = H(−k), [U,�] = 0. (8.15)

If the Fermi point at k = 0 is topologically unstable, then there
exists a mass term M consistent with Eq. (8.15). As the mass
term satisfies

{γ,M} = 0, {�,M} = 0, [U,M] = 0, (8.16)

it defines an extra CS �′ by �′ = M/
√

M2. The existence
of the extra CS, however, implies that N of � must be zero.
Actually, using �′, one can interpolate �(0) = � and �(π ) =
−� smoothly by �(t) = � cos t + �′ sin t , which means N =
0 since � and −� have an opposite topological number. As a
result, we can conclude that the topological number must be
zero to obtain a gap of the Fermi point.

IX. MAJORANA ISING SPIN CHARACTER AS A
RESULT OF TOPOLOGICAL CRYSTALLINE

SUPERCONDUCTIVITY

In spinful superconductors or superfluids, zero-energy
(or gapless) modes often show an anisotropic response to
magnetic fields [31,93,94,138–143]. Here, we show that these
anisotropic behaviors, which are called Majorana Ising spin
character [138], is a result of symmetry-protected topological

phase [93]. As is discussed below, the Ising spin character
offers a new mechanism for stability of zero-energy modes
against disorders.

Let us consider N zero modes |u(a)
0 〉 (a = 1,2, . . . ,N )

localized on a defect or a boundary in a superconductor
or superfluid. Because of PHS, we can place the following
condition:

C
∣∣u(a)

0

〉 = ∣∣u(a)
0

〉
, C = τxK. (9.1)

Then, in order to introduce quantum operators for the zero
modes, we perform the mode expansion of the quantized field
�̂(x) = (ψ̂↑(x),ψ̂↓(x),ψ̂†

↑(x),ψ̂†
↓(x))T . Ignoring nonzero en-

ergy modes, �̂(x) is expanded as

�̂(x) =
∑

a

γ (a)
∣∣u(a)

0

〉
. (9.2)

Since Eq. (9.1) implies that the coefficients γ (a) are real (self-
conjugate), γ (a) represents a Majorana operator. Furthermore,
the anticommutation relation of �̂ leads to the Majorana
relation {γ (a),γ (b)} = 2δab, under a suitable normalization of
|u(a)

0 〉.
The local density operator and the spin density operators of

the Majorana zero modes are given by

ρ(x) ≡ 1
2 [ψ̂†

s (x)ψ̂s(x) − ψ̂s(x)ψ̂†
s (x)],

Si(x) ≡ 1
4 [ψ̂†

s (x)(σi)ss ′ψ̂s ′ (x) − ψ̂s(x)(σ t
i )ss ′ψ̂

†
s ′ (x)]. (9.3)

Substituting ψ̂s and ψ̂
†
s of Eq. (9.2) into this, we obtain

ρ(x) = 1

2

∑
a,b

[γ (a),γ (b)]u(a)∗
0,s (x)u(b)

0,s(x),

Si(x) = 1

4

∑
a,b

[γ (a),γ (b)]u(a)∗
0,s (x)(σi)ss ′u

(b)
0,s ′ (x),

(9.4)

where u
(a)
0,s(x) represents the zero mode |u(a)

0 〉 in the coordinate
space. The orthogonality condition of the zero modes implies
that the total density of the Majorana zero modes vanishes∫

dx ρ(x) = 0. (9.5)

When N = 1, Eq. (9.4) also yields that ρ(x) and Si(x) are
identically zero.

When the system supports more than one Majorana zero
mode (i.e., N � 2), the local operators ρ(x) and Si(x) are not
identically zero, in general. Nevertheless, if the system hosts an
additional antiunitary symmetry, ρ(x) can vanish identically.
For example, if the system has time-reversal symmetry with
T 2 = −1, Majorana zero modes form Kramer’s pairs. Thus,
if only a single pair of Majorana zero modes exist in the
system, the Kramers theorem implies that ρ(x) in Eq. (9.4)
is identically zero.

We here specify the antiunitary symmetry relevant to the
Majorana Ising character. It is the magnetic point group
symmetry that is obtained by combining time reversal T and
either of twofold spin rotation, mirror reflection, or twofold
rotation. Since the latter operations commonly rotate the spin
by π , the combined antiunitary symmetry acts on the spin
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space as

Aspin = sasyK, (9.6)

if the spin rotation axis is the a direction. For twofold spin
rotation or twofold rotation, the spin rotation axis is obvious,
and for the mirror reflection, it is normal to the mirror
reflection plane. To keep the antiunitary symmetry in the
superconducting state, the gap function must be even or odd
under the antiunitary symmetry

Aspin�(k)(A∗
spin)−1 = ±�(k‖,−k⊥), (9.7)

then in these cases, the BdG Hamiltonian

H(k) =
(

ε(k) �(k)

�†(k) −εT (−k)

)
(9.8)

retains the antiunitary symmetry that acts on the BdG Hamil-
tonian in the following form:

A =
(

Aspin 0

0 ±A∗
spin

)
, (9.9)

which can be rewritten as A = sasyτ0K or A = sasyτzK. Since
Eq. (9.9) satisfies A2 = 1 and it commutes or anticommutes
with PHS C, it is labeled as A+

±.
When the system supports A+

+ (A+
−) symmetry, a CS �

can be introduced as combined symmetry of A+
+ (A+

−) and
PHS C, i.e., � = CA+

+ (� = iCA+
−). The CS defines an

integer topological number when δ = δ‖ + 1. If the topological
number is N , the bulk-boundary correspondence ensures the
existence of the N zero-energy states |u(a)

0 〉, which wave
functions have a definite eigenvalue of �, say, � = 1,3

�
∣∣u(a)

0

〉 = ∣∣u(a)
0

〉
(a = 1,2, . . . ,N ), (9.10)

at the position of the defect or surface. Note that one can place
Eq. (9.1) at the same time because � commutes with C.

Now, we show that Eqs. (9.1) and (9.10) determine the spin
structures of the zero modes. These equations require that the
components of |u(a)

0 〉 in the spin and Nambu spaces are related
to each other, implying that the components of the quantized
field �̂(x) are dependent as well. For instance, for A = s2

yτ0K,
Eqs. (9.1) and (9.10) yield that the zero modes have a generic
form as |u(a)

0 〉 = (α(a)
↑ ,α

(a)
↓ ,α

(a)
↑ ,α

(a)
↓ ) with real functions α

(a)
↑,↓.

