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We develop a method for the calculation of charge-transfer statistics of persistent current in nanostructures
in terms of the cumulant generating function (CGF) of transferred charge. We consider a simply connected
one-dimensional system (a wire) and develop a procedure for the calculation of the CGF of persistent currents
when the wire is closed into a ring via a weak link. For the noninteracting system we derive a general formula
in terms of the two-particle Green’s functions. We show that, contrary to the conventional tunneling contacts,
the resulting cumulant generating function has a doubled periodicity as a function of the counting field. We
apply our general formula to short tight-binding chains and show that the resulting CGF perfectly reproduces the
known evidence for the persistent current. Its second cumulant turns out to be maximal at the switching points
and vanishes identically at zero temperature. Furthermore, we apply our formalism for a computation of the
charge-transfer statistics of genuinely interacting systems. First we consider a ring with an embedded Anderson
impurity and employing a self-energy approximation find an overall suppression of persistent current as well
as of its noise. Finally, we compute the charge-transfer statistics of a double-quantum-dot system in the deep
Kondo limit using an exact analytical solution of the model at the Toulouse point. We analyze the behavior of
the resulting cumulants and compare them with those of a noninteracting double-quantum-dot system and find

several pronounced differences, which can be traced back to interaction effects.
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I. INTRODUCTION

Persistent current (PC) in ring-shaped nanostructures is one
of the most fascinating phenomena in mesoscopic physics
[1,2]. Despite enormous amounts of work invested in its
study there are still numerous aspects which are yet not
fully understood. Perhaps the most interesting are the issues
of how electronic correlations affect the PC and whether it
is subject to fluctuations in clean systems without disorder
[3-5]. A quite natural extension of the latter topic is the
question about the full counting statistics (FCS) of persistent
current, which is addressed here. FCS is an interesting and
insightful quantity best described as a probability P(Q) to
transfer Q charges through a constriction or a device during a
(very long) measuring time T [6]. Since the seminal paper of
Schottky it is known, that the shot noise, which is the second
cumulant of the FCS, contains interesting information about
the charge of current carriers [7]. This idea was very important
in such a breakthrough as the measurement of the fractional
charge in quantum Hall edge state devices [8,9]. It turns out,
however, that the charge of current carrying excitations can be
much more precisely determined if one uses the third-order
correlation of the transport current instead of the shot noise
[10,11]. This quantity can very conveniently be extracted from
the cumulant generating function (CGF) of the FCS. CGF
is also known to satisfy in many cases the Gallavotti-Cohen
relation, which is a direct generalization of the conventional
fluctuation-dissipation theorem [12,13]. Apart from that the
cumulants of higher orders can help to reveal important details
about interactions of the given system with the environment,
thereby yielding important insights [6,14]. Very recently the
concept of the FCS has even been successfully employed in
the field of ultracold quantum gases as the counting statistics
of Rydberg aggregates was measured, which has helped to
identify multiparticle correlation effects [15].
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Here we report progress along several lines. First of all we
develop a general approach which allows for the evaluation
of the PC of an arbitrarily shaped structure which is closed
to a ring via a single or several weak links and which can be
applied to interacting systems. It turns out that for quadratic
Hamiltonians one can even derive a closed formula for the
FCS using the Green’s functions (GFs) of the original open
structure. We generalize this method to the calculation of the
FCS, and using it we discuss the charge-transfer statistics of
noninteracting as well as interacting systems and find that
in the case of a wire with an Anderson impurity there is a
suppression of the PC as well as of its noise at least for not very
strong interactions. Furthermore, we discuss the FCS of the
PC in two different kinds of double-quantum-dot Aharonov-
Bohm interferometer (ABI) setups: a noninteracting double-
quantum-dot one and an interacting one, both quantum dots of
which are driven into the Kondo regime. We find fundamental
differences in the cumulant generating functions which can
be attributed to interaction effects and predict pronounced
differences in the resulting measurable cumulants of the FCS.

The paper is organized as follows. In the next section we
explain the details of our method of the FCS computation.
Section III is then devoted to applications of the developed
technique to noninteracting systems. After that Sec. IV
contains applications to two different types of interacting
systems: to a ring with an embedded Anderson impurity and to
a double-quantum-dot ABI. Finally, Sec. V offers a summary
of the results.

