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The edge physics of the ν = 5/2 fractional quantum Hall state is of relevance to several recent experiments that
use it as a probe to gain insight into the nature of the bulk state. We perform calculations in a semirealistic setup
with positive background charge at a distance d , by exact diagonalization both in the full Hilbert space (neglecting
Landau level mixing) and in the restricted Pfaffian basis of edge excitations. Our principal finding is that the 5/2
edge is unstable to a reconstruction except for very small d . In addition, the interactions between the electrons
in the second Landau level and the lowest Landau level enhance the tendency toward edge reconstruction. We
identify the bosonic and fermionic modes of edge excitations and obtain their dispersions by back-calculating from
the energy spectra as well as directly from appropriate trial wave functions. We find that the edge reconstruction
is driven by an instability in the fermionic sector for setback distances close to the critical ones. We also study
the edge of the ν = 7/3 state and find that edge reconstruction occurs here more readily than for the ν = 1/3
state. Our study indicates that the ν = 5/2 and 7/3 edge states are reconstructed for all experimental systems
investigated so far and, thus, must be taken into account when analyzing experimental results. We also consider an
effective field theory to gain insight into how edge reconstruction might influence various observable quantities.
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I. INTRODUCTION

When two-dimensional electrons are placed in a magnetic
field, fractional quantum Hall (FQH) states are observed [1].
These states are labeled by the filling factor ν defined as
the number of electrons divided by the number of available
single-particle states in each Landau level. The majority of
FQH states occur at filling factors with odd denominators
but the ν = 5/2 FQH state [2] is an exception whose nature
is still not fully settled. The leading candidates are a chiral
p-wave paired state [3,4] of composite fermions [5] and
its particle-hole conjugate [6,7]. The Abrikosov vortex of
a two-dimensional chiral p-wave superconductor supports a
Majorana zero mode obeying non-Abelian braiding statis-
tics [8,9], which is also predicted to be present in the 5/2
state [3,8]. This paper reports our study of the edge physics
of the ν = 5/2 state. Our study has primarily been motivated by
the proposals that interference of quasiparticles moving along
the edge can reveal their non-Abelian nature [10–14]. In a
more general context, FQH edge states have attracted attention
because of the possibility of using them as a probe into
the bulk topological order of FQH states [15]. For example,
the exponent characterizing the tunneling conductance into
FQH edge has been predicted to depend only on the bulk
topological properties [15]. The experimental measurements
for the FQH states at ν = n/(2n ± 1) [16] as well as the 5/2
state [17] have not yet yielded a quantized edge tunneling
exponent, and several theoretical works have sought to shed
light on the origin of the discrepancy [18–26]. In particular,
it has been found that the edge of an FQH state can undergo
a reconstruction, and when that happens, it loses some of
its universal features [27,28] (edge reconstruction for ν = 1
integer quantum Hall effect was considered in Ref. [29]). This
motivates us to seek a better and more detailed understanding
of the edge physics for various FQH states, in particular, of the
5/2 FQH state, in realistic geometries.

In this work, we study the possibility of edge reconstruction
at ν = 5/2 by modeling the confinement potential in a

quasirealistic manner as a uniform positively charged disk
at a setback distance d from the two-dimensional electron
system. It is possible to carry out exact diagonalization for
small systems [30,31] and such results are presented below
for some cases. However, one may worry if these small
system studies are able to capture the true thermodynamic
behavior of the edge states. To access the edge excitations
in larger systems, we use the trial wave functions for the
ground state and edge excitations given by the Pfaffian model
of the 5/2 state [3,4,32,33]. We study the edge excitations
by diagonalizing the Coulomb interaction within the subspace
spanned by the Pfaffian basis [34]. Based on comparisons
with exact results obtained in small systems, we find that this
model qualitatively captures the behavior of the actual system,
although it slightly underestimates the critical separation dc

beyond which edge reconstruction takes place. Our principal
finding is that edge reconstruction occurs quite generically. For
a model that completely disregards the lowest filled Landau
level, edge reconstruction occurs for d � 0.5�B , where �B =√

�c/eB is the magnetic length. If the lowest filled Landau
level is included, edge reconstruction occurs for d � 0.1�B .
This puts constraints on the experimental geometries where the
physics of unreconstructed edge at 5/2 may be investigated,
and suggests that all current experimental realizations of the
5/2 state are likely to have reconstructed edges.

We also ask what is the nature of instability at the edge.
According to the Pfaffian model of the 5/2 state, the edge
excitations are built out of a bosonic and a fermionic modes.
We deduce the dispersions for these modes from the many body
energy spectra, and also show that certain trial wave functions
provide reasonably good descriptions for them. The velocities
of the bosonic and the fermionic modes are calculated from
the dispersions. We find that it is the fermionic mode that
goes soft first, rather than the bosonic mode as implicitly
assumed in previous studies. We stress, however, that this
conclusion is based on a model that restricts to the Pfaffian
basis of excitations; a similar analysis of the spectrum in the
full basis has not been possible.
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To investigate how edge reconstruction affects various
experiments that involve the detailed behavior of the edge,
we study the scaling behavior of electrons and quasiparticles
at the reconstructed edge using a K matrix formalism. We find
that the instability driven by the charged bosonic mode and
that driven by the Majorana fermion mode lead to different
fixed point behaviors.

It is believed that the Pfaffian state and its particle-hole
conjugate, namely the “anti-Pfaffian” state, which is a Pfaffian
of holes in the background of one filled Landau level (LL),
exhibit topologically distinct edge structures [6,7]. A two-body
interaction in the absence of LL mixing does not distinguish
between the Pfaffian and the anti-Pfaffian insofar as their bulk
properties are concerned, as would be the case in the torus
geometry. However, on a finite disk with a boundary, the
one-body potential breaks particle hole symmetry, and thus
differentiates between the Pfaffian and the anti-Pfaffian, as
explained in Sec. VII of Wan et al. [31]. We have considered
below the edge reconstruction for the Pfaffian state. We stress
that we have not included in our Hamiltonian a three-body
interaction that may arise from LL mixing; for sufficiently
small LL mixing this interaction should not affect the edge
physics.

The 7/3 FQH state has also been investigated in a number
of recent experiments [35–42]. We also study the edge of the
ν = 7/3 state using exact diagonalization in the full Hilbert
space (without LL mixing) as well as in the subspace given by
the composite fermion (CF) theory. The trial wave functions
given by the CF theory are not very accurate quantitatively
for the 7/3 ground state and excitations (see, e.g., Ref. [43]),
but are the best available model that can be dealt with in a
simple manner. We find that, within this model, the edge of the
7/3 state is also reconstructed for d � 0.5�B . As the samples
used in current experiments have larger setback distances, our
results indicate that it is important to take edge reconstruction
into account in the analysis of these experiments.

We stress the limitations of our calculation. We uncritically
assume the Pfaffian model of excitations, which provides
a restricted basis of edge excitations—our conclusions for
the edge reconstruction are fully based on this assumption.
Limited studies of edge reconstruction in the full basis (which
can be performed in relatively small systems) suggest that
this model is reasonable for obtaining the parameters where
edge reconstruction occurs, but we are not able to provide a
similar justification for the nature of edge reconstruction. Our
calculation does not address, and thus does not rule out, the
possibility that the experimental 5/2 state might be described
by a model other than the Pfaffian model, such as the 331 or
113 state of Halperin [44], which has been supported by certain
experiments [35,45] and has been considered theoretically (see
Ref. [46] and references therein). Similarly, for 7/3 FQHE, our
conclusions are based on a model that restricts to the CF basis
of edge excitations analogous to those at ν = 1. It is known
that the excitations of 7/3 are, at least quantitatively, different
from those at 1/3, and the theory that works very well for
1/3 excitations does poorly for 7/3 excitations [47]; limited
exact diagonalization studies indicate, however, that the model
is not unreasonable for the question of edge reconstruction.
Nonetheless, while our conclusions are quite reasonable for
the stated models, the applicability of the models to the actual

experimental system has not been fully confirmed. Finally, in
Sec. IV, we use an effective theory for edge states, and the va-
lidity of our results rests on the validity of the effective theory.

The plan of the paper is as follows. In Sec. II, we introduce
the methods that are employed to calculate the energy spectra.
We then describe our results for the ν = 5/2 FQH state in
Sec. III and discuss their implications for experiments in
Sec. IV in an effective field theory. The results for the ν = 7/3
FQH state are given in Sec. V and finally, we conclude with
some discussions in Sec. VI.