Then, substituting this into Eq. (9.2), we have ψ̂↑ = ψ̂
†
↑ and

ψ̂↓ = ψ̂
†
↓, from which one can show that only Sy is nonzero

and the other density operators vanish. In a similar manner, ρ

and Si for A = sasyτ0K or A = sasyτzK are evaluated as

ρ = Si �=a = 0, Sa �= 0 (9.11)

at the position of the zero modes.
Equation (9.11) indicates that the Majorana zero modes

considered here couple to Zeeman magnetic fields only in a
particular direction, namely, in the a direction. Our arguments

3In general, the index theorem allows more than N zero-energy
states if some of them have the opposite eigenvalue [59], i.e., � = −1
in the above case, but extra zero-energy states can be gapped easily by
small perturbation and only N zero-energy modes are topologically
stable.

presented here clarify that this Ising spin character of Majorana
zero modes is originated from the topological phase protected
by the magnetic point group symmetry in the above.

Although the magnetic point group symmetry is broken
by disorders, the Ising character implies that the Majorana
zero modes can survive even in the presence of nonmagnetic
disorders: Since the local density of the Majorana zero modes
ρ vanishes at the position of the zero modes, the coupling
between the zero modes and nonmagnetic disorders is strongly
suppressed. As a result, the Majorana zero modes remain to
be (nearly) zero modes even in the presence of nonmagnetic
disorders.

X. ANOMALOUS TOPOLOGICAL PUMP

Recently, Zhang and Kane have discussed topological
classification of adiabatic pump cycles in Josephson junctions
of time-reversal-invariant superconductors. They found that
adiabatic parameters of the pump cycles, such as the phase
difference φ of the Josephson junction, may have a mixed
behavior under TRS and PHS, leading to new topological
classes [144]. We argue here that our present framework is
also applicable to such systems.

In the adiabatic pumps, two different types of anomalous
parameters may appear. The first one φ is odd (even) under
TRS (PHS) and the second one θ is even (odd) under TRS
(PHS). In both types, unlike k and r , the anomalous parameters
are odd under CS. Since such an anomalous CS is not taken
into account as the original AZ symmetry, relevant topological
phases are not included in the original periodic table.

Our classification is naturally applicable to even such
phases. The anomalous CS

�H(k,r,φ,θ )�−1 = −H(k,r,−φ,−θ ) (10.1)

with k = (k1, . . . ,kdk
), r = (r1, . . . ,ddr

), φ = (φ1, . . . ,φdφ
),

and θ = (φ1, . . . ,φdθ
) is identified with an order-two antisym-

metry Ū with d = dr + dk + dφ + dθ , d‖ = dφ + dθ , D = 0,
and D‖ = 0. Therefore, its K group is given by KU

C (0,1; dk +
dr + dφ + dθ ,dφ + dθ ,0,0). Considering twofold periodicity
in s and t of KU

C (s,t ; d,d‖,D,D‖), we find that Eqs. (3.5) and
(3.6) reproduce Table I of Ref. [144].

In Josephson junctions, the anomalous CS is realized as the
combination of the following TRS and PHS:

CH(k,r,φ,θ )C−1 = −H(−k,r,φ,−θ ),

TH(k,r,φ,θ )T −1 = H(−k,r,−φ,θ ). (10.2)

These combinations are not allowed in the standard AZ
classification again, so either TRS or PHS is anomalous, but it
can be handled in our framework. A possible identification
of these symmetries in our framework is that T is the
standard TRS but C is the antiunitary antisymmetry Ā+

+ with
dk = d⊥, dr = D⊥, dφ = d‖, and dθ = D‖. The K group is
given by KA

R(4,1; dk + dφ,dr + dθ ,dφ,dθ ), which reproduces
the Z2 × Z2 structure of Josephson effects [144].

XI. CONCLUSION

In this paper, we present a topological classification of
crystalline insulators and superconductors and their topo-
logical defects that support order-two additional symmetry,
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besides AZ symmetries. The additional symmetry includes
spin rotation, reflection, π rotation, and inversion. Their
magnetic point group symmetries are also included. Using
the dimensional hierarchy of K groups, we can reduce
the topological classification of Hamiltonians into that of
simple matrices in zero dimension. The obtained results
are summarized in Eqs. (3.5), (3.11), and (3.27). These K

groups suggest that defect zero modes can be considered as
boundary states of lower-dimensional crystalline insulators
and superconductors. We also classify Fermi points stabilized
by the additional symmetry, and derive the K-theory version
of the bulk-boundary correspondence. Various symmetry-
protected topological phases and gapless modes are identified
and discussed in a unified framework.

While we have completed a topological classification of
crystalline insulators and superconductors with order-two
additional symmetry, the full classification of topological crys-
talline insulators and superconductors has not been yet done.
General crystalline symmetries admit higher-order symmetries
such as Cn rotation (n = 3,4,6), which are also responsible for
nontrivial topological phases [72,77,80,83,84,87,88,99]. Even
for these higher-order symmetries, the dimensional hierarchy
of K groups may hold as Thom isomorphism, and thus a
similar K-theory approach is applicable [145,146], but we
need a more sophisticated representation theory beyond the
Clifford algebra in order to clarify these topological structures
systematically.
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APPENDIX A: DIMENSIONAL SHIFT OF HAMILTONIANS

To derive Eqs. (7.2), (7.8), and (7.9), we need to shift the
dimension of Hamiltonians. In this Appendix, we present K-
group isomorphic maps from d-dimensional Hamiltonians to
one-dimension higher (d + 1)-dimensional Hamiltonians,

1. Dimension-raising map

Here, we introduce a map from a Hamiltonian on a (d + D)-
dimensional sphere (k,r) ∈ Sd+D to a Hamiltonian on Sd+D+1:
If the original Hamiltonian H(k,r) supports CS �, then the
map is

Hnc(k,r,θ ) = sin θHc(k,r) + cos θ�, θ ∈ [0,π ] (A1)

and if not, it is

Hc(k,r,θ ) = sin θHnc(k,r) ⊗ τz + cos θ1 ⊗ τy,

θ ∈ [0,π ]. (A2)

Since the mapped Hamiltonian H(k,r,θ ) is independent of
(k,r) ∈ Sd+D at θ = 0 and π , the base space (k,r,θ ) ∈
Sd+D × [0,π ] of the mapped Hamiltonian can be identified as
a (d + D + 1)-dimensional sphere Sd+D+1 by shrinking Sd+D

to a point at θ = 0 and π , respectively. The dimension-raising
map interchanges a Hamiltonian with CS and a Hamiltonian
without CS.