II. GENERAL APPROACH

The canonical definition of the PC is based on the
observation that if the partition function Z of a given system
depends on the magnetic flux ® piercing it, then the associated
conjugate quantity is the finite charge current so that (we set
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FIG. 1. (Color online) The setup of the system under considera-
tion. For yy = 0 it is simply connected. The wire can be coupled to a
metallic electrode via hybridization I'.

e = h = ¢ = 1 throughout the paper)

F W
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where F is the free energy of the system. There are
numerous ways of computing Ipc, ranging from quantum
statistical to scattering methods, but most of them cannot
yield the FCS of the PC in a straightforward way. It turns
out that the charge-transfer statistics can rather easily be
computed in systems which are characterized by one or
several weak (tunneling) links at which one can introduce the
counting field A [10,16]. That is why a natural procedure is to
take a ring, disconnect it, and introduce at the “cut” point a

J

Ipc = —
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weak link along with the counting field and compute the FCS
(see Fig. 1) just like it is performed for transport in tunneling
systems.

Therefore we would like to ask the following question:
Let us suppose that we have a simply connected system,
e.g., a quantum wire with open boundaries, which we would
like to shape into a ring via a weak link, connecting two
arbitrary points of the wire. Can we derive an expression
for the PC using the GFs of the original open system? In
order to answer this question one can proceed as follows.
Let Ho[¢¥(x)] be the Hamiltonian describing the electronic
degrees of freedom in an open simply connected wire (we
concentrate on one-dimensional wires, a generalization to
higher-dimensional systems can be performed along the same
lines). It is closed to a ring by tunneling between the points
x = 0 and x = L with the amplitude yy. Then the full system
can be described by the following Hamiltonian [17]:

H = Ho[(x)] + yoe 100 (L) + yoe™ v (L)Y (0),
)

where ¢ = 27 ®/ P describes the magnetic flux enclosed by
the wire measured in units of the flux quantum ®y = h/e.
In the following we consider a situation when the partition
function can be written down as a functional integral over
the local fields ¢o(n) = ¥,(0) and ¢, (n) = ¥, (L), where n
denotes the respective Matsubara components,

I 1 _ _
Z =17 / D[¢0,¢L,¢0,¢L]3XP{ ) Z [¢0(n)G&)l¢o(n) + ()G $r(n)

— ¢ (G — voe™?)po(n) — do(m)(Gy} — voe ) pr(n)] } A3)

where Gog, Grr, Gro, and Gop are the corresponding two-
particle Green’s functions. In the case of a quadratic action
they can easily be evaluated by integrating out all degrees
of freedom away from x = 0,L using the standard methods.
The GFs entering the above expression can be shown to
descend from the following two independent Matsubara GFs:
(i) the local one Go(n) = —(T ¢.(n)¢,(n)), which involves
only fields at the contact points, in our case x = 0, L (from now
on we assume both GFs to be identical due to spatial inversion
symmetry of the open system [18]); (ii) and the nonlocal one
connecting both contact points G;(n) = —(T ¢ (n)do(n)) =
—(T ¢o(n)¢;(n)). Whereas the GF of type (i) reflect the local
density of states in the contact points of the weak link, the GF
of type (ii) describes the single-particle propagation dynamics
between the contact points along the wire. With the help of
these definitions we find

G = GrL = Go— GLG, G, @
Gor = Gro = GoG;'(Go — G.Gy'GL) = GyG]' Go.

Using these relations we then immediately obtain the partition
function for our composite system,

V4
Z_j = 1_[ (1 — ¥5GwGo + 200Gy cos ),

n

(

where Z is the partition function of the open system (y, = 0).
The emerging PC is then given by

Ipc=%;

With the help of this relation one can recover all known results
for the PC in noninteracting systems, see, €.g., Ref. [19].
Now we would like to extend our formalism to the
computation of the FCS in terms of the CGF In x(A) of
P(Q) [6]. There are different ways to obtain it, and the
procedure we want to implement is the one from Ref. [10].
It consists of multiplying every forward/backward tunneling
term in the Hamiltonian by the factor e**/2, where A is
the counting field which carries the opposite sign on the
forward/backward Keldysh branch, see, e.g., Ref. [16]. In this
particular procedure the charges are counted only during some
very long measuring time 7. Before and after that time span
the system is disconnected. So the advantage offered by our
method is that everything can be represented in terms of GFs
of an open system, which, being simply connected, underlies
simpler boundary conditions. The necessity for employment
of Keldysh techniques roots in the clear distinction of system
states when the tunneling is switched on and when it is

