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Theoretical model for Rashba spin-orbit interaction in d electrons
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We show that the Rashba spin-orbit interaction in d electron solids, which originates from the broken inversion
symmetry at surfaces or interfaces, is strongly dependent on the orbital characters of the bands involved. This
is studied by developing a tight-binding model in the presence of a uniform perpendicular electric field and
spin-orbit coupling. We argue that for valence electrons, the spin-orbit coupling strength scales only as the
square of the atomic number. The electric field distorts the d orbitals through the admixture of p and f states
and also introduces intersite overlap parameters. Expressions for Rashba coefficients for the bands are obtained
in both weak and strong spin-orbit interaction limits and are shown to be orbital dependent. The results are
compared with first-principles calculations for model systems, showing good agreement. Our study demonstrates
the orbital-dependent gate control of the Rashba effect for the purposes of oxide electronics.
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I. INTRODUCTION

The recent discovery of the Rashba effect [1] in the two-
dimensional electron gas (2DEG) systems such as perovskite
surfaces and interfaces has led to the possibility of tuning
its properties by external electric fields [2]. The study of
the Rashba effect in 2DEGs is of interest not just from
a fundamental point of view, but also due to potential
applications in spintronics devices [3]. In contrast to their
semiconductor counterparts, the perovskites are characterized
by the presence of high-Z elements and d electrons with strong
spin-orbit interaction.

For 2D electrons confined to the xy plane and subjected
to an electric field along ẑ, the Rashba splitting is commonly
described by the Bychkov-Rashba Hamiltonian [4],

HR = αR(�σ × �k) · ẑ = αR(kyσx − kxσy), (1)

where �k = (kx,ky,0) is the electron crystal momentum, �σ =
(σx,σy,σz) are the Pauli matrices, and αR is the Rashba
coefficient. The Rashba effect originates from a combination of
the inversion symmetry breaking and spin-orbit interaction and
has predominant contribution from the nuclear regions in the
solid [5,6]. It has been observed in numerous condensed-matter
systems including metal surfaces [7,8], topological insulators
[9,10], interfaces of perovskite oxides [2,11–13], etc.

On the theoretical side, tight-binding (TB)-based model
Hamiltonian approaches [14,15] have been successful in
understanding the Rashba effect in solids. The basic idea
is to incorporate the effect of broken inversion symmetry
phenomenologically into atomic orbital overlap parameters.
For example, in the case of p orbitals on a plane, the coupling
between in-plane px , py orbitals and out-of-plane pz orbitals
is zero. However, if the symmetry is broken by an external
field, it leads to matrix elements between these orbitals [14]
and, in conjunction with spin-orbit interaction, will result in
effective couplings between spin-up and spin-down bands.
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These ideas have been used to study the Rashba effect in
several systems of current interest such as graphene [16–18]
and polar complex oxides [6,19–21]. In the case of graphene,
which is a sp-band system, model studies showed that in
addition to the intersite coupling terms similar to the one
proposed earlier, there also exist on-site terms that play an
important role [18]. They arise from electric-field-induced
couplings with orbitals that satisfy the selections rules �l =
±1 and �m = 0 at the same site, as these atomic wave
functions are no longer orthogonal in the presence of external
electric field.

At the complex oxides interfaces of LaAlO3/SrTiO3 and
surfaces of KTaO3, a 2DEG with transition-metal (Ti or
Ta) d orbital character develops. These systems have strong
spin-orbit interaction and the structural inversion symmetry
is broken at the interfaces/surfaces, making them good candi-
dates for exhibiting a strong Rashba effect. In the case of the
LaAlO3/SrTiO3 interface, it was shown that the magnitude
of the splitting can be tuned by an applied gate voltage [2].
Tight-binding models [19,21] for the t2g states on a cubic lattice
were found to agree well with first-principles calculations
based on the density functional theory (DFT). It has also been
suggested that the polar distortions of the metal ion oxygen
bonds also play an important role in Rashba splitting [20].
From density functional calculations of KTaO3, we showed
earlier that the 2DEG can be manipulated by the electric field
to go in and out of the surface, offering a method to tailor the
magnitude of the Rashba splitting [6].

In this paper, we present detailed theoretical models to
understand the dependence of the Rashba coefficient on the
orbital character and spin-orbit (SO) coupling of the atomic
states in the material. We obtain expressions for αR in the weak
and strong SO interaction limits. First-principles calculations
are performed on model systems containing a single atomic
layer of Ti or Ta on a square lattice, to make connection with
the TB model.

This paper is organized as follows. In the next section, we
discuss the orbital dependence of spin-orbit coupling strength,
which is a crucial ingredient in the Rashba effect in solids.
In Sec. III, we construct the tight-binding Hamiltonian for
d orbitals under a uniform electrostatic potential and discuss
the origin of various contributions. The derivation of effective
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Hamiltonians for individual bands is discussed in Sec. IV.
Finally, the results from the tight-binding model are compared
with first-principles calculations in Sec. V.