2. Dimension-lowering map

A dimension-lowering homomorphic map can be con-
structed as follows. Consider a Hamiltonian H(k,r,θ ) de-
fined on a (d + D + 1)-dimensional sphere parametrized
by (k,r,θ ) ∈ SD+d+1. Here, θ denotes the azimuthal angle
of Sd+D+1, which points the north pole (south pole) of
Sd+D+1 at θ = 0 (θ = π ), and (r,k) parametrizes the (d + D)-
dimensional circle of latitude, so the Hamiltonian satisfies

H(k,r,θ = 0) = const, H(k,r,θ = π ) = const′. (A3)

By using continuous deformation, we can also flatten the
Hamiltonian as

H2(k,r,θ ) = 1. (A4)

The above parametrization (k,r,θ ) provides a natural dimen-
sional reduction Sd+D+1 → Sd+D by fixing θ , say θ = π/2.
This procedure, however, does not ensure providing the inverse
map of Eqs. (A1) and (A2) because the flattened Hamiltonian
does not have the form of the right-hand side of Eqs. (A1) or
(A2) in general.

To fix the form of the flattened Hamiltonian, following Teo
and Kane [48], we introduce an artificial action S[H] of the
Hamiltonian

S[H] =
∫

dk d rd θ Tr[∂θH∂θH]. (A5)

By continuous deformation of the Hamiltonian, the value of
action can reduce to reach its minimal value, where H satisfies
the saddle-point equation with the constraint of H2 = 1, i.e.,
∂2
θH + H = 0. Imposing the boundary condition (A3), we can

fix the form of the Hamiltonian as the saddle-point solution

H(k,r,θ ) = sin θH1(k,r) + cos θH2, (A6)

where the flatness condition H2(k,r,θ ) = 1 implies

H2
1(k,r) = 1, H2

2 = 1, {H1(k,r),H2} = 0. (A7)

Then, by fixing θ = π/2, we have a dimensional reduction
from H(k,r,θ ) to H1(k,r).

The last relation of Eq. (A7) means that H2 act as CS on
H1(k,r). Therefore, if the original Hamiltonian H(k,r) does
not support CS, Eq. (A6) defines a dimensional reduction from
nonchiral to chiral Hamiltonians. On the other hand, if the orig-
inal Hamiltonian has CS �, thenH1(k,r) hosts a couple of CSs,
� and H2, with {�, H2} = 0. Hence, H1(k,r) has redundancy
due to the commutation relation [H1(k,r),�H2] = 0. In the
basis where � = 1 ⊗ τx and H2 = 1 ⊗ τy , the redundancy of
H1(k,r) is resolved as H1(k,r) = H3(k,r) ⊗ τz, and thus we
obtain

H(k,r,θ ) = sin θH3(k,r) ⊗ τz + cos θ1 ⊗ τy. (A8)

In this manner, a chiral Hamiltonian H(k,r,θ ) is mapped to a
nonchiral one H3(k,r).
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TABLE XVI. Homomorphism from KR(s,d,D) to KF(s + 1,d + 1,D) and KF(s − 1,d,D + 1), (F = C,R).

AZ class Hamiltonian mapping Type of θ Mapped AZ class TRS PHS Chiral

A sin θH(k,r) ⊗ τz + cos θ1 ⊗ τy k/r AIII 1 ⊗ τx

AIII sin θH(k,r) + cos θ� k/r A

k BDI/CII T ⊗ τ0 T ⊗ τx 1 ⊗ τxAI/AII sin θH(k,r) ⊗ τz + cos θ1 ⊗ τy r CI/DIII T ⊗ τz T ⊗ τy 1 ⊗ τx

k D/C C
BDI/CII sin θH(k,r) + cos θ (T C)

r AI/AII T

k DIII/CI C ⊗ τy C ⊗ τz 1 ⊗ τxD/C sin θH(k,r) ⊗ τz + cos θ1 ⊗ τy r BDI/CII C ⊗ τx C ⊗ τ0 1 ⊗ τx

k AII/AI T
DIII/CI sin θH(k,r) + cos θ (iT C)

r D/C C

APPENDIX B: DIMENSIONAL HIERARCHY
OF AZ CLASSES

In this section, we review the topological classification for
AZ symmetry classes [27,47,48]. We provide the periodic table
for the topological insulator and superconductor by using of
the K-group isomorphic map between different dimensions
and symmetries. Following Teo and Kane [48], we argue the
dimensional hierarchy of the K groups

KC(s,d,D) = KC(s + 1,d + 1,D) = KC(s + 1,d,D + 1)

(B1)

for complex AZ classes and

KR(s,d,D) = KC(s + 1,d + 1,D) = KC(s − 1,d,D + 1)

(B2)

for real AZ classes.

1. Complex AZ classes

The complex AZ classes consist of two symmetry classes:
class A for Hamiltonians with no symmetry and class AIII
for those with the presence of CS. The symmetry classes are
labeled by s = 0,1 (mod 2) as in Table I. For the complex
AZ classes, because of the absence of antiunitary symmetry,
momentum k and coordinates r are not distinguished from
each other, and thus KC(s,d,D) = KC(s,d + D,0).

The dimensional-raising maps [Eqs. (A1) and (A2)] inter-
change Hamiltonians with CS and those without CS, and thus
they define a K-group homomorphism KC(s,d + D,0) �→
KC(s + 1,d + D + 1,0), where s is also shifted by 1. At the
same time, the dimensional-lowering maps [Eqs. (A6) and
(A8)] define the inverse of the K-group homomorphism, i.e.,
KC(s + 1; d + D + 1,0) �→ KC(s; d + D,0). Consequently,
we obtain the K-group isomorphism (B1).

2. Real AZ classes

The real AZ classes consist of eight symmetry classes which
are specified by the presence of TRS and/or PHS. The eight
symmetry classes are labeled by s = 0, . . . ,7 (mod 8) as shown
in Table I. In this paper, we take a convention that T and C

commute with each other: [T ,C] = 0. In this rule, the chiral

operator � (that is a Hermitian matrix) is given by

� =
{
T C (s = 1,5),
iT C (s = 3,7), (B3)

where the following relation holds:

T �T −1 = C�C−1 =
{
� (s = 1,5),
−� (s = 3,7). (B4)

For real AZ classes hosting CS (s = 1,3,5,7), one can
raise the dimension of the base space by using Eq. (A1). The
mapped Hamiltonian H(k,r,θ ) supports either TRS or PHS,
but does not have both. The remaining symmetry depends on
the type of θ one considers: If one increases the dimension d

of the momentum space, the parameter θ should transform as
θ → π − θ under TRS and PHS. In contrast, if one raises the
dimension D of the position space, θ does not transform under
these symmetries. We call the former θ as k type and the latter
as r type. The difference in the transformation law of θ results
in the difference of the remaining symmetry. For instance,
consider the BDI class (s = 1) and k type θ . In this case,
because of Eq. (B4), one finds that the mapped Hamiltonian
H(k,r,θ ) = sin θH(k,r) + cos θ (T C) supports PHS. For real
AZ classes without CS (s = 0,2,4,6), the dimensional-raising
map is provided by Eq. (A2). The mapped Hamiltonian
H(k,r,θ ) has the CS {1 ⊗ τx,H(k,r,θ )} = 0. It also realizes
TRS or PHS of the original Hamiltonian H(k,r), in the form
of T ⊗ τa or C ⊗ τa , where the choice of τa (a = 0,z) depends
on the type of θ . The mapped Hamiltonian also has the rest
of AZ symmetries, which is obtained by combination of these
symmetries.