2p0Gr sin ¢

1 — y¢GwGo + 209G cos ¢
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switched off. The Gell-Mann and Low theorem does not hold,
and one has to resort to nonequilibrium techniques [20].
There is, however, one decisive detail which makes our
ring-shaped setup completely different from the orthodox
tunneling systems for which the FCS procedure was designed.
In tunneling systems one usually considers the scattered
particles as coming from and vanishing into “infinity”—the
incoherent background of the electrodes. At least from the
ideological point of view this is one of the reasons the counting
procedure works; all tunneling events are distinguishable from
each other. This is not so for a ring. The particles which are
already counted once are coming back in coherent fashion,
and there is a possibility that the whole procedure would
not give meaningful results. This problem can, however, be
circumvented by the introduction of an additional very large
particle bath—for instance, just an additional electrode as is
performed in, e.g., Refs. [21,22]. In this way the electron states
in the ring are hybridized with the continua in the electrode
and so become delocalized and reach infinity just like the
scattering states in a conventional tunneling junction. Thus,
from the point of view of the junction where the charges are
counted, both a contacted ring and an open tunneling junction
are indistinguishable. That is why our approach works. We
will see later though that the presence of the electrode is not
crucial and that the conventional FCS method works well even

J
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for very short tight-binding chains. Nonetheless, sometimes it
is useful to keep the extra electrode as in some experiments it is
explicitly present and used to measure the PC [23]. Of course,
it is essential to make sure that the resulting CGF recovers all
already known facts about the PC. Therefore, before applying
our method to interacting systems, in what follows we perform
explicit calculations for simple noninteracting rings and show
that our technique yields exactly the same results as all other
methods used previously.

The FCS computation is easiest in the Keldysh repre-
sentation in which all fields have two components ¥ (x) =
[V_(x),¥4(x)], describing the forward/backward (&£) time
propagation. All GFs then have four different components,

Gt
G++> ’ ®)

where G=~ and G are the time-ordered and anti-time-
ordered components and G~ and G'~ are the lesser and
greater Keldysh GFs [24]. Using this language and assuming a
quadratic action we can again integrate out all fields away from
the contact points and end up with the following generalization
of the partition function (3):

G—

Gx—x't—1t)= <G+

_ - d _ _ _
Z =2 / Di¢o.¢1.90.6; ] exp{ - / %{(bo(w)(}gold)o(w) + ¢L(@)G[ $1(@) — pL(@)[GL — Yo]do(w)

— $o()[Gy} — 73]¢L<w>}},

where the counting field enters the matrices,

i/ 249)
Yo€ 0

The analogs of (4) are now given by

Go =G = Go — GG, 'Gy,

N ®)
Goz = Gro = GooG Go.

The CGF is up to a prefactor given by the A-dependent Keldysh

partition function of the system, therefore performing the

last remaining functional integrations in (6) we arrive at our

principal result,

In x(A) = T/da) In det A,

©))
—1 —1 -1

A =Gy — (Gg = 75)Goo (G, — ¥0),
where 7 is the measuring time. It is instructive to compare it
with the statistics of a simple structureless tunneling contact

with the Hamiltonian,

H = Ho[y12()] + vt (002(0) + v v (0)91(0),

(6)

(

with 1 2(x) describing the electron fields of the right/left
contact. The corresponding FCS is given by [16,25]

InxO)=T / do In det(G;! — p3Gayo),  (10)

where G; denotes the local GF on the respective electrode at
the tunneling point. As Gqp in the wire geometry also describes
the strictly local GF we have an immediate parallel Gy <> G|
and Gog = G <> G;. Therefore we can split the object A =
A. + A into the incoherent contribution which has the same
shape as the matrix for the tunneling contact,

Aic = Gy — 7§Gooyo, (11)
and the coherent part,
Ac = ¥5GowGy} + Gy Gooyo, (12)

which is absent in the tunneling contact case and which
reflects the fact that in the case of the doubly connected
system both contacts “talk” to each other through the wire
itself. Its presence has interesting consequences. Although the
conventional FCS of noninteracting systems turns out to be 2
periodic in A, the FCS of the PC has a doubled periodicity. This
can be understood in the following way. The term A is of the
order of y; and arises from the tunneling of the electron across
the weak link and back (forward and backward propagations
along the Keldysh contour). On the contrary, the coherent
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term A is linear in ;. That means that the counted electron
tunnels through the weak link on the forward (backward) path
and returns back following the wire rather than tunneling
back directly. On the other hand, this periodicity doubling
can also be interpreted in terms of counting particles in a
tunneling system, which is initially prepared in a superposition
of different charge states, see, e.g., Refs. [26,27].