II. VARIATION OF SPIN-ORBIT COUPLING
WITH ATOMIC NUMBER

It is well known that the spin-orbit interaction strength λ

increases rapidly with the atomic number Z. However, there
is some confusion in the literature regarding just how rapid
this increase is. We clarify this issue here and emphasize that
the spin-orbit interaction strength for the outer electrons in the
atom, i.e., the electrons that are relevant to the properties in the
solid state, increases only as the Landau-Lifshitz scaling Z2,
while it increases much more rapidly within a certain series
such as 3d, where it scales as Z4 as suggested by the simple
hydrogenic result. The Landau-Lifshitz scaling argument [22]
is based on an estimate of the penetration of the outer electrons,
rather than the electrons of a particular series, into the nuclear
region where the bulk of the spin-orbit interaction originates.

The origin of the Z4 dependence is well known. The spin-
orbit interaction of an electron in a central field of potential
V (r) is given by the expression

HSO(r) = r−1

2m2c2

∂V (r)

∂r
�L · �S = λ(r) �L · �S, (2)

and if we evaluate its expectation value using the Coulomb
potential V (r) = −Ze2/r and the hydrogenic wave functions
Rnl(r) with energy E0

nl , we get the well-known result for the
perturbative correction due to the spin-orbit interaction, viz.
[23],

Enl = E0
nl + λnl × 2−1[j (j + 1) − l(l + 1) − 3/4], (3)

where j and l are total and orbital angular momentum quantum
numbers with

λnl =
∫ ∞

0
R2

nlλ(r)d3r = α2Z4

n3l(l + 1/2)(l + 1)
Ry, (4)

which increases as Z4, with α being the fine-structure constant.
To see how well this is obeyed in the actual atoms, we have
taken the spin-orbit interaction strength λnl , calculated by
Herman and Skillman [24] using the Hartree-Fock method
with the Slater exchange, and have plotted these in Fig. 1
along with the hydrogenic expression given by Eq. (4) for the
3d series. As seen from the figure, even though the Z4 power
dependence is not too bad for large Z for a particular series,
the magnitude of λnl is nevertheless severely overestimated
by Eq. (4). This is not surprising because the hydrogenic
result neglected the screening of the nuclear potential by the
innermost core electrons.

However, in the solid, the outer electrons are the relevant
electrons, whose quantum numbers nl change with Z. If
one considers the outermost electrons for the atoms without
worrying about nl, then Landau and Lifshitz have argued that
the spin-orbit interaction strength should scale more like Z2,
viz.,

λ = Aα2Z2 Ry, (5)

where A is of the order of one. We find that if we consider the
outer electrons in the atom (shown by dots and the shaded area
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FIG. 1. (Color online) Dependence of the spin-orbit coupling
strength λnl for atoms as a function of the atomic number Z. The
calculated results of Herman and Skillman [24] using the Hartree-
Fock method (colored lines) are compared to the hydrogenic Z4

dependence, which is computed from Eq. (4) for the 3d series (upper
dashed line). For the outermost electrons (indicated by the circles
and the shaded area), which are the relevant electrons in the solid,
the quantum numbers nl change with Z and the spin-orbit interaction
increases much more slowly, following roughly the Landau-Lifshitz
Z2 scaling [lower dashed line, calculated from Eq. (5) with A = 0.10].

in Fig. 1), then λnl does roughly follow this Z2 dependence
with A ≈ 0.1, as illustrated in Fig. 1. Note that the Z2

dependence describes the rough overall systematic variation of
the spin-orbit interaction strength and not the nonsystematic
change from element to element. Thus the strength of the
relevant spin-orbit interaction, viz., that for the outer electrons,
does not increase nearly as fast as Z4 as sometimes thought
in the literature based on the hydrogenic expression given
by Eq. (4). The spin-orbit interaction strengths for the atoms
considered in this paper are listed in Table I.

III. TIGHT-BINDING MODEL

To describe the Rashba spin-orbit interaction, the model
Hamiltonian should have three terms: a band structure term
HK, a spin-orbit term HSO, and the electric-field-induced
inversion symmetry-breaking term HE,

H = HK + HSO + HE. (6)

TABLE I. Spin-orbit coupling strength (in eV) for the outermost
electrons in the atoms considered in this work as obtained from the
hydrogenic expression [λHyd, Eq. (4)], the Landau-Lifshitz scaling
[λLL, Eq. (5)], and the Hartree-Fock calculations of Herman and
Skillman (λHF). The last column λsolid lists the calculated values
for the solid from the present DFT calculations. The atomic values
differ from λsolid because of the admixture of other orbitals and the
delocalized nature of the outermost electrons in the solid as compared
to the atom.