II. METHODS OF CALCULATION

Our numerical calculations will be performed using the disk
geometry, with the single-particle wave functions given by

φn
m(x,y) = 1√

2π2m+2nn!(m + n)!

× ezz̄/4

(
− 2

∂

∂z

)n(
− 2

∂

∂z̄

)m+n

e−zz̄/2, (1)

where z = (x − iy)/�B is the dimensionless complex coor-
dinate, n is the LL index, and m labels the single particle
orbitals within a LL. The lowest Landau level wave functions
are particularly simple:

φ0
m(z) = zm

√
2π2mm!

exp

(
− |z|2

4

)
. (2)

This wave function is localized along a ring of radius
√

2m.
The ubiquitous Gaussian factor will be omitted in the following
discussions.

A. Microscopic model for exact diagonalization

We consider a system consisting of two-dimensional elec-
trons and a neutralizing background charge that is uniformly
distributed on a disk with radius RN placed at a setback
distance d from the electron plane. For ν = 5/2 = 2 + 1/2,
we treat the spin-up and spin-down electrons in the completely
filled lowest Landau level (LLL) as inert and only use the
Fock states of the half-filled second Landau level (2LL). A
confinement potential is provided by the background charge.
To maintain overall charge neutrality, the total background
charge is equal to that of the half-filled 2LL, which gives
RN = √

4N in unit of the magnetic length �B = √
�c/eB.

The Hamiltonian of this system is

H = EK + Vee + Veb + Vbb

=
∑

i

1

2mb

(
Pi + e

c
Ai

)2

+
∑
i<j

e2

ε|ri − rj |

− ρ0

∑
i

∫
	N

d2r
e2

ε
√

|ri − r|2 + d2

+ ρ2
0

∫
	N

d2r
∫

	N

d2r′ e2

ε|r − r′| , (3)

where the terms on the right hand side represent the kinetic
energy, electron-electron interaction, electron-background
interaction, and background-background interaction,
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respectively. For electrons confined to the 2LL, the kinetic
energy term is a constant and we only need to consider the
interaction terms.

B. Model wave functions

In this paper, we use the so-called smooth edge model,
which is believed to be relevant for the point-contact geometry
used in experiments. In this model, all the possible many-
body edge states for a given total angular momentum M =
M0 + 
M = ∑N

i=1 mi (M0 is the angular momentum of the
ground state) are included with no constraints on the single-
particle angular momentum mi . The dimension of the Hilbert
space grows exponentially with N . To access larger N , we will
use model wave functions to generate a truncated subspace in
the full Hilbert space, and diagonalize the Hamiltonian in this
truncated subspace to obtain the energy spectra.

1. Composite fermion theory

The FQH states in the lowest LL are described in terms
of composite fermions [5], bound states of electrons and 2p

vortices. As a first-order approximation, composite fermions
do not interact with each other and move in an effective
magnetic field, forming Landau-like levels called � levels. The
CF filling factor ν∗ corresponds to the electron filling factor
ν = ν∗/(2pν∗±1). When ν∗ = n is an integer, the composite
fermions form a gapped integer quantum Hall state, which
corresponds to an incompressible FQH state of the electrons
at ν = n/(2pn ± 1). At the mathematical level, attachment of
2p vortices is accomplished by multiplication by the Jastrow
factor

∏
i<j (zi − zj )2p. The CF wave functions are given by

�CF
ν∗

2pν∗+1
= PLLL
ν∗

∏
i<j

(zi − zj )2p (4)

and

�CF
ν∗

2pν∗−1
= PLLL[
ν∗]∗

∏
i<j

(zi − zj )2p, (5)

where 
ν∗ is the Slater determinant wave function of nonin-
teracting particles at filling factor ν∗, [· · · ]∗ denotes complex
conjugate, and PLLL is the LLL projection operator. The low-
energy properties of the interacting electrons are accurately
reproduced by the noninteracting composite fermions. The
number of CF basis states at a particular angular momentum
M0 + 
M is much smaller than the dimension of the full
Hilbert space, which allows us to study larger systems. It has
been shown that the CF theory describes the edge excitations
of the LLL FQH states very accurately [21,22,48]. In this
paper, we will construct edge excitations for the 1/3 state by
mapping it to composite fermions at ν∗ = 1, and explore the
edge excitations of the 7/3 state using an effective interaction
mimicking the second LL Coulomb interaction.

2. Pfaffian state and Jack polynomials

The trial wave function for the 5/2 state that we consider
in this paper is the Pfaffian state [3]:

�Pf
1/2({z}) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj )2, (6)

which represents a chiral p-wave paired state of composite
fermions. This wave function is written in the LLL at filling
factor 1/2 and it is the highest density zero energy eigenstate
of a model three-body interaction Hamiltonian [4,31]:

H3 =
∑

i<j<k

Sijk

[∇2
i ∇2

j

(∇2
i + ∇2

j

)
δ(ri − rj )δ(ri − rk)

]
, (7)

where Sijk is a symmetrization operator. Numerical studies
have shown support for this interpretation of the 5/2 state:
the overlap of the trial wave function with the exact Coulomb
ground state at ν = 5/2 is about 80% for 18 electrons on
sphere [49], and the Pfaffian wave function has a lower energy
than the spin-polarized or the spin-unpolarized composite
fermion Fermi sea state in the 2LL [50]. The edge excitations
can be constructed following Ref. [33], which are also zero
energy eigenstates of the three-body Hamiltonian H3.

It is possible to diagonalize the three-body Hamiltonian
H3 to obtain the Pfaffian basis states. A simpler way is to
use the Jack polynomial formalism [34,51–53], which we
briefly explain here. This approach gives explicit decompo-
sition of certain model FQH wave functions in the Slater
determinant basis. To begin with, we label the single-particle
orbitals in LLL by their angular momentum eigenvalues. A
noninteracting N -particle basis state, which has a fixed total
angular momentum, can be represented by a partition λ =
[λ1,λ2, . . . ,λN ] with the angular momentum λi of each particle
listed in descending order, or an occupation number configu-
ration n(λ) = {nm(λ),m = 0,1,2, . . . } showing the number of
particles nm in the single-particle state m. A useful operation on
the many-body basis called “squeezing” is defined as follows:
when two orbitals m1 and m2 (m1 < m2 − 1) are occupied,
the elementary squeezing operation moves one particle in
each orbital to the orbitals m1 + 1 and m2 − 1 (the Pauli
principle should be satisfied when dealing with fermions). In
terms of occupation numbers, we have nm1 → nm1 − 1, nm2 →
nm2 − 1, nm1+1 → nm1+1 + 1, and nm2−1 → nm2−1 + 1. If a
partition μ can be generated by squeezing another partition
λ, we say that λ dominates μ as denoted by λ > μ. The
decomposition of a fermionic Jack polynomial in terms of
Slater determinants contains only the partitions dominated by
a certain “root partition” as follows:

Sα
λ (z1, . . . ,zN ) =

∑
μ�λ

bλμslμ. (8)

Here, λ denotes the root partition and the coefficients bλμ are
determined recursively as

bλμ = 2( 1
α

− 1)

ρF
λ (α) − ρF

μ (α)

∑
θ ;μ<θ�λ

(μi − μj )bλθ (−1)NSW , (9)

where ρF
λ (α) = ∑

i λi[λi + 2i(1 − 1/α)] and the parameter
α = −3 for the Pfaffian state. The sum in equation (9) extends
over all partitions θ = [μ1, . . . ,μi + s, . . . ,μj − s, . . . ,μN ]
that strictly dominate the partition μ = [μ1, . . . ,μN ] and are
squeezed from the root partition λ. NSW is the number of
swappings that are needed to bring the partition θ back
to ordered form. The root configuration λ implements a
“generalized Pauli principle,” which for the Pfaffian state
requires no more than two particles in four consecutive
orbitals. This helps us to determine the root configurations for
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the ground state as well as the edge excitations. For example,
in the occupation number picture, the Pfaffian ground state
with N = 6 particles has root configuration [1100110011],
and there is only one possible edge state at 
M = 1 with
root configuration [11001100101]. The expansion coefficients
of the ground state and edge excitations can be calculated
using Eq. (9) when their root configurations are known. Since
each Slater determinant corresponds to a second quantized
many-body basis state, the Jack polynomial formalism gives
both real-space expressions and second quantized state vectors
in Fock space.