III. APPLICATIONS TO NONINTERACTING SYSTEMS

The individual cumulants of the charge-transfer statistics
are computed as usual using the prescription,
C, = (—i)”M . 13)
A" 20
Thus Ipc = Cy/7. We have tested the prediction for the
PC found using (9) and (5) for a tight-binding chain with
N sites (we take odd N in order to satisfy the symmetry
requirements imposed on the GFs), connected by hopping
integral y, which sets the energy scale of the system, and fixed
chemical potential. We have compared it with the values for Ipc
for the continuum model of finite length given in Ref. [19]. In
one case we have coupled the central chain site to an additional
metallic electrode (bath) with some small hybridization I". We
find excellent agreement already for very short chains with
N = 3 aslong as the hybridization is the smallest energy scale,
see Fig. 2 [28]. Furthermore we considered a fully decoupled
system in which I" = 0, obtaining precisely the same results
as the classical formulas and recovering all important details,
such as the parity effect and the 1/N dependence of the PC
on the chain length N and exponential suppression of Ipc with
growing temperature [28,29]. Moreover, we have computed
the two lowest-order cumulants directly using the current
autocorrelation function and found exactly the same results.
In Fig. 3 we plot the second cumulant computed for a
decoupled three-site tight-binding chain with finite very small
energy-level widening 8. The generic feature is the rapid decay
of C, towards lower temperatures until it ultimately vanishes
at T = 0. This is to be expected since at zero temperature the
system is in its ground state and all fluctuations are frozen
out. This finding is compatible to the results of Refs. [5,30].

Ipc

0.5

02 04106 08 .oq)/q)0

=05

FIG. 2. Persistent current through a ring with the length N =3
computed with the help of our approach using the FCS of the
PC (solid line) and the formula (1) given in Ref. [19] (dashed
line) at zero temperature, measured in units of y/2®y. y is the
hybridization amplitude between the adjacent sites within the chain,
and the tunneling amplitude of the weak link is yp/y = 0.9, which
corresponds to Tr & 0.989 as it appears in Ref. [19]. The chemical
potential is set to zero and I'/y = 0.025. The agreement of both
curves improves for decreasing I".
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FIG. 3. Second cumulant C, measured in units of ey 7 /2®, as
a function of magnetic flux for different values of temperature from
above T/y = 1.6,0.4,0.1,0.025,0.006 25. The energy-level widths
are kept at 6/y = 0.025 and yp/y = 0.9.

Another important feature is the maximum located precisely at
half period [4]. This is not surprising either since at precisely
these points the PC changes sign, therefore the probability for
current fluctuations is the highest. C, shows an interesting be-
havior as a function of temperature. In the case of tight-binding
chains we find Co(T) ~ a; — ay/[1 + (T/T*)?], where o »
are some model specific constants and 7* is the energy scale
set by Er. It turns out to be very close to the characteristic
temperature on which the exponential suppression of the PC
itself occurs.

Contrary to the second cumulant the third one does not
vanish at zero temperature at least in the vicinity of the turning
point ®/dy = 1/2 or ¢ = 1, see Fig. 4, and it turns out to have
a singularity there. One interesting peculiarity is also the very
strong dependence of the third cumulant on the coupling to the
lead T, the asymptotic value of C3 at &/ Py = 1/2 approxi-
mately growing as ~ 1/ I". Although the strong dependence of
the third cumulant on the effects of the environment has been
found before [14], it is not clear yet whether this singularity
can be explained by the same physical mechanism. C3 shows
a nonmonotonous behavior as a function of temperature, see
Fig. 5. It has a distinct maximum at intermediate temperatures
and decays exponentially towards the limit 7/y — oo. This
is very similar to the third cumulant for a tunneling contact
between two noninteracting metals biased by finite voltage

6001
400
200¢

200}
—400F
—600F

FIG. 4. Third cumulant measured in units of e?y7 /4®, at
different temperatures 7/y = 0.25, 0.125, 0.0625, and 0.03125
(dotted, dashed, dashed-dotted, and solid lines, respectively) for
¥o/y = 0.9 in a coupled system with I'/y = 0.05.
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FIG. 5. The temperature dependence of the third cumulant mea-
sured in units of e?y T /4y, yo/y =1, 0.7, and 0.5 (dotted, solid,
and dashed lines, respectively) and ¢ = /4 or &/ Py = 1/8 for a
tight-binding chain with N = 15 and zero chemical potential.

with an energy-dependent transmission, vanishing in the large
energy limit. This is remarkable because a simple weak link is
known to have an energy-independent transmission coefficient.