Element Z λHyd λLL λHF λsolid

Ti 3d 22 0.42 0.035 0.023 0.02
Ta 5d 73 11 0.39 0.30 0.18
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FIG. 2. (Color online) The model contains a square lattice with
an applied electric field along the ẑ direction (right). First-principles
calculations in Sec. V are carried out on a unit cell with ∼10 Å
vacuum and a sawtooth potential (left).

To model the 2DEG at the perovskite structures, we would
like to use a linear combination of atomic d orbitals as basis
functions denoted by |φα �R〉, where α is the combined orbital
and spin index and �R is the lattice vector, which points to
atoms on a square lattice, as shown in Fig. 2. Note that
in actual systems, the d orbitals are interconnected through
oxygen p states. Since spin-orbit interaction (SOI) in oxygen
is quite small, we can incorporate their effect as an effective
d-d coupling.

The electrostatic potential HE breaks the spherical symme-
try around the atoms and distorts the atomic orbitals. But it is
much weaker than the nuclear potential, hence, we can treat
HE as a perturbation and write

H = H0 + ζHE, (7)

where H0 = HK + HSO and ζ is a dimensionless parameter
(ζ = 1). With |φ1

α �R〉 as the first-order corrections to the atomic
orbitals, we can write the matrix elements of H as〈

φα�0 + ζφ1
α�0

∣∣H0 + ζHE

∣∣φβ �R + ζφ1
β �R

〉
= 〈φα�0|HK|φβ �R〉 + 〈φα�0|HSO|φβ �R〉 + ζ 〈φα�0|HE|φβ �R〉

+ ζ
[〈φα�0|H0

∣∣φ1
β �R

〉 + 〈
φ1

α�0
∣∣H0|φβ �R〉] + O(ζ 2)

= TK + TSO + TE + T1, (8)

where TK,TSO, and TE are matrix elements with the unper-
turbed orbitals and T1 are the matrix elements introduced by
the perturbation. We ignore terms quadratic in ζ . Note that we
have taken into account the fact that not only does the changed
Hamiltonian modify the hopping integral between the original
basis orbitals, but in addition the basis orbitals themselves
become modified via the admixture of other atomic orbitals at
the same site, viz., the p and the f orbitals. In other words,
the Hilbert space axes become modified as well. We discuss
the individual terms in detail below.

A. Kinetic-energy terms TK

The periodic nature of the lattice helps us construct the
matrix elements 〈φα�0|HK|φβ �R〉 in the reciprocal space by
writing the atomic orbitals as a Bloch sum,

|χα�k〉 = 1√
N

∑
�R

ei�k· �R|φα �R〉. (9)

Therefore,

TK(�k) = εαδαβ +
∑
〈 �R〉

ei�k· �RTK( �R). (10)

The sum runs over the nearest-neighbor lattice sites except
the central site, �R = 0, which produces the first term, with εα

being the on-site energies. For the atomic orbitals in the order
φα ≡ {dz2 ,dx2−y2 ,dxy,dxz,dyz}, the T̂K matrix can be written
with the help of Slater-Koster tables [25,26],

T̂K =

⎛
⎜⎜⎜⎝

h1 h12 0 0 0
h∗

12 h2 0 0 0
0 0 h3 0 0
0 0 0 h4 0
0 0 0 0 h5

⎞
⎟⎟⎟⎠, (11)

where

h1 = ε1 + (Vσ/2 + 3Vδ/2)(cos kxa + cos kya),

h2 = ε2 + (3Vσ/2 + Vδ/2)(cos kxa + cos kya),

h12 = (
√

3Vδ/2 −
√

3Vσ/2)(cos kxa − cos kya),
(12)

h3 = ε3 + 2Vπ (cos kxa + cos kya),

h4 = ε4 + 2(Vπ cos kxa + Vδ cos kya),

h5 = ε5 + 2(Vπ cos kya + Vδ cos kxa),

Vσ ,Vπ , and Vδ are the Slater-Koster parameters for d-d
overlap, εi are the on-site energies, and a is the nearest-
neighbor distance.

B. Spin-orbit terms TSO

From Eq. (2), we can construct matrix elements of SOI for
d states,

T̂SO = iλ

2

⎛
⎜⎜⎜⎜⎝

0 0 0 −√
3σy

√
3σx

0 0 −2σz σy σx

0 2σz 0 −σx σy√
3σy −σy σx 0 −σz

−√
3σx −σx −σy σz 0

⎞
⎟⎟⎟⎟⎠,

(13)
where, σx,σy,σz are the 2 × 2 Pauli spin matrices. SOI has
only on-site terms and no k dependence. To understand the
effect of λ on Rashba splitting, we consider two limits.
(1) The first limit is a weak SOI, with λ � V , where V is the
electron hopping parameter. In the first-principles calculations
(Sec. V), this case is simulated using 3d ion Ti with Z = 22.
(2) The second limit is a strong SOI, with λ � V , which is
simulated by the 5d element Ta with Z = 73. The values of
λ obtained for these two cases using the methods discussed
above are summarized in Table I.