3. Bosonic and fermionic edge mode wave functions

It has been postulated that the edge excitations of the
Laughlin states are described by a chiral bosonic mode [15],
while the edge excitations of the Pfaffian state contain a chiral
bosonic mode and a chiral Majorana fermionic mode [32]. We
will try to identify the edge modes in the numerically obtained
energy spectra and also construct trial wave functions for the
edge excitations to gain further insight into their nature.

Oaknin, Martin-Moreno, Palacios, and Tejedor
(OMPT) [54] introduced the operators

Ŝ
†
k =

∞∑
n=0

√
n!

(n + k)!
c
†
n+kcn (10)

to create edge excitations. Applying Ŝ
†
k on a LLL wave function

increases its total angular momentum by k, which corresponds
to the presence of edge excitations. It can be shown that

Ŝ
†
k |ψ1〉 (ψ1 = ∏

i<j (zi − zj ) is the ν = 1 integer quantum
Hall state) is an eigenstate of the center of mass angular
momentum operator. This makes the OMPT operator a better
choice compared to a simple density operator.

To construct trial wave functions for the single-boson edge
mode of the ν = 1/3 or the 7/3 state at angular momentum

M (measured with respect to the ground state), we multiply
the Ŝ

†

M |ψ1〉 with the Jastrow factor

∏
i<j (zi − zj )2 and

rewrite this state as

�
M
1/3 ({z}) = Ŝ

†

M |ψ1〉
|ψ1〉 �GS

1/3({z}), (11)

where �GS
1/3({z}) = ∏

i<j (zi − zj )3 is the Laughlin 1/3 ground
state. It has been demonstrated that all the edge excitations of
the 1/3 state can be created by populating a single bosonic
mode which corresponds to the lowest branch in the energy
spectra [55]. As we will show below in Sec. V, the results at
ν = 7/3 are similar to those at 1/3.

We can generalize the OMPT method to create the bosonic
edge excitations for the Pfaffian state as

�
M
Pf ({z}) = Ŝ

†

M |ψ1〉
|ψ1〉 �Pf({z}). (12)

In Sec. III, we will compare the trial wave functions with
the single-boson edge mode extracted from the full energy
spectra.

For the Majorana fermionic edge mode of the Pfaffian state,
Milovanović and Read [56] proposed the wave function

�n1,...,nF
(z1, . . . ,zN ) = 1

2(N−F )/2(N − F )/2!

∑
σ∈SN

sgnσ

∏F
k=1 zσ (k)nk

(zσ (F+1) − zσ (F+2)) · · · (zσ (N−1) − zσ (N))

∏
i<j

(zi − zj )2 (13)

at


M =
F∑

k=1

(
nk + 1

2

)
. (14)

This wave function is interpreted as having F fermions
created in angular momentum orbitals 
M = n + 1/2 with
n = 0,1, . . . . The evaluation of this wave function is difficult
because of the antisymmetrization operator; the maximum
number of electrons that we are able to reach is ten. We
also compare the trial wave functions with the pure Majorana
fermionic edge modes that we can identify in the full energy
spectra in Sec. III.

C. Real-space wave function and effective interaction

For each angular momentum value, the model wave
functions that we have introduced in the previous subsection
define a truncated subspace and the Coulomb Hamiltonian can
be diagonalized within this subspace. To be specific, suppose
that we know the real-space wave functions {�
M

α ({z})} at
relative angular momentum 
M , with α labeling the different
states. We can then evaluate the Coulomb matrix elements
V 
M

αβ = 〈�
M
α |V |�
M

β 〉 (a multidimensional integral) using
Metropolis Monte Carlo algorithm [57]. Because the basis

wave functions are in general not orthogonal, the Gram-
Schmidt method should be applied to find the Coulomb matrix
in the orthonormal basis (see, e.g. Ref. [58]), which can be
diagonalized to find the energy eigenvalues. The dimension
of this truncated subspace is significantly smaller than that
of the full Hilbert space. Thus, if the trial wave functions
can be evaluated efficiently in real space, this method can be
used to explore systems larger than those accessible to the
exact diagonalization approach. Of course, the accuracy of the
results depends on the accuracy of the basis.

We note that the trial wave functions presented above are
written in the LLL, but we are interested in the 5/2 and 7/3
FQH states which occur in the 2LL. One may attempt to
convert the LLL wave functions to their 2LL counterparts,
which is not only difficult in practice and but also undesirable
because of the complexity of the 2LL wave functions. One
can alternatively use the LLL wave functions with an effective
interaction to mimic the physics in the 2LL. For the electron-
electron interaction Vee, an effective interaction of the form

Veff(r) = 1

r
+ 1√

r6 + 1
+ 9

4
√

r10 + 10
+

K−1∑
k=0

Ckr
2ke−r2

,

(15)
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TABLE I. Dk Values for d = 0.5–2.0.

d D2 = D4 D3 D5

0.5 0.0 0.5 − 0.375
1.0 0.0 0.5 − 1.5
1.5 0.0 0.5 − 3.375
2.0 0.0 0.5 − 6.0

has been proposed [59], which is determined by demanding
that it has the same Haldane pseudopotentials in the LLL
as the Coulomb interaction does in the 2LL. The electron-
background interaction Veb should also be replaced by an
effective interaction as explained in Appendix. If the setback
distance d �=0, the effective interaction is given by

V
(eff)

eb (r) = −e2ρ0

ε

∫
	N

d2r′
(

1

R
+ D2

1

R2
+ D3

1

R3

+D4
1

R4
+ D5

1

R5

)
, (16)

where R(r,r′,d) =
√

|r − r′|2 + d2 and the values for Dk are
given in Table I. The integration in Eq. (16) has a singularity
at d = 0.0, so we need to use a more complicated form which
in this case is given by

V
(eff)

eb (r) = −e2ρ0

ε

∫
	N

d2r′
(

1

R
+ 1

2
√

R6 + 1

+
∑

CiR
ie−βiR

2

)
, (17)

where R = R(r,r′) = |r − r′|. We find that a con-
venient form is obtained with the choice βi = 6
and C0 = −594.631,C1 = 4137.098,C2 = −7882.778,C3 =
4457.804, C4 = C5 = · · · = 0.

For the ν = 7/3 state, the trial wave functions can be
evaluated easily using Monte Carlo method in real space,
so we can study relatively large systems using the effective
interaction approach. The energies of the OMPT trial wave
functions for the single-boson edge modes can also be found
in a similar way. In contrast, for the Pfaffian state, real-space
wave functions given by the Jack polynomial formalism are
linear superpositions of a large number of Slater determinants
and much more computational time would be needed if one
uses the Monte Carlo method. We therefore use a different
method for the 5/2 state as explained in the next subsection.

D. Second quantized approach

Another method to obtain the energy spectrum is using the
second quantized form of the Hamiltonian. The single-particle
angular momentum eigenstates within a LL are labeled by
integers, and the Fock states in the many-body Hilbert space
can be written as |m1,m2, . . . ,mN 〉. The Hamiltonian can be
expressed in second quantized form as in Eq. (A1) and the
matrix elements in the Fock state basis can be evaluated.
Diagonalizing this Hamiltonian matrix gives the full energy
spectrum, but this becomes impractical for large systems due
to the exponential growth of the Hilbert space dimension.
To get access to larger systems, we restrict ourselves to the

truncated subspace within the Pfaffian model of the 5/2 state.
At each angular momentum, a few basis states describing the
edge excitations of the 5/2 state are generated using the Jack
polynomial formalism. We construct the Coulomb interaction
matrix in this truncated subspace and compute its eigenvalues.
Using this method, we are able to study the edge excitations
at ν = 5/2 for systems with up to N = 16 electrons, while
the largest system size that has been studied [30] using exact
diagonalization is N = 12.

III. EDGE SPECTRA AND RECONSTRUCTION AT ν = 5/2

In this section, we present the energy spectra of different
systems, which reveal the existence of edge reconstruction in
certain parameter regime. We employ two different approx-
imations, called model I and model II, in our calculations.
In model I, we neglect the completely filled LLL and only
consider the half-filled second LL in the presence of a uniform
neutralizing background. In model II, the electrons in the LLL
are also taken into account in a static manner, treated as a part
of the neutralizing background; we thus have two neutralizing
backgrounds in model II: one made of donors at a setback
distance d and the other consisting of the LLL electrons that
are spatially coincident with the electrons in the second LL.
The model II is more realistic. It should be noted, however, that
we have not considered the possibility of edge reconstruction
in the lowest LL; this may be justified from the expectation
that the integer quantum Hall states are more robust, and thus
less prone to edge reconstruction, than the FQH states.