Another interesting feature of Cj is its exponential decay
with the length of the system. A detailed study of these
properties as well as of the higher-order cumulants will be
presented elsewhere [29]. The general tendency is that at zero
temperature all even order cumulants vanish and all odd order
objects show a behavior similar to that of the third one.

As another application we would like to analyze the
FCS of a double-quantum-dot ABI, see Fig. 6. This is a
versatile device widely used to study transport at nanoscale
[31]. We would like to consider its simplest realization,
consisting of two metallic electrodes, the electrons of which are
described by fermion fields R(x) and L(x) and two localized
fermionic levels with energies A; (i = 1,2), the respective
electron creators/annihilators being denoted by diT , d;. The
corresponding Hamiltonian is given by

H=H+H,. H=H[RL+Y Add. (14
i=1,2

where the electrodes are coupled to both localized levels by
tunneling amplitudes y and yy,

H, = y[R'di + d]R + di(R + L) + (R' + LN)d1]
+ (e L + e Lid)), (15)

Y L2 Y i 2
//@\\ ;2@\
B D
X A * ¥

YB*I@‘/V Jll@l

FIG. 6. (Color online) Left panel: A  double-quantum-dot
Aharonov-Bohm interferometer formed by two metallic
electrodes L,R and two quantum dots 1 and 2. Right panel:
A double-quantum-dot Aharonov-Bohm interferometer in the Kondo
limit. The transport between the electric leads is possible via spin-flip
processes with amplitudes J, 1 ,.

PHYSICAL REVIEW B 90, 165107 (2014)

where the tunneling from/into the electrodes is assumed
to occur locally at x =0 in the coordinate system of the
respective electrode sothat R = R(x = 0)and L = L(x = 0).
We will describe the electrode degree of freedom in the
framework of the wide flat band model (WFBM) for simplicity,
but this is not a severe restriction and can easily be relaxed.

Such a system is an unorthodox realization of a ring
geometry one usually considers in the theory of PC because
of the coupling to two different electrodes. We will construct
a formal solution for the system in the general case of finite
bias voltage applied between the electrodes and discuss in
detail only the zero voltage case. Furthermore, we will consider
only such quantities, which are only present when there is a
finite PC in a system. The reason for that is the fact that, for
instance, the second cumulant, or the noise, can be finite even at
zero voltage at finite temperatures but no field ¢ = 0, thereby
yielding information which cannot be connected to the PC
phenomenon at all. It is obvious, that along with the second
cumulant one must exclude all even order cumulants. Odd
order cumulants, on the contrary, at least at zero temperature
are finite only for finite ¢ # 0. Therefore we concentrate on
the PC and the third cumulant of current C3 only. Moreover,
contrary to the situations considered above we would like not
to make the tunneling amplitudes to the electrodes small. We
believe that such a geometry can be quite advantageous for
future experimental investigations of PCs.

In order to compute the CGF we first have to build the
counting field into the system Hamiltonian. In the present case
this is most efficiently performed by a transformation,

ei‘pd;rL +e Ld) — ei(‘p“/z)d;rL e WD Lig,,

We would like to point out again that A is a field which has an
opposite sign on the forward/backward paths of the Keldysh
contour (as opposed to ¢). The CGF is now nothing else
but the A-dependent Keldysh partition function. It can either
be computed by differentiation with respect to the coupling
constant or by a straightforward functional integration [16].
We follow the second route and define the full action of the
system in the form of a matrix,

G' 0 T, T,
0 G;' T, T
T: T; D' 0

T, T; 0 D'