C. Perturbative terms T1

To evaluate the matrix elements T1, we first write down
the expression for the first-order correction from perturbation
theory,

∣∣φ1
α �R

〉 =
∑
β =α

〈φβ �R|HE|φα �R〉
εα − εβ

|φβ �R〉, (14)
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where the index α runs over the five d orbitals of interest here,
and β runs over all other atomic orbitals at the same site. The
perturbation HE may originate from an external electric field
or proximity of an atom to a surface, which also breaks the
inversion symmetry. In the simplest form, it can be written in
terms of the effective electric field η,

HE = ηz, (15)

which may be different from the applied electric field due to
electronic and ionic screening [6].

Now, we can write φα �R = Rα(|�r − �R|)Ỹα(θ,φ) and z =
(4π/3)1/2 rY10. The cubic harmonics Ỹα can be expressed in
terms of the spherical harmonics Ylm, so the matrix elements
in Eq. (14) boil down to a product of an integral over r and an
angular integral over the product of three spherical harmonics.
The angular part of the integral can be solved with the help of
the Gaunt coefficients Clm,l′m′,l′′m′′ defined as [27,28]

Clm,l′m′,l′′m′′ =
∫

Ylm(θ,φ)Y∗
l′m′ (θ,φ)Yl′′m′′ (θ,φ) d�

=
(

2l′′ + 1

4π

)1/2

cl′′ (l′m′; lm). (16)

The coefficients cl′′ (l′m′; lm) vanish unless m′′ = m′ − m

and l′′ = |l − l′|,|l − l′| + 2, . . . ,(l + l′) [23]. The second
condition couples the d orbitals only to the p and the f orbitals
(�l = ±1) and the first condition requires �m = m′′ −
m′ = 0.

Following the above procedure to evaluate Eq. (14), we find
that the first-order correction to the d orbitals contains just a
few terms, viz.,

∣∣d1
z2

〉 = 2ηp√
15

|pz〉 + 3ηf√
35

|fz3〉,
∣∣d1

x2−y2

〉 = ηf√
7
|fzx2−zy2〉,

∣∣d1
xy

〉 = ηf√
7
|fxyz〉, (17)

∣∣d1
xz

〉 = ηp√
5
|px〉 + 2

√
2ηf√
35

|fxz2〉,

∣∣d1
yz

〉 = ηp√
5
|py〉 + 2

√
2ηf√
35

|fyz2〉,

where

ηβ = η

εd − εβ

∫
drRβ(r)rRd(r),

which is a dimensionless parameter that depends on the energy
separation and radial spread of the orbitals. Figure 3 shows the
asymmetric dz2 orbital because of the admixture with the other
orbitals at the same site.

Thus, T1 includes p-d and d-f hopping parameters due
to the admixture of d orbitals with these orbitals. The only
contribution towards T1 comes from HK with R = 0, since HSO

does not couple different angular momentum and since on-site
terms of HK between different orbitals are zero. Evaluating all

|dz2〉 |dz2〉 + ε|pz〉 |dz2〉 + ε|fz3〉

y

z

FIG. 3. (Color online) Contour plot of 3dz2 orbital showing the
effect of the electric-field-induced mixing with the pz and fz3 orbitals
with ε = 0.3. The colors differentiate the signs of the wave function.

the matrix elements for nearest neighbors, we get

T̂0 =

⎛
⎜⎜⎜⎝

0 0 0 h14 h15

0 0 0 h24 h25

0 0 0 h34 h35

h∗
14 h∗

24 h∗
34 0 0

h∗
15 h∗

25 h∗
35 0 0

⎞
⎟⎟⎟⎠, (18)

where

h14 = 2iγ1 sin kxa, h15 = 2iγ1 sin kya,

h24 = 2iγ2 sin kxa, h25 = −2iγ2 sin kya, (19)

h34 = 2iγ3 sin kya, h35 = 2iγ3 sin kxa,

the electric-field-dependent parameters γ1,γ2, and γ3 are

γ1 = ηp

[
Vpdσ

2
√

5
+ 2Vpdπ√

15

]
+ ηf

[√
3Vdf σ

2
√

35
+ 3

√
3Vdf π

2
√

70

]
,

γ2 = −
√

3ηpVpdσ

2
√

5
− ηf

[
3Vdf σ

2
√

35
+

√
5Vdf π

2
√

14

]
, (20)

γ3 = −ηpVpdπ√
5

− ηfVdf π√
70

,

and Vpdσ (Vdf σ ) and Vpdπ (Vdf π ) are σ and π hopping between
p (f ) and d orbitals on neighboring sites. We can make
an approximate estimate of the parameters γ by using the
analytical expressions for p-d hopping [26],