We summarize the AZ symmetries of the mapped Hamil-
tonian for each real AZ class in the lower part of Table XVI.
From this table, one finds that the dimensional-raising maps
[Eqs. (A1) and (A2)] shift the label s of AZ classes by ±1, and
thus they define K-group homomorphic maps KR(s,d,D) �→
KR(s + 1,d + 1,D) and KR(s,d,D) �→ KR(s − 1,d,D + 1).

In a manner similar to complex AZ classes, the
dimensional-lowering maps [Eqs. (A6) and (A8)] define
the inverse of the K-group homomorphism KR(s + 1,d +
1,D) �→ KR(s,d,D) and KR(s − 1,d,D + 1) �→ KR(s,d,D):
Here, note that Eqs. (A6) and (A8) determine uniquely how
TRS and/or PHS of higher-dimensional Hamiltonians act on
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TABLE XVII. Classifying spaces of AZ classes with additional order-two symmetry. In the fourth column, J is the pure imaginary constant.

AZ class Symmetry Extension Generator Classifying space

A U Cl1 → Cl1 ⊗ Cl1 U → {H } ⊗ U C0 × C0

A U Cl1 → Cl2 {U} → {H,U} C1

AIII U+ Cl1 ⊗ Cl1 → Cl2 ⊗ Cl1 {�} ⊗ U+ → {H,�} ⊗ U+ C1 × C1

AIII U− Cl2 → Cl3 {�,U−} → {H,�,U−} C0

AI U+
+ Cl0,2 ⊗ Cl0,1 → Cl1,2 ⊗ Cl0,1 {T ,JT } ⊗ U+

+ → {JH,T ,JT } ⊗ U+
+ R0 × R0

AI U
+
− Cl0,3 → Cl1,3 {T ,JT ,U

+
−} → {JH,T ,JT ,U

+
−} R7

AI U−
+ Cl0,2 ⊗ Cl1,0 → Cl1,2 ⊗ Cl1,0 {T ,JT } ⊗ U−

+ → {JH,T ,JT } ⊗ U−
+ C0

AI U
−
− Cl1,2 → Cl2,2 {T ,JT ,U

−
−} → {JH,T ,JT ,U

−
−} R1

BDI U+
++ Cl1,2 ⊗ Cl0,1 → Cl1,3 ⊗ Cl0,1 {C,JC,JCT } ⊗ U+

++ → {H,C,JC,JCT } ⊗ U+
++ R1 × R1

BDI U
−
+− Cl2,2 → Cl2,3 {C,JC,JCT ,U

−
+−} → {H,C,JC,JCT ,U

−
+−} R0

BDI U−
++ Cl1,2 ⊗ Cl1,0 → Cl1,3 ⊗ Cl1,0 {C,JC,JCT } ⊗ U−

++ → {H,C,JC,JCT } ⊗ U−
++ C1

BDI U
+
+− Cl1,3 → Cl1,4 {C,JC,JCT ,U

+
+−} → {H,C,JC,JCT ,U

+
+−} R2

D U+
+ Cl0,2 ⊗ Cl0,1 → Cl0,3 ⊗ Cl0,1 {C,JC} ⊗ U+

+ → {H,C,JC} ⊗ U+
+ R2 × R2

D U
−
− Cl1,2 → Cl1,3 {C,JC,U

−
−} → {H,C,JC,U

−
−} R1

D U−
+ Cl0,2 ⊗ Cl1,0 → Cl0,3 ⊗ Cl1,0 {C,JC} ⊗ U−

+ → {H,C,JC} ⊗ U−
+ C0

D U
+
− Cl0,3 → Cl0,4 {C,JC,U

+
−} → {H,C,JC,U

+
−} R3

DIII U+
++ Cl0,3 ⊗ Cl0,1 → Cl0,4 ⊗ Cl0,1 {C,JC,JCT } ⊗ U+

++ → {H,C,JC,JCT } ⊗ U+
++ R3 × R3

DIII U
−
+− Cl1,3 → Cl1,4 {C,JC,JCT ,U

−
+−} → {H,C,JC,JCT ,U

−
+−} R2

DIII U−
++ Cl0,3 ⊗ Cl1,0 → Cl0,4 ⊗ Cl1,0 {C,JC,JCT } ⊗ U−

++ → {H,C,JC,JCT } ⊗ U−
++ C1

DIII U
+
+− Cl0,4 → Cl0,5 {C,JC,JCT ,U

+
+−} → {H,C,JC,JCT ,U

+
+−} R4

AII U+
+ Cl2,0 ⊗ Cl0,1 → Cl3,0 ⊗ Cl0,1 {T ,JT } ⊗ U+

+ → {JH,T ,JT } ⊗ U+
+ R4 × R4

AII U
+
− Cl2,1 → Cl3,1 {T ,JT ,U

+
−} → {JH,T ,JT ,U

+
−} R3

AII U−
+ Cl2,0 ⊗ Cl1,0 → Cl3,0 ⊗ Cl1,0 {T ,JT } ⊗ U−

+ → {JH,T ,JT } ⊗ U−
+ C0

AII U
−
− Cl3,0 → Cl4,0 {T ,JT ,U

−
−} → {JH,T ,JT ,U

−
−} R5

CII U+
++ Cl3,0 ⊗ Cl0,1 → Cl3,1 ⊗ Cl0,1 {C,JC,JCT } ⊗ U+

++ → {H,C,JC,JCT } ⊗ U+
++ R5 × R5

CII U
−
+− Cl4,0 → Cl4,1 {C,JC,JCT ,U

−
+−} → {H,C,JC,JCT ,U

−
+−} R4

CII U−
++ Cl3,0 ⊗ Cl1,0 → Cl3,1 ⊗ Cl1,0 {C,JC,JCT } ⊗ U−

++ → {H,C,JC,JCT } ⊗ U−
++ C1

CII U
+
+− Cl3,1 → Cl3,2 {C,JC,JCT ,U

+
+−} → {H,C,JC,JCT ,U

+
+−} R6

C U+
+ Cl2,0 ⊗ Cl0,1 → Cl2,1 ⊗ Cl0,1 {C,JC} ⊗ U+

+ → {H,C,JC} ⊗ U+
+ R6 × R6

C U
−
− Cl3,0 → Cl3,1 {C,JC,U

−
−} → {H,C,JC,U

−
−} R5

C U−
+ Cl2,0 ⊗ Cl1,0 → Cl2,1 ⊗ Cl1,0 {C,JC} ⊗ U−

+ → {H,C,JC} ⊗ U−
+ C0

C U
+
− Cl2,1 → Cl2,2 {C,JC,U

+
−} → {H,C,JC,U

+
−} R7

CI U+
++ Cl2,1 ⊗ Cl0,1 → Cl2,2 ⊗ Cl0,1 {C,JC,JCT } ⊗ U+

++ → {H,C,JC,JCT } ⊗ U+
++ R7 × R7

CI U
−
+− Cl3,1 → Cl3,2 {C,JC,JCT ,U

−
+−} → {H,C,JC,JCT ,U

−
+−} R6

CI U−
++ Cl2,1 ⊗ Cl1,0 → Cl2,2 ⊗ Cl1,0 {C,JC,JCT } ⊗ U−

++ → {H,C,JC,JCT } ⊗ U−
++ C1

CI U
+
+− Cl2,2 → Cl2,3 {C,JC,JCT ,U

+
+−} → {H,C,JC,JCT ,U

+
+−} R0

the lower-dimensional ones. As a result, we have the K-group
isomorphism (B2).

APPENDIX C: CLASSIFYING SPACE OF AZ CLASSES
WITH ADDITIONAL SYMMETRY

In this Appendix, we show classifying spaces of real and
complex AZ classes in the presence of additional symmetry.
The classifying spaces are identified by counting distinct
symmetry-allowed zero-dimensional Hamiltonians that cannot
be connected to each other by continuous deformation. As
flattened Hamiltonians and symmetry operators form the
Clifford algebra, the counting reduces to the extension problem
of the Clifford algebra [47,91]. Here, we need to consider only

additional unitary symmetries: For complex AZ classes, the
classifying spaces in the presence of an antiunitary symmetry