A= , (16)

where G| : r are the local Keldysh GFs for the electrons in the
respective’ electrodes with the structure G(t) = —i{T¢cs(x =
0,)sT(x = 0,0)) with s = R,L and T being the contour
ordering operator. Within the WFBM they are very simple
and given by

a7

. (ng—1/2 ng
Gs(w) = lpO( >7

ng — 1 ng —1/2

with pg being the density of states in the electrode and n; being
the Fermi distribution function in the respective electrode.
Keldysh GFs of the uncoupled dots are quite simple as well:
D; = diag[1/(w — A;),—1/(w — A;)]. Finally, the tunneling
contributions in the action are diagonal in the Keldysh space
since the tunneling processes are assumed to be instantaneous
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FIG. 7. Left panel: Zero-temperature PC through a noninteracting double-dot ABI setup, measured in units of I'/ & for different dot offset
energies A/ ' =0, 0.5, and 1.0 (solid, dashed, and dotted lines) and y, = y. Right panel: The third cumulant of the persistent current measured
in units of ¢*I"7 /4®, for the same system at resonance A, = 0 for different temperatures: 7/I" = 0.05, 0.1, and 0.2 (solid, dashed, and

dotted lines).

and can be shown to be given by Ty = diag(y,—y)and T, =
Y0, see Eq. (7). The CGF is then a functional integral of the
kind,

In x(A) = ln/D[ozT,oc]exp [—/dwocTAoz]

= dew In det A, (18)

where @« = (R_,R,,L_,L,,d\_,dy ,d>_,d» )" is the su-
perfield used to construct the action. The subscript £ denotes
the Keldysh branch index of the respective field.

Although the CGF itself is quite involved, the PC in the
symmetric case yp = y and Aj ; = A is given by the following
compact relation:

F3
Ioe = 8—sin ¢ / do(w — N)2np — 1)
0

x[16T* sin*(¢/2) 4+ 2T (w — A)*(6 + 2 cos ¢)
o — AT, (19)

where T' = 7y 2. Expressions for all other cumulants can
also be written down in a closed form. However, they are
rather lengthy, and therefore we do not report them.

The behavior of the PC is generic and is shown in Fig. 7.
As can be clearly seen already from (19) it is maximal when
the system is in resonant configuration with A;, = 0. The
behavior of the third cumulant qualitatively closely resembles
the behavior of C; for rings with a single electrode, see Fig. 7. It
is nonzero even at zero temperature and atresonance A, = A
has a singularity around a turning point, which is very similar
to the one observed in the case of ordinary rings, see Fig. 4.
However, it is cut off at finite temperatures or/and finite gate
voltage Ay, # 0.

It is very well known from the theory of double-quantum
dots that the transmission coefficient for the particles traveling
between the electrodes is significantly suppressed for the
parameter set A; = —A; = A [32-34]. It turns out that
it is different for the PC. It is highest for A;, =0 as
expected. However, the symmetric gating A} = A, leads to
a considerably smaller PC and C3 as in the situation with
A= —A.

IV. FCS OF PERSISTENT CURRENT IN INTERACTING
SYSTEMS

Now we would like to turn to interacting systems. Although
it is not always possible to find a representation of the form
(6), the general procedure for closing an open system via term
(7) and subsequent evaluation of the generalized A-dependent
Keldysh partition function is still perfectly applicable. To
illustrate that we consider a situation in which one of the
chain sites is replaced by an Anderson impurity—in our case
the role of the impurity plays the site, which is coupled
to the electrode, see Fig. 1. Without interaction its energy
is resonant (zero). Although the corresponding exact GFs
are not known, there are plenty of powerful approximative
techniques. In this introductory study we restrict ourselves
to the approach using the second-order self-energies [35],
closed analytical expressions for which are, e.g., presented in
Ref. [36]. Figure 8 shows the results for the PC. For growing
U the PC as well as the noise turn out to be suppressed while
keeping their overall noninteracting shape as a function of the
magnetic flux. The decrease in the PC is in agreement with
the general expectation and can be understood in terms of the
decreasing impurity density of states at the Fermi edge due

1.0

0.5

-0.5F

-1.0+

FIG. 8. A comparison between the PC in a noninteracting
system (solid lines) with I'/y = 0.05, y»/y = 0.9,0.45 (upper/lower
curves) and an interacting system with U/y = 0.4 (dashed lines
with the same ratios y,/y) at temperature 7/y = 0.02. We have
deliberately used a too high value of U in order to demonstrate the
relative weakness of the interaction effects in this approximation. The
current is measured in units of y/2®,. The corresponding Kondo
temperature is T /y = 0.012.
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to the formation of the Hubbard sidebands. The temperature
for the plot is chosen in such a way that it is almost twice as
large as the Kondo temperature Tx ~ /UT exp[—m U /(8T)]
below which a profound change in ground state occurs [37].