Vpd(σ/π) = npd(σ/π)
�

2r
3/2
a

ma7/2
, (21)

where a is the nearest-neighbor distance. For typical val-
ues of p-d hopping parameters, npdσ = −3.14, ηpdπ =
1.36, �

2/m = 7.62 eV Å2, and ra = 1.08 Å. Variations of the
γ ’s as a function of neighbor distance are shown in Fig. 4.
Close to the origin, γ2 and γ3 diverge and the empirical
expressions for hopping given in Eq. (21) are valid only for
larger distances. Due to symmetry, the two terms involving
Vdpσ and Vdpπ in the expression for γ1 cancel each other
exactly.

D. Electrostatic potential terms TE

The matrix elements TE = 〈φα�0|ηz|φβ �R〉 represent coupling
between d orbitals on different sites due to the electrostatic
potential. The integral is too complicated to solve analytically,
so we evaluate it numerically assuming hydrogenic functions
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FIG. 4. (Color online) Electric-field-induced overlap parameters
due to the perturbative term T1 as a function of the nearest-
neighbor distance, calculated from Eqs. (20) and (21) using typical
values for the parameters ηpdσ = −3.14, ηpdπ = 1.36, ra = 1.08 Å,
ηp = 1, and ηf = 0.

with a screened nuclear charge Ze for the radial part of the
wave functions,

Rα(r) =
√(

2Ze

na0

)3 (n − l − 1)!

2n(n + l)!
eρρlL2l+1

n−l−1(ρ), (22)

where ρ = (2Ze/na0)r , a0 is the Bohr radius, and L(ρ) is the
associated Laguerre polynomials. We find that there are three
nonzero coupling parameters, viz.,

γ ′
1 = η〈dz2 |z|dxz,ax̂〉 = η〈dz2 |z|dyz,aŷ〉,

γ ′
2 = η〈dx2−y2 |z|dxz,ax̂〉 = η〈dyz|z|dx2−y2 ,aŷ〉, (23)

γ ′
3 = η〈dxy |z|dxz,aŷ〉 = η〈dxy |z|dyz,ax̂〉.

Here, the orbital on the left side of the inner product is at the
origin, while the one on the right is located on a neighboring
atom shifted by the lattice constant a along the indicated
direction.

The coupling parameters, shown in Fig. 5, become negligi-
ble for distances beyond 5 Å. For a typical 3d element such
as Ti, the covalent radius is about 1.5 Å, so d-d distances are
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FIG. 5. (Color online) Electric-field-induced overlap parameters
due to the intersite contribution term TE obtained from Eqs. (22) and
(23) and numerical integration for 3d wave functions with parameter
values n = 3,l = 2,Ze = 4, and η = 1 eV/Å.

∼3 Å. In this range, the strongest contribution comes from γ ′
2,

followed by γ ′
3 and γ ′

1, which is understandable since dx2−y2

and dxy have the largest spread in the xy plane. However, for
shorter distances, γ ′

1 is the largest, as the electric field has the
strongest effect on dz2 since it lies along the z axis. Figure 5
shows that the relative magnitudes of the electric-field-induced
couplings between orbitals can be tuned by changing the lattice
spacing, and therefore also the Rashba effect with applied
pressure. In the Bloch function basis, one can write down TE

explicitly in the matrix form just like Eq. (18), and it is seen
that it has exactly the same k dependence as T1, which is a
consequence of the same symmetry in both cases. However,
they may have different forms for other systems. In the present
case, we can use Eq. (18) as the full electric-field contribution
by redefining the parameters as

γi → γi + γ ′
i . (24)

Finally, collecting all the terms, viz., Eqs. (11), (13), (18),
and (24), the 10 × 10 TB Hamiltonian in the orbital-spin space
can be written as

H = (T̂K + T̂1) ⊗ 1 + T̂SO, (25)

where 1 is the identity matrix in the spin-1/2 space. After
taking the five on-site energies εi to be zero for simplicity, we
have seven other TB parameters: Vσ ,Vπ ,Vδ,λ,γ1,γ2, and γ3.
They depend on specific systems, and in Sec. V we discuss
typical values derived from DFT calculations on Ti and Ta
systems.

IV. EFFECTIVE HAMILTONIAN

By diagonalizing the full Hamiltonian in Eq. (25) at
different k points with appropriate parameter values, we can
study the energy levels in the system. For the 2DEG in
perovskite materials, the important region in the reciprocal
space is around the zone center. At the � point, the d states
are split into five doubly degenerate states by electron hopping
and spin-orbit coupling. The levels are spin degenerate when
k = 0, since the effect of the electric field is zero. As long
as the states are well separated, we can describe the effect
of momentum-dependent spin splitting around the � point
for each band by a 2 × 2 Rashba Hamiltonian. The effect
of the remaining eight-dimensional subspace is folded via
renormalization of the parameters. To illustrate this, we
consider two limits of parameter values, when spin orbit is
weak compared to electron coupling, and vice versa. The
energy levels at the � point in both cases are shown in Fig. 6.