A. Model I for the ν = 5/2 edge

1. Small system study

To test the validity of the Pfaffian model for the edge exci-
tations of the 5/2 state, we first perform exact diagonalization
in the full Hilbert space for small systems and compare the
results with those obtained within the Pfaffian basis. Figure 1
shows the energy spectra of the N = 8 system at different
setback distances d. As one can see from the figure, the Pfaffian
model captures the basic features of the low-energy part of the
exact results. At d = 0.0, no edge reconstruction is found,
while both the full energy spectrum and the Pfaffian model
exhibit edge reconstruction at d = 1.0. A careful inspection
of the results at various different values of d shows that the
Pfaffian model slightly overestimates the tendency toward edge
reconstruction. With this finding in mind, we will use the
Pfaffian model to study the edge excitations of the Pfaffian
state in larger systems in the next section.

2. Pfaffian edge spectra and edge reconstruction

Within the truncated subspace given by the Pfaffian model,
we are able to compute the energy spectra of systems
with N � 16 particles for 
M = 0−5. The energy spectra
corresponding to different system sizes are compared to test
whether the thermodynamic limit has been reached. For this
purpose, we need to use a scaling relation between the
angular momentum 
M and the physical momentum δk (we
choose � = 1 for simplicity), which can be obtained from
the expression of the system size in terms of 
M and δk.
For a system with the Pfaffian ground state, the radius of
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FIG. 1. (Color online) Comparison of the edge spectra obtained
by diagonalization of the model I Coulomb interaction within the
full basis (black pluses) and the Pfaffian basis (blue triangles) for
N = 8 particles. The energies are measured relative to the ground
state energy in both spectra. Similar overall trends are seen for the
lowest spectral branch.

wave function with relative angular momentum 
M is r =√
2M�B = √

2(2(N − 1) − 1 + 
M)�B , while the physical
momentum is related to the size of the system via k∼r/�2

B .
This leads to the following definition for the momentum of the
edge excitation:

δk = 
M√
4N − 6

1

�B

. (18)

We plot the energy spectra versus the physical momentum δk

(simply denoted as k in what follows) in Fig. 2 for systems
with N = 6−16, d = 0−2.0�B , and 
M = 0−5.

It can be seen from Fig. 2 that the lowest energy branches
of different systems collapse to a single curve for N = 8−16,
while the second lowest branches collapse on to a single
curve for N = 10−16, indicating that we have achieved proper
scaling to the thermodynamic limit, and thus ascertaining
the validity of studying the real system using the currently
available system sizes. As the setback distance increase, the
confinement potential gets weaker and edge reconstruction
occurs when d > dc ≈ 0.5�B . This is in good semiquantitative
agreement with the critical setback distance of 0.5−0.8�B

found in Ref. [60].

3. Dispersion of bosonic and fermionic modes

It was proposed that the edge excitations of the Pfaffian
state consist of a chiral bosonic mode plus a chiral Majorana
fermionic mode [32]. To analyze these two modes, we label
each edge excitation by nb(lb) and nf (lf ), which are the
occupation numbers of the bosonic and fermionic modes
at angular momenta lb and lf with energies εb and εf ,
respectively. The quantity nb(lb) can be any non-negative
integers while nf (lf ) is 0 or 1. The angular momentum lb
for the bosonic mode must be an integer, while lf for the
Majorana fermionic mode must be a half-odd integer due to
antiperiodic boundary condition [32]. If we assume that the
edge modes are noninteracting, the angular momentum and
energy of the state labeled by nb(lb) and nf (lf ) are, measured
with respect to the ground state,


M =
∑
lb

nb(lb)lb +
∑
lf

nf (lf )lf ,

(19)

E =

∑
lb

nb(lb)εb(lb) +
∑
lf

nf (lf )εf (lf ),

respectively. Thus, given the dispersions εb(lb) and εf (lf ) for
a single boson and a single fermion, we can construct the full
spectrum containing many bosons and fermions. (Fermions
appear only in even numbers due to their Majorana nature.)

We deduce the single-particle dispersions εb(lb) and εf (lf )
from the spectrum obtained by diagonalizing the Coulomb
interaction in the Pfaffian basis, indicated by grey diamonds in
Fig. 3. The procedure is as follows. For 
M = 1, there is only
one state which we identify as the bosonic state with energy
εb(1). The highest-energy state at 
M = 2 is evidently the
two boson state 
E = 2εb(1). There are two additional states
left at 
M = 2 with energies εb(2) and εf (1/2) + εf (3/2).
We identify the lower energy state as the fermionic mode and
the higher energy one as the bosonic mode. (As a result, the
low lying states at higher 
M will also be identified with
pure fermionic modes.) This identification is justified from the
following two observations. (i) We will see that we are able
to give an excellent account of the full spectrum in terms of
the spectrum predicted by Eq. (19); that would not be the case
if we had assumed the bosonic mode to lie at lower energy.
(ii) We also compute the spectra from the trial wave function
for pure bosonic and fermionic modes, as we will show later;
these are also consistent with the above identification. For

M = 3, there are five states. We assign the lowest-energy
state with the pure fermionic state with energy εf (1/2) +
εf (5/2). We can also easily identify the two states with highest
energies as bosonic states 3εb(1) and εb(1) + εb(2). From
convolution of both bosonic and fermionic modes, we can
find one more state with 
E = εb(1) + εf (1/2) + εf (3/2).
The only edge state left is the single-boson state εb(3). Similar
analysis for larger 
M allows us to determine the dispersion
relation of the bosonic mode uniquely in this way. There
is sometimes uncertainty in determining εf (lf ) values. For
example, as we go to 
M = 4, there are two possible ways of
creating a pair of fermionic excitations with energies given by
εf (1/2) + εf (7/2) and εf (3/2) + εf (5/2), respectively. We
find, however, that one of those choices gives better agreement
with the spectrum at larger 
M . In this manner, we are able to
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FIG. 2. (Color online) Edge spectra of 5/2 state as a function of the physical momentum k for N = 6−16 particles. The energies are
obtained by diagonalizing the full Hamiltonian of model I within the Pfaffian edge basis. Data from N = 8−16 collapse into a single curve for
the lowest spectral branch. Edge reconstruction occurs when d � 0.5�B .

determine the dispersion relation εf (lf ) which best reproduces
the full original spectra containing multiple bosonic and
fermionic excitations. The obtained dispersion relations for
bosonic and fermionic modes are shown in Fig. 4 with solid
shapes. We also reproduce the spectrum with noninteracting
bosons and fermions according to Eq. (19) as shown with
pluses in Fig. 3 for comparison with the original Pfaffian
subspace energy spectrum. The red pluses are pure bosonic

modes; the lowest branches correspond to the single-boson
excitations while the other red pluses to states containing
multiple bosonic excitations. The blue pluses indicate edge
states with pairs of pure fermionic excitations (pairs are
needed to produce the physical integral angular momenta).
The green plus show the mixed states containing both bosonic
and fermionic excitations. The agreement between the pluses
and the diamonds demonstrate that neglecting the interaction
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FIG. 3. (Color online) Bosonic and fermionic modes in the Pfaffian spectra. The grey diamonds indicate the Coulomb spectrum as obtained
by exact diagonalization within the Pfaffian basis. We obtain the energy dispersion of the single boson and single fermion excitations using the
exact spectra, from which the full spectrum can be built with the assumption that these modes are noninteracting; this spectrum is indicated by
pluses.
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FIG. 4. (Color online) Energy dispersion curves for bosonic (red
triangles) and fermionic (blue diamonds) modes for 5/2 system with
N = 10 particles at different values of d . The solid symbols are
extracted from the full energy spectra in the Pfaffian subspace while
the empty blue and red symbols are from the MR and OMPT model
wave functions given in Eqs. (13) and (11), respectively.

between the fundamental excitations (bosons or fermions) is
a valid approximation, at least for small values of 
M (and
within a model that retains only the Pfaffian wave functions).
This also gives us confidence in our assignment of the various
modes in terms of fermionic, bosonic, or mixed modes.
The excellent agreement also demonstrates the quantitative
reliability of the dispersions for the single boson and fermion
modes within the assumed model.