At temperatures T < Tx the Kondo effect dominates the
low-energy properties of the above system, and the self-energy
approximation is not applicable anymore. Whereas for the
standard Kondo impurity problem there are a number of
different solution approaches, to do so in a system with a
ring geometry is a daunting problem, see, e.g., Refs. [38—40].
However, in the impurity configuration proposed above the
Kondo ground state is formed due to coupling to the external
lead. This circumstance allows for a construction of a two-
electrode Aharonov-Bohm setup with two imbedded Kondo
impurities, which possess an exactly solvable Toulouse limit
[41,42].

The Hamiltonian of the system, see also in the right panel
of Fig. 6, is given by

where, with ¥, , being the electron field operators in the R, L
electrodes,

Hy=ive Y > / dx Y, () Vo () + Y ATF

a=R,Lo=1,] i=1,2

Hy= Y Y > ulsy, > q. Q@D

a,B=R,L v=x,y,z i

Here 7, =" are the Pauli matrices for the impurity spins

located at dots i = 1,2 and

sup = Vo002, W0 (0)

are the components of the electron-spin densities in/across
the leads. A; = upgh; is proportional to the magnetic field
h;, applied locally to the respective impurity only, up is the
Bohr magneton, and g is the electron gyromagnetic ratio.
For convenience we set the Fermi velocity of the original
fermions vp = 1. Jl.o‘[)ﬂ is the set of couplings, all of which
are assumed to be the parameters of the system. We follow
[43] and assume J¥ = J;;[,ﬂ = I, Jow = (JEE £ JRRY /2,
and JIéR = Ji’; L = 0. The only allowed transport process is
then the spin-flip tunneling (sometimes also called “exchange
cotunneling”), which is proportional to J*L. Inclusion of the
Aharonov-Bohm phase can be performed in the usual way
by supplying the spin-flip transport terms with an appropriate
factor: We choose to do that for the tunneling through dot 1,
thus

JHE ()2 — 2
Hy, = IT(TI'*‘et(/\/ +w)1//:?ll/f” +1 ey +(p)¢;e¢1/’Ll

+ TlJre—iO»/N-(P)wzlwRT 4 .Cl*e—i(l/z-kw)szle)'

It turns out that by using the general strategy presented in
Refs. [43—-45] at the Toulouse point, when J;,— = Oand J;,4 =
27, the FCS could be evaluated even for ¢ # 0. Without
repeating the rather lengthy but straightforward calculation
we present the resulting Hamiltonian, which is a descendant
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of the Majorana resonant level model [46],
H = Hy—iJ_(by +b2)és —iJ (a1 +a)ny

—i Y Aiaib; — i Tk
i=1,2

—iJ1b1& cos(A/2 4+ @) —iJy byn sin(A/2 + @), (22)

where a; and b; are the two different sets of local Majoranas
describing the degrees of freedom of the two dots. £,7 are the
Majorana fields of the flavor, and & /,n ; are the Majorana fields
in the spin flavor channels. The identification of the constants is
as follows: Ji4 = (Jl.ﬁ_L + Jl.’j_R)/«/Znao, Jil = Ji’j_L/«/Znao
(ap is the lattice constant of the underlying lattice model).
For simplicity we have chosen the couplings J1 = J;1 to be
the same for both dots, whereas the transversal parts are still
different J,», — Ji2. The free Hamiltonian is simply

Hy = ide[nf(X)axnf(X) + &7 (0)3:5 5 (x)
+ ()9 n(x) + §(x)9 & (x)]. (23)

The problem is quadratic in fermionic operators and thus can
be solved analytically for any constellation of parameters [45].
An analytic expression in a closed form exists and can be
found along the same lines as the CGF of the conventional
noninteracting double-dot setup discussed in the previous
section. However, it is lengthy, and therefore we relegated
it to the Appendix.

The most generic distinctive feature of the double-dot
Kondo ABI is the halved periodicity in ¢ of all cumulants
of the FCS as compared to the noninteracting double-dot ABI
setup, cf. Figs. 7 and 9. This is in consensus with the results
of Ref. [41] where the same phenomenon was predicted for
the overall transmission coefficient of the double-dot structure.
We go considerably beyond this study and confirm this feature
for the whole CGF.