are obtained as those of real AZ classes without additional
symmetry, as is shown in Sec. III B. For real AZ classes,
antiunitary symmetries are converted into unitary symmetries
(see Table IV).

1. Complex AZ classes with additional order-two
unitary symmetry

The complex Clifford algebra Clp is generated by a set of
generators {e1,e2, . . . ,ep} with {ei,ej } = 2δij , and the vector
space is spanned by 2p’s basis {en1

1 ⊗ e
n2
2 ⊗ . . . ⊗ e

np

p }ni=0,1

with C coefficients.
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Symmetry operators in complex AZ classes, namely, no
operator in class A and the chiral operator � in class AIII,
are generators of the complex Clifford algebra Cl0 and Cl1,
respectively. Since a flattened HamiltonianH satisfiesH2 = 1,
and it also anticommutes with � in class AIII, it extends the
Clifford algebra as

Clp = {e1,e2, . . . ,ep} → Clp+1 = {H,e1,e2, . . . ,ep}, (C1)

where p = 0 for class A and p = 1 for class AIII. (Cl0 = {∅},
Cl1 = {e1 = �}.) The map from Clp to Clp+1 defines the clas-
sifying space Cp, which obeys the Bott periodicity Cp � Cp+2.

The presence of an additional unitary symmetry affects
the extension in two possible manners: (i) decoupling of the
Clifford algebra, or (ii) adding another generator of the Clifford
algebra. We summarize the extensions and classifying spaces
of complex AZ classes with an additional unitary symmetry in
Table XVII.

2. Real AZ classes with additional order-two symmetry

The real Clifford algebra Clp,q is generated by a set of gen-
erators {e1,e2, . . . ,ep,ep+1, . . . ep+q} with {ei,ej } = 2δij (i �=
j ) and e2

i = −1(i = 1, . . . ,p), e2
i = 1(i = p + 1, . . . ,p + q).

The vector space is spanned by 2p+q’s basis {en1
1 ⊗ e

n2
2 ⊗ . . . ⊗

e
np+q

p+q }ni=0,1 with R coefficient. Since symmetry operators
of real AZ classes can be considered as generators of real
Clifford algebra, the classifying spaces of real AZ classes
are derived by the counting the distinct symmetry-allowed
zero-dimensional Hamiltonians H , {H,ei} = 0, which define
the extension problem of the Clifford algebra:

Clp,q = {e1, . . . ,ep+q} → Clp+1,q = {H,e1, . . . ,ep+q},
H 2 = −1, (C2)

or

Clp,q = {e1, . . . ,ep+q} → Clp,q+1 = {H,e1, . . . ,ep+q},
H 2 = 1. (C3)

The classifying space obtained in the former case is Rp+2−q ,
and that obtained in the latter case is Rq−p. The Bott periodic-
ity impliesRp � Rp+8. The presence of the additional unitary
symmetry affects the extension in four possible manners:
(i) decoupling the Clifford algebra, (ii) inducing a complex
structure, (iii) adding another generator e with e2 = −1, or
(iv) adding another generator e with e2 = 1. We summarize
the classifying spaces of real AZ classes with an additional
unitary symmetry in Table XVII.

APPENDIX D: TOPOLOGICAL INVARIANTS

In this Appendix, we summarize the notation and the
definition of topological invariants used in this paper.

1. Topological invariants in zero dimension

Here, we introduce topological invariants in zero dimen-
sion. A Hamiltonian H in zero dimension is merely a constant
matrix, so adding extra trivial bands to the Hamiltonian makes
any change of the Hamiltonian possible. This means that no
well-defined topological number of a single Hamiltonian is

possible in the meaning of the stable equivalence. We need
a couple of Hamiltonians (H+,H−) to define a topological
number. We say that two coupled Hamiltonians (H1+,H1−)
and (H2+,H2−) are stable equivalent if they are continuously
deformed into each other by adding the same extra bands to the
coupled Hamiltonian. In other words, the stable equivalence
implies (H+,H−) ∼ (H+ ⊕ Hext,H− ⊕ Hext) with an extra
band Hext.

a. Z (2Z) invariant

First, consider non–particle-hole-symmetric Hamiltonians.
We assume here that H+ and H− have the same matrix
dimension. Denoting the numbers of empty (occupied) states
of H± by n± (m±), the topological nature of the coupled
Hamiltonians can be characterized by n+ − m+ and n− − m−
since there appears a band crossing the Fermi level when these
numbers are changed. Adding trivial p empty bands and q

occupied ones to the coupled Hamiltonian, we also have the
stable equivalence between these numbers

(n+ − m+,n− − m−)