One may ask if a similar assignment may be made using
the full Coulomb spectra shown in Fig. 1. Unfortunately, this
is not possible due to the rather closely spaced nature of
the eigenstates and possible mixing with other states. Our
conclusions below are drawn from calculations within the
Pfaffian basis. One may expect that the full Coulomb spectrum
will also show this behavior for sufficiently large systems,
but we are not able to confirm that. Wan et al. [31] have
also noted that no gap separates edge and bulk states at
this system size (N = 12) for pure Coulomb interaction, and
overlap calculation indicates that the edge modes mix with
bulk excitations, thereby precluding a meaningful evaluation
of the bosonic and fermionic dispersions.

We have also tested the OMPT wave function in Eq. (12)
and the Milovanović-Read (MR) wave function in Eq. (13) for
the single-boson and the pure fermionic pair edge excitations,
respectively. Figure 4 shows that the single-boson energies
calculated directly from the OMPT functions (the empty red

triangles) agree very well with the single boson dispersion
obtained above from the Pfaffian subspace energy spectra (the
solid red triangles). For the fermionic mode, the energies
obtained using the MR wave functions are for pairs of
fermionic excitations (or even multiple fermions when 
M is
large enough). We determine the energies εf (lf ) of the single-
fermionic excitations using similar analysis as we performed
for the Pfaffian subspace spectrum. We then compare the
two sets of εf (lf ) values obtained from MR wave function
and Pfaffian subspace spectrum in Fig. 4, shown with empty
and solid blue triangles respectively. The MR wave functions
produce the same εf (lf )’s as those extracted from the Pfaffian
subspace energy spectra for small angular momenta, but tend
to give higher energy when 
M increases. The value of 
M

where the discrepancy becomes noticeable increases with N .
For example, while the first four blue data points agree well
in Fig. 4 for N = 10, only the first three εf (lf ) match well
when N = 8 (not shown here). The mismatch in small systems
or for large 
M is thus likely due to finite size effects. We
have found that when we construct the full spectrum using the
dispersions obtained from the OMPT and MR wave functions,
the agreement with the actual spectrum is less satisfactory
than that in Fig. 3. Nonetheless, even the OMPT and MR
dispersions indicate that the fermionic edge mode goes soft
before the bosonic one. In what follows, we will use the single
boson and fermion dispersions obtained from the full Pfaffian
spectrum, and the conclusions below are based on the spectrum
produced by the Pfaffian basis.

The results obtained from the Pfaffian subspace energy
spectra shed some new light into the edge reconstruction at
5/2. Figure 4 shows the dispersions of the single boson and the
single fermion excitations for several values of d for N = 10
particles. Edge reconstruction occurs in all the three panels of
Fig. 4. Furthermore, the fermionic mode has the lowest energy,
suggesting that it is the one that drives edge reconstruction.
Indeed, in the full spectrum in Fig. 3, the lowest energy state
is built from pure fermionic excitations. These results present
a scenario of the edge modes and edge reconstruction that
is somewhat different from the one suggested previously [31]
and addressed more thoroughly in Ref. [60], which concluded,
based on the orbital occupation number of the destabilizing
state, that edge reconstruction occurs in the bosonic branch.
Below we discuss how these two scenarios lead to different
predictions for the edge exponents.

We have also calculated the velocity v = dε/dk of each
mode using Eq. (18). We assume that the bosonic dispersion is
linear for 
M < 1 and fit the lf � 5/2 part of the fermionic
dispersion using a straight line with zero intercept. The
velocities of the bosonic and fermionic modes for each d are
shown in Fig. 5 for N = 10. We expect that similar values
would be found in other systems because data collapses for
both the bosonic and fermionic modes have been achieved
in Fig. 2. The vb(d) and vf (d) curves in Fig. 5 are smooth
and exhibit very similar dependencies on d, implying that our
method of calculating the velocity is reasonably valid. For the
edge-reconstructed phase, where multiple edges are supposed
to exist, the velocities calculated here are those of the first
(innermost) edge.

An important shortcoming of the noninteracting model
that we have used so far ought to be noted. When the
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FIG. 5. (Color online) The velocities for the bosonic (red trian-
gles) and fermionic (blue rhombi) modes as functions of d . Here,
N = 10 particles.

dispersion goes negative, it becomes possible to construct,
within this model, states with lower and lower energies at larger
and larger wave vectors. This clearly does not happen in a
realistic system, because the confinement potential introduces
a significant energy cost to the creation of such modes. This
problem can be addressed by introducing interactions between
the effective particles [61]. We have found in our studies
that for wave vectors up to the minimum in the dispersion,
the noninteracting model is reasonably accurate, but it is
less accurate for larger wave vectors, which we interpret
as a signature of such interactions. We cannot exclude the
possibility that for larger systems, the minimum energy state
will contain many bosons and fermions (recall that the fermion
number must be even). We have not explored this issue further.

B. Model II for the 5/2 edge

In all the above calculations, we have neglected the
electrons in the completely filled LLL. We now consider how
they influence the results. For a 5/2 state with N electrons in
the 2LL at filling factor ν0 = 1/2 on a disk, we model the LLL
as a background with 4N static electrons uniformly distributed
on the disk. The total amount of positive charges in the system
is 5N , and they are placed on a neutralizing disk at a setback
distance d from the electron disk. The disks corresponding to
the positive background and the lowest filled LL have the same
radii R = √

2N/ν0�B . The Coulomb interaction in model II
still consists of three terms as in the first line of Eq. (3): Vee

is the same as in model I; Veb is the Coulomb interaction
between the second LL electrons and the two background
charged disks (one positive and one negative); Vbb includes
the Coulomb self-energy of both the positive charged disk and
negative charged disk as well as the interaction between the
two background disks.

We first study an N = 8 system by diagonalizing the
Hamiltonian in model II within the full Hilbert space and
the truncated Pfaffian subspace. As shown in Fig. 6, the
lowest branches in the two energy spectra have similar overall
trends for different values of d. This demonstrates that the
approximation of using the truncated Pfaffian subspace is still
valid for model II. Figure 7 shows the energy spectra within
the Pfaffian subspace of different systems (up to N = 16)
using model II. Data collapse is achieved as in model I. Edge
reconstruction occurs more easily than in model I (see Fig. 2),
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FIG. 6. (Color online) Comparison of the edge spectra obtained
by diagonalizing the model II Coulomb interaction within the entire
Hilbert space (black pluses) and the Pfaffian basis (blue triangles) for
N = 8 particles. The energies are measured relative to the ground
state energy in both spectra. Similar overall trends are also seen for
the lowest spectral branch as in model I.

with the critical setback distance being only 0.1�B . This is to be
expected since the LLL electrons are on the same plane as the
2LL electrons. The repulsion between the 2LL electrons and
the LLL electrons is stronger on average than the attraction
between the 2LL electrons with the positively charged disk
at setback distance d, thereby weakening the confinement
potential.

In realistic physical systems, the edge of the LLL may not
coincide with that of the 2LL, i.e., the sizes of the two electrons
disks could be different and the number of electrons in the LLL
may not be 4N . To understand how the number of electrons
in the LLL affects edge reconstruction, we consider a ν = 5/2
state with N = 12 particles in the 2LL and vary the number of
electrons in the LLL while keeping the density ρ fixed. To be
specific, we assume there are N1 = 4N + δN electrons in the
LLL with a radius R1 = √

2N1/ν1�B and ν1 = 2, while the
positively charged background has a radius R2 = √

2N2/ν2�B

with N2 = 5N + δN and ν2 = 5/2. Figure 8 shows the energy
spectra corresponding to δN = −4, δN = 0, and δN = 4.
These three systems have similar features and they all
have critical edge reconstruction distances dc ∼ 0.1�B . This
suggests that the critical setback distance is not particularly
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FIG. 7. (Color online) Edge spectra of 5/2 state as a function of the physical momentum k for N = 6–16 particles. The energies are
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FIG. 8. (Color online) The edge spectra for 5/2 systems with
N = 12 particles and 4N + δN electrons in LLL. The variation of
the electron number in the LLL does not have appreciable influence
on edge reconstruction.

sensitive to the details of the relative occupations of the various
LLs.

IV. EFFECTIVE APPROACH FOR RECONSTRUCTED
EDGE AND EXPERIMENTAL CONSEQUENCES

In the previous section, we see that edge reconstruction
in the Pfaffian state starts to occur at relatively small values
of d. Therefore the Pfaffian state is very likely to be edge-
reconstructed in its experimental realization. This in general
sense makes the edge physics nonuniversal. However, the
effective theory description of the edge states described below
indicates the presence of other fixed points for this system,
which are described, in general, by different scaling exponents.
The results of this section are summarized in Sec. IV C and a
reader who is not interested in the technical details but only in
the final results can directly go there.