Lattice SOI Lattice SOI

(a) (b)
Weak SOI Strong SOI

FIG. 6. Energy splitting for a square lattice at the � point in the
presence of (a) weak and (b) strong spin-orbit interaction compared
to the electron hopping parameters Vσ ,Vπ .
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TABLE II. Energy- and orbital-dependent Rashba coefficients in the weak and strong spin-orbit interaction limits. The Rashba coefficients
αR/a (in meV) obtained from the TB expressions are compared with numerical results from the DFT and TB calculations. For simplicity, Vδ

is neglected as compared to Vσ and Vπ in the TB expressions. DFT calculations are for the square lattice of Ti and Ta for cases of weak and
strong SOI, respectively. The TB expressions given here are correct to the lowest order; omitted terms are O(λ2) for the weak SOI case and
O(γ /λ) or O(γ /V ) for the strong SOI case.

TB DFT
αR/a αR/a |αR/a| Orbital |αR/a|

Sym Energy at � (downfolding) (downfolding) (full H ) character

�′
7 3Vσ 2λγ2/(−3Vσ + 2Vπ ) −0.62 0.73 x2-y2 0.69

�′
6 Vσ 2

√
3λγ1/(Vσ − 2Vπ ) −5.64 4.13 z2 4.13

Weak SOI (λ � Vσ ,Vπ ) �′′
6 2Vπ − λ/2 −2

√
3λγ1/(Vσ − 2Vπ ) 5.64 4.25 xz/yz 7.62

�′′
7 2Vπ + λ/2 2λγ2/(3Vσ − 2Vπ ) + λγ3/Vπ 0.93 1.02 xz/yz 1.00

�′′′
7 4Vπ −λγ3/Vπ −0.57 0.30 xy 0.42

�′
7 −3λ/2 + 6Vσ /5 + 2Vπ 4(γ2 − γ3)/5 13.60 9.78 x2-y2/xy 9.05

�′
6 −3λ/2 + 2Vσ /5 + 6Vπ/5 −4

√
3γ1/5 −9.00 6.88 z2/xz/yz 6.23

Strong SOI(λ � Vσ ,Vπ ) �′′
7 λ + 9Vσ /5 + 4Vπ/3 −(4/5γ2 + 8/15γ3) −14.9 13.2 xy/x2-y2/xz/yz 10.33

�′′
6 λ + 3Vσ /5 + 4Vπ/5 4

√
3γ1/5 9.00 6.88 z2/xz/yz 11.80

�′′′
7 λ + 8Vπ/3 4γ3/3 1.33 3.50 xy/xz/yz 2.63

A. Weak SOI (λ � V )

The energy levels at the � point, obtained from the full tight-binding Hamiltonian, are given in Fig. 6(a). Bond formations
split the states into four, where dxz and dyz are degenerate due to symmetry. The symmetry is further lifted by SOI. The character
of the bands at these energies is given below,

�′
7 =

{
dx2−y2↑
dx2−y2↓,

�′′
7 =

{
1√
2
(dxz↓ − idyz↓)

1√
2
(dxz↑ + idyz↑),

�′′′
7 =

{
dxy↑
dxy↓,

�′
6 =

{
dz2↑
dz2↓,

�′′
6 =

{
1√
2
(dxz↓ + idyz↓)

1√
2
(dxz↑ − idyz↑).

(26)

The full Hamiltonian in Eq. (25) can be transformed into the basis set for weak SOI given in Eq. (26) by a unitary transformation
U †HU ,

HU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�′
7 �′

6 �′′
6 �′′

7 �′′′
7

3Vσ 0 0 0 0 0 λ√
2

0 −iλ 0

0 3Vσ 0 0 0 0 0 − λ√
2

0 iλ

0 0 Vσ 0 −
√

3
2λ k+γ1 0 −k−γ1 0 0

0 0 0 Vσ −k−γ1

√
3
2λ k+γ1 0 0 0

0 0 −
√

3
2λ −k+γ1 − λ

2 0 0 0 0 0

0 0 k−γ1

√
3
2λ 0 − λ

2 0 0 0 0
λ√
2

0 0 k−γ1 0 0 λ
2 0 iλ√

2
0

0 − λ√
2

−k+γ1 0 0 0 0 λ
2 0 iλ√

2
iλ 0 0 0 0 0 − iλ√

2
0 0 0

0 −iλ 0 0 0 0 0 − iλ√
2

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

which is correct to O(k). Here, k+ ≡ √
2(ky + ikx), k− ≡√

2(ky − ikx), and, for simplicity, we have retained only the Vσ

TB hopping term and γ1 electric-field term (taking γ2 = γ3 =
0. More complete expressions are derived in Table II). Within
each 2D subspace, the effect of the remaining eight orbitals
may be taken into account via the Löwdin downfolding [29].