∼ (n+ − m+ + p − q,n− − m− + p − q). (D1)

Therefore, the topological number in zero dimension is defined
as

Ch0 := n+ − m+ − n− + m−
2

(D2)

because it should be invariant under the stable equivalence.
Whereas Ch0 can take any integer for class A and AI
Hamiltonians, it takes only an even integer for class AII due
to the Kramers degeneracy of the spectrum.

b. Z2 invariant

For Hamiltonians with PHS satisfying C2 = 1, the follow-
ing Z2 invariant can be introduced:

ν0 = sgn[Pf(H+τx)] sgn[Pf(H−τx)] , (D3)

with C = τxK: First, PHS implies H±τx = −(H±τx)T , which
enables us to define the Pfaffian of H±τx . Then, from the
relation

[Pf(H±τx)]∗ = Pf(H∗
±τx)

= Pf
[
τT
x (H±τx)T τx

]
= Pf(H±τx) (D4)

the sign of Pf(H±τx) is quantized as ±1. Taking into account
the stable equivalence, we find that each of Pf(H±τx) does
not give a Z2 invariant, but their product ν0 defines it. In AZ
classes, BDI and D in zero dimension support thisZ2 invariant.
Class DIII also has PHS with C2 = 1, but ν0 becomes trivial
in this case because of the Kramers degeneracy.

2. Chern number and winding number

Here, we summarize the analytic expressions of integer
Z topological invariants, i.e., the Chern numbers in even
dimensions, and the winding numbers in odd dimensions.
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a. Q function

It is useful to introduce the so-called “Q function” [27]
defined by

Q(k,r) =
∑

Eα(k,r)>EF

|uα(k,r)〉〈uα(k,r)|

−
∑

Eα (k,r)<EF

|uα(k,r)〉〈uα(k,r)|, (D5)

where |uα(k,r)〉 is an eigenstate of H(k,r) with an eigenen-
ergy Eα(k,r). The Q function is nothing but the flattened
Hamiltonian of H(k), and it has the following properties:

Q2(k,r) = 1,
(D6)

Q(k,r)|uα(k,r)〉 =
{ |uα(k,r)〉 (Eα(k,r) > EF),
−|uα(k,r)〉 (Eα(k,r) < EF).

The symmetry of the Q function is the same as the original
Hamiltonian H(k,r).

b. Chern number

In the 2n-dimensional base space, the nth Chern number
Chn is defined by

Chn = 1

n!

(
i

2π

)n ∫
trFn, (D7)

with F = dA + A ∧ A. Here, Aαβ = 〈uα | duβ〉 is the con-
nection of occupied states |uα(k,r)〉 of H(k,r), and the trace
is taken for all occupied states. The Chern number is rewritten
as

Chn = − 1

22n+1

1

n!

(
i

2π

)n ∫
trQ(dQ)2n. (D8)

It is also useful to express the Chern number in terms of the
Green’s function [147] G(ω,k,r) = [iω − H(k,r)]−1, when
we discuss the electromagnetic and/or heat responses. The
Chern number is recast into

Chn = − n!

(2πi)n+1(2n + 1)!

∫
tr[GdG−1]2n+1. (D9)

Although the Chern number can be defined in any even
dimensions, symmetry of the system sometimes prohibits a
nonzero Chern number. For example, consider an antiunitary
symmetry

AH(k‖,k⊥)A−1 = H(k‖,−k⊥). (D10)

Since the Q function has the same symmetry
AQ(k‖,k⊥)A−1 = Q(k‖,−k⊥), we find

Chn = − 1

22n+1

1

n!

(
i

2π

)n

×
∫

tr[A−1Q(k‖,−k⊥)dQ(k‖,−k⊥)2nA]

= − 1

22n+1

1

n!

(
i

2π

)n

×
∫

tr[Q∗(k‖,−k⊥)dQ∗(k‖,−k⊥)2n]

= − (−1)2n−d‖

22n+1

1

n!

(
i

2π

)n ∫
tr[Q∗(k)dQ∗(k)2n]

= (−1)n−d‖Ch∗
n.

= (−1)n−d‖Chn, (D11)

where we have used the fact that Chn is an integer in the
last line. The above equation yields Chn = 0 if n = d‖ + 1
(mod 2).

c. Winding number

In the (2n + 1)-dimensional base space, the winding num-
ber is defined by

N2n+1 = n!

2(2πi)n+1(2n + 1)!

∫
tr�(H−1dH)2n+1 (D12)

if the Hamiltonian H(k,r) has CS, �H(k,r)�−1 = −H(k,r).
Equivalently, the winding number (D12) is expressed by the
Q function,

N2n+1 = (−1)nn!

2(2πi)n+1(2n + 1)!

∫
tr�Q (dQ)2n+1 . (D13)

In the diagonal base of � = diag(1,−1), the function is off
diagonal,

Q(k,r) =
(

0 q(k,r)
q†(k,r) 0

)
, (D14)

so the winding number N2n+1 is simplified as

N2n+1 = n!

(2πi)n+1(2n + 1)!

∫
tr[qdq†]2n+1. (D15)

In a manner similar to the Chern numbers, symmetry of the
system sometimes prohibits a nonzero winding number. For
example, the antiunitary symmetry in Eq. (D10) reads as

N2n+1 = (−1)nn!

2(2πi)n+1(2n + 1)!

×
∫

tr[�A−1Q(k‖,−k⊥)dQ(k‖,−k⊥)2n+1A]

= η�(−1)nn!

2(2πi)n+1(2n + 1)!

×
∫

tr[�Q∗(k‖,−k⊥)dQ∗(k‖,−k⊥)2n+1]

= η�(−1)2n+1−d‖ (−1)nn!

2(2πi)n+1(2n + 1)!