Let us start by first introducing the formalism that will be
used in what follows. For the derivation of the formulas, see
Ref. [62]. Let us consider an edge theory whose bosonic sector
is described by

Sb = 1

4π

∫
dτ dx(Kij ∂τφi ∂xφj + Vij ∂xφi ∂xφj ), (20)

where i,j = 1, . . . ,n; n is the number of edge modes; K is
a symmetric integer matrix; and V is a symmetric positive
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matrix. The filling factor is given by ν = tT · K−1 · t , where
the vector t specifies the charges of quasiparticles.

Let us consider an operator given by O� = ei�iφi . Its charge
is given by q� = tT · K−1 · � and its exchange statistics with
respect to another operator Ok (which can be itself) is given
by θk� = π kT · K−1 · �.

In order to determine the Hall conductivity and the scaling
dimension of operator O�, we need to diagonalize the action
in Eq. (20). First, let us consider a basis transformation φ′ =
M−1

1 · φ, under which

K ′ = MT
1 · K · M1 =

(−In− 0
0 In+

)
, (21)

where In± is an n± × n± identity matrix and n− + n+ = n.
Next, we can diagonalize V ′ = MT

1 · V · M1 by

V ′′ = MT
2 · MT

1 · V · M1 · M2, (22)

where V ′′ is a diagonal matrix and M2 ∈ SO(n−,n+) such that
K ′′ = K ′. We can express the second basis transformation as
M2 = B · R, where R is an orthogonal matrix, i.e., the rotation,
and B is a positive matrix, i.e., the pure boost of Lorentz group.
It turns out that

σH = 2 t ′T · 
 · t ′, (23)

where


 = 1
2 M1 · B2 · MT

1 . (24)

Furthermore, the scaling dimension of an operator O�′ is given
by


�′ = �′T · 
 · �′. (25)

For the Pfaffian state, along with the bosonic sector, there
is also a Majorana fermion sector, which is described by
chiral Ising conformal field theory (CFT). The primary field
operators of the chiral Ising CFT are the identity 1, the
Majorana fermion ψ and the spin operator σ . The Ising CFT
sector is neutral and commutes with the bosonic sector. Its
statistics is

θψψ = ±π, θψσ = ±π/2, (26)

where the positive (negative) sign corresponds to the backward
(forward) moving modes. One can then construct electron
operators by looking for charge 1 fermionic operators. The
quasiparticles are then operators that are local with respect to
all the electron operators, i.e., the phases induced by moving
a quasiparticle around any electron operators are integer
multiples of 2π .

In previous study [63], it was assumed that the edge recon-
struction is driven by an instability in the bosonic sector such
that the edge reconstruction results in two additional bosons
but without any additional Majorana fermions. However, as
we have seen in the previous section, we found that edge
reconstruction in our models is driven by an instability in the
Majorana fermion sector. In the following, we review
the case of boson-driven edge reconstruction and then describe
the edge theory of fermion-driven edge reconstruction.

1

2

1

nk

k

FIG. 9. (Color online) Momentum occupation distribution for
boson-driven edge reconstruction.

A. Boson-driven edge reconstruction

In this case [63], the momentum occupation distribution
(within Hartree-Fock approximation) is assumed to be as
depicted in Fig. 9. There is only one Majorana mode and
the bosonic sector of theory is described by

K =
⎛⎝−1 0 0

0 1 0
0 0 2

⎞⎠, t =
⎛⎝1

1
1

⎞⎠, (27)

or equivalently,

K =
⎛⎝−1 0 0

0 1 0
0 0 2

⎞⎠, t =
⎛⎝0

0
1

⎞⎠. (28)

In the latter basis, in which only one of the quasiparticles is
charged, we find that

M1 =
⎛⎝1 0 0

0 1 0
0 0 1√

2

⎞⎠, (29)

and parametrizing the boost such that

B2 =

⎛⎜⎜⎝
γ β1γ β2γ

β1γ 1 + β2
1 γ 2

γ+1
β1β2γ

2

γ+1

β2γ
β1β2γ

2

γ+1 1 + β2
2 γ 2

γ+1

⎞⎟⎟⎠, (30)

where γ = 1/
√

1 − β2, β2 = β2
1 + β2

2 and |β| � 1, yields

σH = 1

2

(
1 + β2

2

1 − β2 +
√

1 − β2

)
. (31)

We note that when β2 �= 0, the charge mode is mixed with
the backward moving neutral mode and the conductance is
not universal. This is a typical behavior of edge theories with
counter-propagating modes [62,64].

If there is a relevant neutral operator with Bose-Einstein
statistics θ = ±2π , disorder induced tunneling will cause the
theory to flow to a strong coupling fixed point, the so-called
Kane-Fischer-Polchinski (KFP) fixed point [64]. However,
in the present case, there exist no such operators. Instead,
there is a “null” operator, which is a neutral charge operator
with equal left and right conformal dimensions. It is given
by ψ exp[i(2φ1 + φ2 + 2φ3)] with β1 = β2 = 0. The bosonic
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part of the null operator exp[i(2φ1 + φ2 + 2φ3)] is equivalent
to a backward-moving complex fermion, which, in turn, is
equivalent to two backward moving Majorana fermions. The
bosonic part of the null operator couples to forward moving
Majorana, resulting in gapping two of the Majoranas but
leaving a gapless backward-moving Majorana fermion. This
is the so-called Majorana-gapped phase [63].

At this new phase, the Lagrangian density is given by

L = 1

4π
[∂xφc(∂τ + vc∂x)φc + ∂xφn(∂τ + vn∂x)φn

+ iλ(−∂τ + vλ∂x)λ], (32)

with t = (1/
√

2,0)T . In this Majorana-gapped phase, the
charged bosonic mode φc and the neutral bosonic mode φn

are decoupled, and therefore, σH = 5/2 after we include the
contribution from the LLL.

The electron operators for the Majorana gapped phase of
the edge-reconstructed Pfaffian state are given by ei(

√
2φc+φn)

and λei
√

2φc , both with scaling dimension 
 = 3/2. The most
relevant quasiparticles in each sectors of Ising CFT along with
their charge q and scaling dimension 
 are

1 − sector : eiφc/
√

2, q = 1/2, 
 = 1/4,

λ − sector : λeiφc/
√

2, q = 1/2, 
 = 3/4, (33)

σ − sector : σeiφc/(2
√

2)±φn/2, q = 1/4, 
 = 1/4.

B. Majorana-driven edge reconstruction

Here, we have two forward-moving and one backward-
moving Majorana modes. However, the null operators obtained
by combining the forward-moving modes with the backward-
moving mode

Sm = i

∫
dτ dx(m12 ψ1ψ2 + m13 ψ1ψ3), (34)

where ψ1 is backward moving and ψ2,3 are forward moving
modes, are relevant and therefore gap ψ1 and the linear

combination (m12 ψ2 + m13 ψ3)/
√

m2
12 + m2

13, leaving ψ ≡
(m12 ψ2 − m13 ψ3)/

√
m2

12 + m2
13 gapless.

The bosonic sector is given by (see Fig. 10)

K =
⎛⎝−2 0 0

0 2 0
0 0 2

⎞⎠, t =
⎛⎝1

1
1

⎞⎠, (35)

or equivalently,

K =
⎛⎝ 0 −2 0

−2 0 0
0 0 2

⎞⎠, t =
⎛⎝0

0
1

⎞⎠. (36)

As in the previous case, in the second basis, we find that

M1 =

⎛⎜⎜⎝
1
2 − 1

2 0
1
2

1
2 0

0 0 1√
2

⎞⎟⎟⎠, (37)

1

2

nk

k

FIG. 10. (Color online) Momentum occupation distribution for
Majorana-driven edge reconstruction.

and using the boost of Eq. (30), we have

σH = 1

2

(
1 + β2

2

1 − β2 +
√

1 − β2

)
. (38)

Again, β2 = 0 is the charge-unmixed point where the charge
mode is decoupled from the backward moving neutral mode.