The Löwdin downfolding works by partitioning the Hamil-
tonian in the secular equation (H − EI )|ψ〉 = 0 into blocks,

H =
(

h b

b† c

)
, (28)

where the two blocks are well separated in energy. The
effective Hamiltonian in the subspace h can be written as

h′ = h + b(EI − c)−1b†, (29)

which, however, involves the eigenvalue E of the full Hamil-
tonian and needs to be solved iteratively. In the limit that the
states in h and c are well separated and the coupling b is small,
we can substitute E by the eigenvalues of matrix h. Also, it
can be shown that an iterative solution of Eq. (29) produces
Brillouin-Wigner perturbation series, which to the lowest order
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yields

h′
ij = hij +

∑
k

bikb
∗
kj

E − ckk

. (30)

If |bik| � |hii − ckk|, the eigenvalues E can be replaced
by the diagonal elements hii . Following this procedure,
the effective Hamiltonian within each 2D subspace can be
obtained. For example, for the �′′

6 state, we get

HR =
(

ε αR(ky + ikx)
αR(ky − ikx) ε

)
, (31)

which can be written in the Rashba formHR = ε + αR(kyσx −
kxσy), with ε = −λ/2 and the Rashba coefficient αR =
−2

√
3λγ1/Vσ from Eq. (27). Complete expressions for all

states are given in Table. II.
We see that both the spin-orbit coupling and the electric

field are necessary to produce the Rashba term. Note that
σ represents not the real spin, but rather the spin-orbital
entangled pseudospin, which for the present example of the
�′′

6 case as seen from Eq. (26) is

|↑〉 ≡ 1√
2

(dxz↓ + idyz↓),

(32)

|↓〉 ≡ 1√
2

(dxz↑ − idyz↑).

Finally, here we assumed that the field-induced parameters
are smaller than spin-orbit coupling, i.e., γi � λ. However, if
they are comparable, the off-diagonal elements in the subspace
of �′′

6 ,�′′
7 become as strong as the on-site terms and the

downfolding method breaks down. In such cases, one must
either use degenerate perturbation theory to change the basis
such that the off-diagonal matrix elements vanish or work with
the full 4 × 4 Hamiltonian in the combined subspace [6].

B. Strong SOI (λ � V )

For the opposite limit, when spin-orbit is much stronger, the
energy levels are shown in Fig. 6(b). The angular momentum
states j = 5/2 and 3/2 with energies λ and −3λ/2 split
further due to the electron hopping. The characters of the
bands are approximately the eigenfunctions of the spin-orbit
Hamiltonian HSO, which preserve the symmetry of the lattice,

�′
7 =

{
1√
10

(2dx2−y2↑ − 2idxy↑ − dxz↓ + idyz↓)
1√
10

(2dx2−y2↓ + 2idxy↓ + dxz↑ + idyz↑),

�′′
7 =

{
1√
15

(3idx2−y2↑ − 2dxy↑ + idxz↓ + dyz↓)
1√
15

(3idx2−y2↓ + 2dxy↓ − idxz↑ + dyz↑),

�′′′
7 =

{
1√
3
(dxy↑ + idxz↓ + dyz↓)

1√
3
(−dxy↓ − idxz↑ + dyz↑),

(33)

�′
6 =

{
1√
10

(2dz2↑ + √
3dxz↓ + √

3idyz↓)
1√
10

(2dz2↓ − √
3dxz↑ + √

3idyz↑),

�′′
6 =

{
1√
5
(
√

3dz2↑ − dxz↓ − idyz↓)
1√
5
(
√

3dz2↓ + dxz↑ − idyz↑).

In this basis, the spin-orbit part of the Hamiltonian is
diagonal. But, since the basis set is spin mixed, the electric
field now has off-diagonal matrix elements within each 2D
subspace. This is unlike the weak SOI case, where the basis
set was spin pure [see Eq. (26)], and therefore the electric field
did not contain an off-diagonal term within each 2D subspace.
Taking the example of the �′

6 doublet, we find the 2 × 2 TB
matrix within this subspace has the same form as Eq. (31) with
ε = −3λ/2 + (2Vσ + 6Vπ )/5 and, again, the matrix has the
Rashba form with αR = −4

√
3γ1/5. The Löwdin downfolding

that takes into account the effects of the other eight orbitals
will produce higher-order terms O(γ /λ) or O(γ /V ) because
of the energy denominator. These terms are small compared to
the leading terms listed in Table II because the electric field is
assumed to be small leading to γ → 0.