∫
tr[�Q∗(k)dQ∗(k)2n+1]

= (−1)n−d‖η�N∗
2n+1

= (−1)n−d‖η�N2n+1, (D16)

where η� = ± specifies the commutation (+) or anticommu-
tation (−) relation between � and A. Hence, N2n+1 = 0 when
n = d‖ + (η� − 1)/2 (mod 2).

d. 2Z topological invariant

In the real AZ classes, there are two integer K groups,
KR(s; d,D) = Z for s = d − D (mod 8) and KR(s; d,D) =
2Z for s = d − D + 4 (mod 8), where “2Z” means that
the corresponding Chern number defined by Eq. (D7) or
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TABLE XVIII. Topological periodic table for topological insulators and superconductors [27,47,48]. The superscripts on Z and Z2 specify
the integral representation of the corresponding topological indices. Z(Ch) and Z(W) are given by the Chern number [Eq. (D7)] and the winding
number [Eq. (D12)], respectively.Z(CS)

2 andZ(CST)
2 represent the Chern-Simons integral [Eq. (D18)] without and with the time-reversal constraint

[Eq. (D22)], respectively. Z(FK)
2 denotes the Fu-Kane invariant [Eq. (D21)]. The Z2 invariants without any superscript are not expressed by

these integrals, but they can be defined operationally by the dimensional reduction or the Moore-Balents argument.

s AZ class TRS PHS Chiral Cs or Rs δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

0 A 0 0 0 C0 Z(Ch) 0 Z(Ch) 0 Z(Ch) 0 Z(Ch) 0
1 AIII 0 0 1 C1 0 Z(W) 0 Z(W) 0 Z(W) 0 Z(W)

0 AI 1 0 0 R0 Z(Ch) 0 0 0 2Z(Ch) 0 Z(FK)
2 Z(CS)

2

1 BDI 1 1 1 R1 Z2 Z(W) 0 0 0 2Z(W) 0 Z2

2 D 0 1 0 R2 Z2 Z(CS)
2 Z(Ch) 0 0 0 2Z(Ch) 0

3 DIII −1 1 1 R3 0 Z(CST)
2 Z(FK)

2 Z(W) 0 0 0 2Z(W)

4 AII −1 0 0 R4 2Z(Ch) 0 Z(FK)
2 Z(CS)

2 Z(Ch) 0 0 0
5 CII −1 −1 1 R5 0 2Z(W) 0 Z2 Z2 Z(W) 0 0
6 C 0 −1 0 R6 0 0 2Z(Ch) 0 Z2 Z(CS)

2 Z(Ch) 0
7 CI 1 −1 1 R7 0 0 0 2Z(W) 0 Z(CST)

2 Z(FK)
2 Z(W)

the winding number defined by Eq. (D12) takes an even
integer. Here, we outline the proof why the topological number
becomes even when s = d − D + 4 (mod 8) and d � 1.

Consider a Hamiltonian H(k,r) in real AZ class with s =
d − D + 4 (mod 8). Choosing one of the momenta as the polar
angle θ of the base space Sd+D and denoting the rest momenta
by k′, AZ symmetries are expressed as TH(θ,k′,r)T −1 =
H(π − θ,−k′,r), CH(θ,k′,r)C−1 = −H(π − θ,−k′,r), and
�H(θ,k′,r)�−1 = −H(θ,k′,r). Thus, the Hamiltonian on
the equator H(θ = π/2,k′,r) retains all the AZ symmetries
that the original Hamiltonian H(k,r) has. Furthermore, the
equator Hamiltonian is found to be topologically trivial since
its K group is given as KR(s; d − 1,D) = KR(s − d + 1 +
D; 0,0) = π0(R5) = 0 when s = d − D + 4 (mod 8). This
means that we can pinch the (d + D)-dimensional sphere Sd+D

on the equator by deforming the equator Hamiltonian into a
constant Hamiltonian without breaking the symmetries.

After the pinching, the north and south hemispheres turn
into a couple of (d + D)-dimensional spheres Sd+D , and the
original Hamiltonian reduces to a couple of Hamiltonians
in complex AZ class with the same s = d − D + 4 (mod
8). Since their K groups obey KC(s; d,D) = KC(s − d +
D; 0,0) = π0(C4) = Z, the couple of Hamiltonians have defi-
nite integer topological numbers Nnorth and Nsouth, which are
defined by Eq. (D7) or (D12). These topological numbers,
however, are not independent. Because TRS and/or PHS
in the original Hamiltonian exchange the north and south
hemispheres, Nnorth and Nsouth must be the same. Consequently,
the topological number of the original Hamiltonian, which is
given by the sum of Nnorth and Nsouth, must be even.

3. Z2 topological invariant

In this Appendix, we summarize various arguments and
formulas to defineZ2 invariants, i.e., the dimensional reduction
[19,131], the Moore-Balents argument [15], and the integral
formulas.

a. Dimensional reduction

In our topological periodic tables, a sequence of Z2 indices
follows a Z index as the dimension of the system decreases.

This structure makes it possible to define the correspondingZ2

invariants by dimensional reduction [19,131]. Let us consider
a (d + 2)-dimensional Hamiltonian H(k,kd+1,kd+2,r) that
is characterized by the Z index mentioned in the above.
Then, we can construct maps from this Hamiltonian to one
and two lower-dimensional Hamiltonians, by considering
H(k,kd+1,0,r) and H(k,0,0,r), respectively. These maps
define surjective homomorphic maps fromZ toZ2. As a result,
the first and second descendant Z2 invariants ν1st and ν2nd of
the lower-dimensional Hamiltonians are obtained as

(−1)ν1st = (−1)ν2nd = (−1)N, (D17)

where N is the integer topological invariant of
H(k,kd+1,kd+2,r). N is the Chern number [Eq. (D7)] for
nonchiral class or the winding number [Eq. (D12)] for chiral
class.

b. Moore-Balents argument for second descendant Z2 index

For the second descendant Z2 index (d = s + D − 2) of
Table XVIII with d � 1, there is another operational definition
of the Z2 invariant, which was first discussed by Moore and
Balents [15]. Consider a Hamiltonian H(k,r) in real AZ class
with d = s + D − 2. Choosing one of the momenta as the
polar angle θ of the base sphere Sd+D and denoting the rest
by k′, the AZ symmetries are expressed as TH(θ,k′,r)T −1 =
H(π − θ,−k′,r), CH(θ,k′,r)C−1 = −H(π − θ,−k′,r), and
�H(θ,k′,r)�−1 = −H(θ,k′,r). Then, take only the north
hemisphere (0 � θ � π/2) of the system. Although TRS
and/or PHS cannot be retained only on the north hemisphere,
they are retained at its boundary, i.e., the equator. Indeed, the
Hamiltonian on the equator H(θ = π/2,k′,r) has the same
symmetry of the original Hamiltonian H(k,r), and thus its K

group is KR(s; d − 1,D) = π0(R3) = 0.
To define the topological number, we introduce another

hemisphere in the following manner. As I mentioned in the
above, the K group of the equator Hamiltonian is trivial.
Therefore, the equator Hamiltonian can smoothly shrink into
a point H0 with keeping the AZ symmetry of the (d − 1)-
dimensional momentum space. This deformation defines a
Hamiltonian H̃(θ,k′,r) on a new hemisphere, say, a new south

165114-37



KEN SHIOZAKI AND MASATOSHI SATO PHYSICAL REVIEW B 90, 165114 (2014)

hemisphere, where the new Hamiltonian interpolates H(θ =
π/2,k′,r) at the equator (θ = π/2) to H0 at the south pole
(θ = π ). Note here that θ of H̃(θ,k′,r) is just an interpolating
parameter, and thus it transforms trivially under the AZ sym-
metries as T H̃(θ,k′,r)T −1 = H̃(θ,−k′,r), CH̃(θ,k′,r)C−1 =
−H̃(θ,−k′,r), and �H̃(θ,k′,r)�−1 = −H̃(θ,k′,r).