In order to obtain universal conductance, we look for
neutral bosonic operators with θ = ±2π . There are four such
operators (eight if we include their Hermitian conjugates) and
they are given by

O1 = exp[i(φn1 + 2φn2)],


1 = (10 + 6β1)(1 +
√

1 − β2) − β2
2

8(1 − β2 +
√

1 − β2)
,

O2 = exp[i(2φn1 + φn2)],


2 = (10 − 6β1)(1 +
√

1 − β2) − β2
2

8(1 − β2 +
√

1 − β2)
,

O3 = exp[i(φn1 − 2φn2)],


3 = (10 + 6β1)(1 +
√

1 − β2) − 9β2
2

8(1 − β2 +
√

1 − β2)
,

O4 = exp[i(2φn1 − φn2)],


4 = (10 − 6β1)(1 +
√

1 − β2) − 9β2
2

8(1 − β2 +
√

1 − β2)
, (39)

where φn,i are the two neutral modes in the t = (0,0,1)T

basis. Using these operators, we can then add disorder induced
tunneling terms into the action

Stunneling =
4∑

i=1

∫
dτ dx (ξi(x)Oi + ξ ∗

i (x)O†
i ), (40)

where ξi’s are complex random variables and 〈ξ (x)ξ ∗(x ′)〉 =
Diδ(x − x ′), with Di the real-valued disorder strengths. The
renormalization group (RG) equations up to linear order in the
disorder strengths are given by

dDi

dl
= (3 − 2
i)Di, (41)

d
i

dl
∝ −(


2
i − 1

)
Di. (42)

165104-12



THEORETICAL INVESTIGATION OF EDGE . . . PHYSICAL REVIEW B 90, 165104 (2014)

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

β1

β2

AB

FIG. 11. (Color online) Parameter regimes in which the tunnel-
ing terms are at least marginal, where the blue, red, green and magenta
lines correspond toOi , i = 1,2,3 and 4, respectively. Here, the dashed
lines indicate where the operators become marginal (
 = 3/2) and
the solid lines indicate where the operators O3,4 become maximally
relevant (
 = 1). The points A and B are the points where the
operators O1,2 are maximally relevant, which also happen to be the
KFP fixed points.

Equation (41) implies that these terms are relevant when 
i <

3/2 while Eq. (42) implies that they are maximally relevant
when 
i = 1. If any of these terms is relevant, the theory will
flow toward the strong disorder regime. Furthermore, if there
is a point where all the relevant tunneling operators become
maximally relevant, that point will be a (strong coupling) fixed
point, i.e., the KFP fixed point.

The parameter regimes in which the operators in Eq. (39)
are relevant are depicted in Fig. 11. The situation is clear
when the interaction corresponds to a point within the shaded
regions. Within the right shaded region, O1,3 are irrelevant
while O2,4 are relevant, which will then drive the system to
a KFP fixed point A with (β1,β2) = (3/5,0). Within the left
one, then O2,4 are irrelevant, while O1,3 will drive the system
to a KFP fixed point B where (β1,β2) = (−3/5,0). We note
that at both of these fixed points, the Hall conductance has the
expected value. For other regimes, we need to include higher
order corrections in disorder strengths and such calculations
are beyond the present work.

Let us now look at the scaling exponents at both fixed
points. First of all, we have three linearly independent electron
operators, given by

Oel1 = ψ exp(i 2φc),

Oel2 = ψ exp[i(φn1 + 2φc)], (43)

Oel3 = ψ exp[i(φn2 + 2φc)],

where φc is the charged mode. At fixed point A, their
scaling dimensions are 3/2, 13/8, and 2, respectively, while
at fixed point B, the scaling dimensions are 3/2, 2 and 13/8,
respectively.

The most relevant quasiparticle contents of fixed points A
and B are given by

1 − sector : eiφc , q = 1/2, 
 = 1/4,

ψ − sector : ψeiφc , q = 1/2, 
 = 3/4, (44)

σ − sector : σeiφc/2, q = 1/4, 
 = 1/8.

In the case of Majorana-driven edge reconstruction, along
with ψ1ψ2 and ψ1ψ3, there are also several of null oper-
ators that contain the bosons. They are given by Onull

1 =
ψ1 exp[i(φn2 − φn1)] for β1 = 0 and Onull

2,3 = ψ2,3 exp[i(φn1 +
φn2)] for β1 = β2 = 0. When β1 = 0 and β2 �= 0, only Onull

1 is
turned on and we have

L = 1

4π
[∂xφc(∂τ + vc∂x)φc + ∂xφn(−∂τ + vn∂x)φn

+ vm∂xφc∂xφn + iψ(∂τ + vψ∂x)ψ

+ iλi(∂τ + vλi
∂x)λi], (45)

with t = (1/
√

2,0)T and i = 1,2. We note that since the
charged mode and the backward-moving neutral mode
are not decoupled, the Hall conductivity is not universal.
There is a neutral bosonic operator exp(i

√
2φn) that will

drive the system to flow to a KFP fixed point where vm = 0.
At this point, however, there are also null operators given
by ψ exp(i

√
2φn) (which is a linear combination of Onull

2

and Onull
3 ) and λi exp(i

√
2φn). These gap φn and a linear

combination of ψ and λi , leaving three gapless Majorana
modes: two forward and one backward moving. This is exactly
what we would have obtained if we had turned on all Onull

i ’s
from the beginning, which is not surprising as vm = 0 if and
only if β2 = 0.

The remaining Majorana modes can then be gapped further,
which in the end, leaves us with only one gapless forward
moving Majorana fermion. Since the neutral bosonic modes
have also been gapped, we recognize that this state is nothing
but the original edge unreconstructed Pfaffian state. In other
words, in the case of fermion-driven edge reconstruction, even
though the null operators do not look trivial, their effect is
only to drive the system back toward the edge unreconstructed
state.

C. Summary of results

Since the Pfafian state consists of bosonic and Majorana
fermionic edge modes, its edge reconstruction can be driven
by an instability either in the bosonic sector, as assumed in
the previous study [63], or by an instability in the Majorana
fermion sector, as we have found in Sec. III.

We have found that the electron tunneling exponent (at
large time scale), as measured from the I -V characteristics
for tunneling of an electron from an external Fermi liquid into
the FQH edge, is the same for both bosonic and fermionic
edge reconstructions. However, the quasiparticle exponent,
relevant for tunneling between two edges of a single FQH
system, can distinguish between the two reconstructions. In
Table II, we list quasiparticle characteristics of Pfaffian state
with different edge reconstructions. There, gq is given by
twice the scaling dimension of the most relevant quasiparticle
operator and e∗ is the charge. For example, the low-temperature
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TABLE II. Tunnelling exponents and charges of quasiparticles
for different candidates of ν = 5/2 FQH state.

gq e∗

Pfaffian without edge reconstruction 1/4 1/4
Bosonic edge reconstruction 1/2 1/4
Fermionic edge reconstruction 1/4 1/4

conductance of quasiparticle tunneling through a quantum
point contact will be given by G(T ) ∼ T 2(qq−1), where T

is the temperature [68]. We note that the (gq,e
∗)-values of

fermion-driven edge reconstructed Pfaffian are identical to that
of the original Pfaffian state, while the (gq,e

∗) value of the
boson-driven edge reconstructed Pfaffian is identical to that of
anti-Pfaffian state.

One can further distinguish these states by probing the
neutral sector, some properties of which are summarized in
Table III. The thermal Hall conductivity does not distinguish
between the states. To do so, one needs to directly detect the
neutral bosonic backwards moving mode akin to what was
done in Ref. [65].

V. EDGE SPECTRA AND RECONSTRUCTION AT ν = 7/3

As discussed in Introduction, the physics of the edge states
at ν = 7/3 is also of relevance to several experiments. In this
section, we study the possibility of edge reconstruction at 7/3
within model I by diagonalizing the 2LL Coulomb interaction
in the truncated subspace given by the CF trial wave functions.