V. COMPARISON WITH DFT

To gauge the accuracy of our model, we compare the results
with that of first-principles calculations using DFT. The simu-
lation cell is as shown in Fig. 2. The weak and strong SOI cases
are simulated using Ti and Ta atoms. The DFT calculations
were carried out using the Vienna ab initio simulation package
(VASP) [30], within the projector augmented wave method. We
used the local density approximation including the spin-orbit
interactions with a plane-wave energy cutoff of 350 eV and
k-space sampling on a 9 × 9 × 1 Monkhorst-Pack grid. We
considered a single layer of atoms (Ti or Ta) on a square
lattice, shown in Fig. 2. The unit cell was 10 Å long along the
c axis, so that the large vacuum layer avoids any interaction
with periodic images. The effect of the electric field is added
via a sawtoothlike potential and using dipole corrections to
help the energy convergence.

The parameters used in the calculations are given in
Table III and the resulting band structures for the two cases are
shown in Fig. 7. The bands are plotted along k|| which lie in the
xy plane around the � point. The TB parameters in Table III
are chosen such that there is good agreement between the DFT
and TB bands, as seen from Fig. 7. The Rashba coefficients
are obtained from the slope of the Rashba band splitting �R =
2αRk||, as shown in Fig. 8(b). The results are shown in Table II.
The numerical values obtained from the TB expressions more

TABLE III. Parameters used in the DFT and TB calculations for
the two cases, viz., weak and strong spin-orbit interaction. The lattice
constants in DFT are chosen such that the d bands are well separated
from the other bands and the TB parameters have been obtained by
fitting to the DFT bands.

DFT TB fitting parameters

Atom: Ti Vσ = −0.17 eV, Vπ = 0.07 eV,
a = b = 4 Å Vδ = −0.02 eV, λ = 0.02 eV,

Weak SOI
c = 10 Å γ1 = 25 meV, γ2 = 10 meV,
E = 0.5 eV/Å γ3 = 2 meV
Atom: Ta Vσ = −0.1 eV, Vπ = 0.05 eV,
a = b = 5 Å Vδ = −0.01 eV, λ = 0.18 eV,

Strong SOI
c = 10 Å γ1 = 6.5 meV, γ2 = 18 meV
E = 0.5 eV/Å γ3 = 1 meV
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K. V. SHANAVAS, Z. S. POPOVIĆ, AND S. SATPATHY PHYSICAL REVIEW B 90, 165108 (2014)

0.0

0.4

0.8
DFT

Ti Ti Ti

Ta Ta Ta

E
n
er

gy
(e

V
)

Γ′
7

Γ′
6

Γ′′
6

Γ′′
7

Γ′′′
7

Γ′
7

Γ′
6

Γ′′
6

Γ′′
7

Γ′′′
7

TB TB (λ = 0)

0.0

0.4

0.8

X Γ M X Γ M X Γ M

FIG. 7. (Color online) Comparison of the TB and DFT band
structures for Ti and Ta, which show weak and strong SO coupling,
respectively. Symmetries of the wave functions at the � point are
shown between the plots. A small orbital-dependent on-site energy
is added to the TB Hamiltonian to better fit the DFT bands, and the
Fermi energy has been set to zero.

or less agree with the full calculations (TB or DFT); there
are some disagreements in the magnitudes, however, because
the weak and strong SOI limits (λ → 0 or ∞) are not fully
satisfied in the realistic systems. Nevertheless, it is clear that
the Rashba coefficients are quite strongly orbital dependent.

VI. SUMMARY

In summary, we studied the Rashba effect in the d electron
systems and showed that the effect depends strongly on the
orbitals involved in a particular band. This was illustrated by
density functional studies for selected systems in the limit of
both weak and strong SOI. The symmetry-breaking electric
field introduces matrix elements in two distinct ways, viz.,

-0.1

0.0

X/3 Γ M/3

E
n
er

gy
(e

V
)

(a) (b)

Γ′
7

Γ′
6

0
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Δ
R
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eV

)

k|| (10−2 Å−1)

Γ′
7

Γ′
6

FIG. 8. (Color online) (a) A closer look at the lowest two DFT
bands around the � point for Ta from Fig. 7 and (b) the Rashba
band splitting �R = 2αRk||, which shows the linear momentum
dependence.

via mixing of the atomic orbitals on the same site and by
introducing intersite hopping terms within the tight-binding
description, both of which we examined in studying the
Rashba effect. Using the tight-binding model, we derived the
expressions for the Rashba coefficients in both limits of weak
and strong SOI. The d electron systems offer a rich system
for manipulating the Rashba effect, not only because the
magnitude of the effect can be strong owing to the large atomic
numbers Z, but also because the orbital characters and the band
energies are sensitive to external forces such as strain, which
can be used for tailoring the effect for potential applications in
oxide electronics.
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