The second fundamental difference concerns the A periodic-
ity of the CGF. As was discussed in Sec. II the CGF in the case
of noninteracting systems contains an incoherent 2 periodic
in the A part as well as a coherent 4 periodic contribution. In
the present double-dot Kondo case, a similar effect takes place
as well. CGF contains terms which are rational functions of
the cosine and sine of A and 2A. However, we tend to interpret
these two contributions as a transport of single electrons and
electron pairs, just like in the case of a single Kondo impurity
[44].

There are two important special cases. When Aj, =
0, =0, but I'_ # 0 the FCS of the single-dot system
describes tunneling of correlated electron pairs along with
single-particle events [44]. It turns out that although already at
strictly I'_ = 0, not only two-particle, but also single-particle
processes contribute, and with growing I'_ the admixture of
the single-particle channel increases considerably leading to
an overall suppression of the PC. For large I'_ > I" we find
the suppression factor to be of the form ~1/I'_. This kind
of behavior is to be expected since a growing contribution
of a single-particle channel means a further departure from
the unitary limit at which the transmission of impurities is
maximal.
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FIG. 9. Left panel: Zero-temperature PC through a double Kondo impurity ABI setup, measured in units of I'/ &, for equal I'y , = T" and
different magnetic fields A/ I" = 0, 0.5, and 1.0 (solid, dashed, and dotted lines) (we have set A, = A). Right panel: The third cumulant of
the persistent current measured in units of e>I"7 /4® for the same system in zero field A , = O for different temperatures: 7/ T" = 0.05, 0.1,

and 0.2 (solid, dashed, and dotted lines).

The other special case is that of finite magnetic fields
Ay, # 0. If they become large |Aj 2| > |I'j 2. | the electron-
pair processes are suppressed, and the system departs from
the Kondo limit. Indeed, the PC degrades considerably for
growing fields, see Fig. 9. Yet another signature of that is the
decreasing asymmetry of the Ipc(¢p) curve with respect to the
line ¢ = m /4, which is usually more pronounced for systems
with high transmission. Similar phenomena can be observed
for the third cumulant, see Fig. 9.

V. SUMMARY AND CONCLUSIONS

To summarize, we have discussed the full counting statistics
of a persistent current. In the first part of the paper we have
derived a general formula for the cumulant generating function
of the charge-transfer statistics in a system consisting of an
open chain which is closed to a ring via a weak link. We
have shown that the resulting expression for the persistent
current perfectly reproduces all known results. We find that
as a function of the counting field the CGF has a doubled
periodicity as compared to the FCS of the nanostructures
contacted by two independent electrodes. We have discussed
the behavior of the second and third cumulants as functions
of the magnetic flux, temperature, and coupling strength to
the environment. Using a slightly simplified approach we
have also analyzed the FCS of a PC in a noninteracting
double-quantum-dot Aharonov-Bohm interferometer.

In the second part of the paper we have extended our
approach to the treatment of interacting systems and applied
it to a ring with an embedded Anderson impurity in a per-
turbatively accessible regime, finding an overall suppression

J

of the magnitude of all cumulants. Furthermore, we have
applied our method to transport through a double-quantum-dot
Aharonov-Bohm interferometer in the deep Kondo limit.
Here we have made use of an integrability of the system at
the Toulouse point deriving an analytical expression for the
cumulant generating function in a closed form. We confirm
the halved periodicity of the flux dependence in the Kondo
limit, which was suggested in previous papers. In agreement
with the result for the FCS of a single-dot system we managed
to identify single-particle and electron-pair processes in the
corresponding CGF.

In the future it would be particularly interesting to address
the FCS of exactly solvable interacting systems in ring
geometries, such as Luttinger liquids [29], quantum impurity
models [47], or consider the analytic properties of the CGF in
the spirit of Ref. [48].
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APPENDIX

Here we give an explicit expression for the CGF of the
FCS for the persistent current in a double-dot ABI in a Kondo
limit, see Sec. IV. To enhance readability of the formula we
set Ay =A,=A, '=I2=T,and "4 =0.

In x(A) = %0 / do In(8(w? — AH)H{(@* — A?)? 4+ 20°T? + 20T np(1 — np)[cos(2r) — 1]}

+ 8w (w? — A?){(w* — A?)[1 + cos A cos(2p)] — i2lw(2np — 1) sin A sin(2p)}

+T*0*[3 — 2 sin(2p) — 4 cos A cos(2¢) + cos(2A)]),

(AD)

where the Fermi distribution function is given by np = 1/[exp(w/T) + 1].
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