The wave functions used here are not very accurate because
the screening by CF excitons causes a strong renormalization
in the ν = 7/3 state [47]. Nevertheless, we will compute the
energy spectra within the framework of model I using LLL
wave functions together with the effective interaction to mimic
the physics of the 2LL. To test the validity of this approach, we
first compare the results obtained in exact diagonalization and
the CF diagonalization for a N = 6 system as shown in Fig. 12.
Unlike the edge excitations at 1/3 [55], the CF basis states
are not very accurate approximations of the exact eigenstates
at 7/3, but they do capture the qualitative behavior of the
edge reconstruction. (We note that the edge boson in exact
diagonalization has a nonmonotonic dispersion, as indicated
by an additional “minimum” in its dispersion at 
M = 3 in
Fig. 12. The presence of this additional structure does not
affect the edge reconstruction physics, however, and therefore
we have not further pursued its physical origin.) We have also
calculated the dispersion relation using the OMPT method
and found that it captures the lowest energy branch of the CF
energy spectra for 
M < 6, which confirms that these are
the single-boson edge excitations. For larger 
M , the single-
boson excitations no longer have the lowest energy. We find

TABLE III. The neutral sector for different candidates of ν = 5/2
FQH state along with their thermal Hall conductance κH .

boson fermion κH

Pfaffian none forward 3/2
Bos. edge recon. forward backward 3/2
Ferm. edge recon. antiparallel forward 3/2
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FIG. 12. (Color online) The edge excitation spectra obtained by
diagonalizing the full Hamiltonian within the full basis (black pluses)
and CF basis (blue diamonds), and the energy dispersion of OMPT
wave function (red triangles), for ν = 7/3 system with N = 6 at d =
0.5�B,1.0�B . The OMPT dispersion matches very well with the states
that are identified as single-boson edge excitations in CF spectrum.

that the OMPT trial wave functions also successfully reproduce
the single-boson mode of the CF energy spectra at ν = 7/3,
analogously to what was found for the 5/2 state.

To approach thermodynamic limit, we use the following
scaling relation between the physical momentum δk and the
relative angular momentum 
M:

δk = 
M√
6(N − 1)�B

. (46)

We then plot the CF energy spectra versus k in Fig. 13 for
N = 6–18, d = 0–4.0�B , and 
M = 0–8. Data collapse of
different systems can be seen in the branches with lowest
and second lowest energies. The critical distance for edge
reconstruction is around dc = 0.5�B , which is significantly
small compared to the dc ≈ 1.5�B of the 1/3 FQH state found
in previous works [27,55]. Including the lowest filled Landau
level is likely to further reduce the critical value of d for the
same reasons as those explained in the context of 5/2. Our
results indicate that edge reconstruction occurs more easily in
the 2LL than in the LLL.

VI. DISCUSSIONS AND CONCLUSIONS

We have performed an exhaustive study of the possibility
of edge reconstruction of the ν = 5/2 and the ν = 7/3 FQH
states, with a quasirealistic treatment of the background
neutralizing charge located in a layer at a distance d. We find
that edge reconstruction occurs more readily in the second LL
than in the lowest LL, and that the edges of both the 5/2 and
7/3 FQH states are reconstructed in current experiments. This
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FIG. 13. (Color online) Spectrum of edge excitations at 7/3 as a function of the wave vector k for N = 6–18 particles. The energies are
obtained within a restricted CF basis, as explained in the main text. Data collapse can be seen for the lowest spectral branch. Edge reconstruction
occurs when d � 0.5l.

physics should therefore be included in the analyses of the
various experiments that attempt to probe the nature of the
bulk FQH state through the properties of its edges.

It is natural to ask how edge reconstruction affects various
experimentally measurable quantities. The immediate conse-
quence is the loss of topological properties of the FQH edge.
However, in certain idealized limits, the effective bosonic
field theory approach suggests flows to new fixed points
characterized with different exponents. Using the effective
edge theory approach, we calculate the (gq,e

∗)-values of
quasiparticles that will dominate tunneling experiments. We
saw that Majorana-driven edge reconstructed Pfaffian state is
very similar to the original Pfaffian state in this regard, while
boson-driven edge reconstructed state is similar to anti-Pfaffian
state. To further distinguish these states, one needs to probe
the neutral sector by directly probing the counter propagating
modes [65].

We stress that the conclusions presented above are based on
several assumptions, listed in the introduction an elsewhere.
Specifically, we have uncritically assumed the quantitative
validity of the Pfaffian model for the edge excitations at 5/2,
the CF model for the edge excitations at 7/3, and the effective
theory for deducing the transport properties of the edge. Our
results are also based on numerical studies of finite systems.
The validity of our conclusions is contingent upon the validity
of these assumptions.

ACKNOWLEDGMENTS

We thank Kun Yang for useful discussions and for insightful
comments on the manuscript. This work is supported by
DOE under Grant No. DE-SC0005042. High-performance
computing resources and services are provided by Research

165104-15



ZHANG, WU, HUTASOIT, AND JAIN PHYSICAL REVIEW B 90, 165104 (2014)

0 10 20
−1

0

1
x 10

−4

m

δ 
V

m
 (

pe
rc

en
t)

0 10 20
−1

0

1
x 10

−4

m
0 10 20

−1

0

1
x 10

−4

m

d=1.0
N=4 ν=1/3

d=1.0
N=20 ν=1/2

d=1.0
N=40 ν=1/3

FIG. 14. (Color online) The difference (in percent) between n = 0 LL matrix elements 〈m|V (eff)
eb (|r|)|m〉 and n = 1 LL matrix elements

〈1,m|Veb(|r|)|1,m〉 for different systems with d = 1.0. Here, the V
(eff)

eb takes the form of Eq. (16) with D2 = D4 = 0,D3 = 0.5,D5 = −1.5.

Computing and Cyberinfrastructure, a unit of Information
Technology Services at The Pennsylvania State University.

APPENDIX A: EFFECTIVE ELECTRON-BACKGROUND
INTERACTION

A method of identifying effective electron-electron inter-
action to mimic the 2LL Coulomb interaction was proposed
in Ref. [59]. Following the same line of thought, we de-
velop an effective interaction for the electron-background
interaction Veb.

The second quantized Hamiltonian in the LLL is

H = 1

2

∑
r,s,t,u

〈r,s|Vee|t,u〉a†
r a

†
s auat

+
∑
m

〈m|Veb|m〉a†
mam + Vbb. (A1)

All real-space electron-background interactions that lead to the
same value of 〈m|Veb|m〉 are identical for the LLL problem.
For electrons confined to the nth Landau level, we need the
matrix elements 〈n,m|Veb|n,m〉 where the LL eigenstates are
given by

|n,m〉 ≡ (a†)n√
n!

(b†)m√
m!

|0〉, (A2)

We choose m to be 0,1, . . . for any LL; the angular momentum
in this notation is given by m − n = −n, − n + 1, . . . . The
problem of electrons with confinement energy Veb(r) in the
n-th LL for n�1 is mathematically equivalent to the problem
of electrons in the LLL with an effective confinement energy
V

(eff)
eb (r) satisfying

〈n,m|Veb(r)|n,m〉 = 〈m|V (eff)
eb (r)|m〉. (A3)

Using Fourier transform

Veb(r) =
∫

d2k
(2π )2

V (k)eik·r, (A4)

and the identity

〈n,m|eik·r|n,m〉 = Ln

(
k2

2

)
〈m|eik·r|m〉, (A5)

we obtain the effective confinement energy:

V
(eff)

eb (k) = Ln

(
k2

2

)
V (k), (A6)

where Ln denotes the Laguerre polynomial.
The electron-background interaction Veb can only be

evaluated using numerical integration, so it seems difficult
to obtain an analytic form for the effective interaction. To
proceed, we write down the one electron component of Veb(r)
as

Veb(r) = −ρ0e
2

ε

∫
	N

d2r′ 1

R(r,r′,d)
, (A7)

where R(r,r′,d) =
√

|r − r′|2 + d2 and the integral is over
a 2D disk of radius RN = √

2N/ν. For d �= 0, we take the
effective interaction to have the form

V
(eff)

eb (r) = −e2ρ0

ε

∫
	N

d2r′
(

1

R
+ D2

1

R2
+ D3

1

R3

+D4
1

R4
+ D5

1

R5

)
, (A8)

where R = R(r,r′,d) is the same as defined earlier. For the
n = 1 LL, the parameters Dk can be determined by matching
the matrix elements on the left and right hand sides of Eq. (A3)
using the linear regression method. Each matrix element is
in fact a three dimensional integral, which can be calculated
numerically. Interestingly, the values of the coefficients Dk of
different systems (which have different radius RN = √

2N/ν)
turn out to be approximately independent of N and ν for a
given d. The validity of this effective interaction is seen by
noticing that the difference between the two matrix elements
in Eq. (A3) is less than 0.0001%, as seen in Fig. 14 for three
different systems. Table I shows the values for Dk for some
other values of d.

For d = 0, we use the interaction given in Eq. (17). The
difference between 〈m|V (eff)

eb (r)|m〉 and 〈1,m|Veb(r)|1,m〉 for
this interaction is on the order of 0.001%.
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