Now define the topological number. Sewing the new south
and the original north hemispheres together, we have a Hamil-
tonian on a sphere. In contrast to the original Hamiltonian,
the resultant Hamiltonian no longer has TRS and/or PHS
since θ transforms differently in the north hemisphere and
the south hemisphere. It belongs to a complex AZ class
(A or AIII), so it can host a nonzero integer topological
number N given by the Chern number Ch(d+D)/2 or the
winding number Nd+D . Its value, however, depends on the
choice of the interpolating Hamiltonian H̃(θ,k′,r) in general.
Therefore, N itself does not characterize the topological nature
of the original Hamiltonian. Nevertheless, its parity (−1)N is
uniquely determined: Take another interpolating Hamiltonian
H̃′(θ,k′,r) which may give a different integer N ′. The differ-
ence between N and N ′ can be evaluated as the topological
number of the Hamiltonian that is obtained by sewing the
hemispheres of H̃(θ,k′,r) and H̃′(θ,k′,r) together. This time,
the combined Hamiltonian keeps TRS and/or PHS which are
the same as those of the original Hamiltonian except the r-type
transformation of θ . Therefore, its K group is KR(s,d −
1,D + 1) = π0(R4) = 2Z, which implies that N − N ′ must
be even. As a result, the parity (−1)N is unique, i.e., (−1)N =
(−1)N

′
. The parity defines the Z2 invariant of the original

Hamiltonian.

c. Chern-Simons invariant for first descendant Z2 index
in odd-dimensional nonchiral real class

The integral representation of the first descendant Z2

invariant in nonchiral real class is given by the Chern-Simons
form [19]. Consider a Hamiltonian H(k,r) on the base space
Sd+D with odd d + D. The Z2 topological invariant is given
by

ν = 2

[(d + D + 1)/2]!

(
i

2π

)(d+D+1)/2 ∫
Sd+D

CSd+D (mod 2).

(D18)

Here, CSd+D is the Chern-Simons (d + D) form given by
[148]

CS2n+1 = (n + 1)
∫ 1

0
dt tr[A(tdA + t2A2)n], (D19)

where Aαβ(k,r) = 〈uα(k,r) | duβ(k,r)〉 is the connection de-
fined by occupied states |uα(k,r)〉. Some of lower dimensional
Chern-Simons forms are

CS1 = trA,

CS3 = tr
(
AdA + 2

3A
3
)
, (D20)

CS5 = tr
(
A(dA)2 + 3

2A
3dA + 3

5A
5
)
.

Here, phases of the occupied states should be globally defined
on the overall parameter manifold Sd+D so as the connectionA
is nonsingular. The Z2 nontriviality of this integral is ensured
by the dimensional reduction discussed in Appendix D 3 a.

The Chern-Simons invariant characterizes the real AZ
classes with (s,δ) = (2n,2n − 1) (mod 8) in Table XVIII.

d. Fu-Kane invariant for first and second descendant
Z2 indices in even-dimensional TRS class

In the presence of TRS, the Z2 invariant can be introduced
as [149]

ν = 1

[(d + D)/2]!

(
i

2π

)(d+D)/2

×
[∫

Sd+D
1/2

trF (d+D)/2 −
∮

∂Sd+D
1/2

CSd+D−1

]
(mod 2),

(D21)

where Sd+D
1/2 is a (north) hemisphere of Sd+D and ∂Sd+D

1/2
∼=

Sd+D−1 is the equator. We suppose here that the north
hemisphere and the south one are exchanged by TRS, but
the equator is invariant. The valence band wave functions
of the Chern-Simons form in Eq. (D21) must be smoothly
defined on the equator ∂Sd+D

1/2 (not on the hemisphere Sd+D
1/2 ).

An appropriate gauge condition is needed to obtain the Z2

nontriviality, and thus we impose the time-reversal constraint
for the valence band Bloch wave functions {|un(k,r)〉} as [149]

wmn(k,r) = 〈um(−k,r) | T un(k,r)〉 ≡ const (D22)

on the equator (k,r) ∈ ∂Sd+D
1/2 . The Z2 invariant (D21) picks

up an obstruction to choosing the gauge satisfying (D22) on
overall Brillouin zone.

In Table XVIII, the Fu-Kane invariant characterizes the
real AZ classes with (s,δ) = (4n + 3,4n + 2) (mod 8) and
those with (s,δ) = (4n + 4,4n + 2) (mod 8). Note that the
Fu-Kane invariant is not applicable to class BDI and CII since
the presence of CS that commutes with TRS makes the integral
(D21) trivial.

e. Constrained Chern-Simons invariant for second descendant
Z2 index in odd-dimensional chiral TRS class

Consider a Hamiltonian H(k,r) on the base space Sd+D

with odd d + D. If the Hamiltonian has CS and TRS that
anticommute with each other, then the Z2 invariant of the
Hamiltonian can be given in a form of the Chern-Simons
integral: To see this, first consider the dimension-raising map
in Eq. (A1):

H(k,r,θ ) = sin θH(k,r) + cos θ�. (D23)

Since the mapped Hamiltonian on Sd+D+1 has TRS and is
even dimensional, we can define the Fu-Kane Z2 invariant of
H(θ,k,r) as

ν = 1

[(d + D + 1)/2]!

(
i

2π

)(d+D+1)/2

×
[∫

Sd+D+1
1/2

trF (d+D+1)/2 −
∮

∂Sd+D+1
1/2

CSd+D

]
(mod 2).

(D24)

It is convenient to choose a k type θ and take the equator as
θ = π/2. Then, we can show that the first term of Eq. (D24) is
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identically zero due to TRS and CS of H(k,r) [48]. Also the
equator is nothing but the original base space Sd+D , Eq. (D24)
is recast into

ν= 1

[(d + D + 1)/2]!

(
i

2π

)(d+D+1)/2 ∫
Sd+D

CSd+D (mod 2),

(D25)

with the time-reversal constraint (D22) on (k,r) ∈ Sd+D [48].
Note here that Eq. (D25) is a half of Eq. (D18) so the
additional gauge constraint (D22) is necessary to obtain
the Z2 nontriviality. The constrained Chern-Simons invariant
characterizes the real AZ classes with (s,δ) = (4n + 3,4n + 1)
(mod 8) in Table XVIII.
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