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Quasiparticle renormalization in ABC graphene trilayers
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We investigate the effect of electron-electron interactions in ABC-stacked graphene trilayers. In the gapless
regime, we show that the self-energy corrections lead to the renormalization of the dynamical exponent z =
3 + α1/N , with α1 ≈ 0.52 and N is the number of fermionic species. Although the quasiparticle residue is
suppressed near the neutrality point, the lifetime has a sublinear scaling with the energy and the quasiparticles
are well defined even at zero energy. We calculate the renormalization of a variety of physical observables, which
can be directly measured in experiments.

DOI: 10.1103/PhysRevB.90.161411 PACS number(s): 72.80.Vp, 71.10.Pm, 73.20.At

Introduction. In graphene single layers, the honeycomb
arrangement of the carbon atoms leads to a linear electronic
dispersion and to quasiparticles that behave as massless Dirac
fermions, akin to massless neutrinos in quantum electro-
dynamics (QED) [1,2]. In graphene multilayers, the elec-
tronic spectrum varies depending on the stacking sequence.
In the single particle picture, rhombohedral ABC-stacked
trilayer graphene reveals a gapless band structure of chiral
quasiparticles with Berry phase 3π and a cubic low-energy
excitation spectrum [3–5]. Because of the scaling of the kinetic
energy, Coulomb interactions are relevant operators in the
renormalization group (RG) sense, and can strongly renor-
malize different physical quantities. Different spontaneous
broken symmetry ground states have been already proposed for
trilayer graphene [6–8]. Very recently, transport experiments
revealed a robust many-body gap of ∼40 meV at temperatures
below Tc ∼ 34 K [9].

In this Rapid Communication we study the effect of
Coulomb interactions and polarization effects on the behavior
of the quasiparticles at small but finite temperatures, when
the many-body gap is zero. We investigate the analytical
structure of the polarization bubble and the leading self-energy
corrections due to dynamically screened Coulomb interactions.
In the gapless regime, we show that the dynamical critical
exponent is renormalized to

z = 3 + α1/N + O(N−2),

where α1 ≈ 0.52 and N = 4 is the number of fermionic
flavors. Although the quasiparticle residue is suppressed by
interactions, the scattering rate has a sublinear scaling with en-
ergy and the quasiparticles remain well defined. We predict the
renormalization of several physical observables in the metallic
phase, such as the electronic compressibility, the specific heat,
the density of states (DOS). and the spectral function, which
can be measured with angle resolved photoemission (ARPES)
experiments.

Low-energy Hamiltonian. We start with a simplified two-
band model where the high-energy bands are separated
in energy by interlayer hopping processes, which set the
ultraviolet cutoff for the excitations in the low-energy bands,
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t⊥ ∼ 0.4 eV. We will assume a temperature regime above
the ordering temperature T � Tc ∼ 4 meV, where the band
structure is gapless. The infrared cutoff of the model is the
trigonal warping energy ∼10 meV, below which the bands
disperse quadratically [4].

The low-energy physics of the noninteracting ABC trilayer
in the gapless regime is described by the 2 × 2 Hamilto-
nian H0 = ∑

p �
†
pĤ0(p)�p, where �k = (a,k,b̄,k) is a two-

component spinor defined in terms of one annihilation operator
in sublattice A of the top layer (ap) and another in sublattice
B for the bottom layer (b̄p). The total degeneracy is N = 4,
including spin and valley degrees of freedom. The Hamiltonian
density operator is [3,4]

Ĥ0 = (�v)3

t2
⊥

(
0 (π )3

(π †)3 0

)
, (1)

where �v ≈ 6 eV Å is the Fermi velocity, and π = px − ipy is
defined by the x and y components of the in-plane momentum
of the quasiparticles measured away from the neutrality point.
In a more compact notation, Ĥ0(k) = γ |k|3ĥ0(k), with

ĥ0(k) = cos(3θk)σ 1 + sin(3θk)σ 2, (2)

where σ i (i = 1,2) are x,y Pauli spin matrices, and tan θk =
ky/kx . The constant γ ≡ (�v)3/t2

⊥ is proportional to the
velocity of the quasiparticles v0 = ∂kEk, which have the
energy spectrum ±Ek = ±γ |k|3.

In ABC trilayers, Coulomb interactions are relevant in the
RG flow at the tree level, and hence standard perturbation
theory is not possible. We organize the expansion of the
self-energy corrections in powers of the dynamically screened
Coulomb interaction, which can be rigorously justified in the
large N limit. At long wavelengths, k � 1/d, where d ∼
2.4 Å is the interlayer distance, the bare Coulomb interaction is

HI = 1

2

∑
q

V (q)n̂(q)n̂(−q), (3)

with n̂(q) a density operator and V (q) ≈ 2πe2/q, as in a
two-dimensional (2D) system. In the long wavelength regime
where this approximation is valid, the DOS scales as ρ(q) =
(6πγ )−1/q and the screened Coulomb interaction is Ṽ (q,ω) =
V (q)/[1 − V (q)�(q,ω)], where �(q,ω) is the dynamical
polarization function. In trilayers, the large N approximation
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becomes asymptotically exact at small momentum, where the
DOS diverges and screening becomes strong.

Polarization bubble. In order to address the screening
effects, we consider the bare polarization function, which is
defined as �(0)(q,ω) = 1

β
tr

∑
iν

∑
p Ĝ0(p,iν)Ĝ0(p + q,iω +

iν), where

Ĝ0(q,iω) = 1

2

∑
s=±

1 + sĥ0(q)

iω − sγ q3
(4)

is the fermionic Green’s function, described by a 2 × 2 matrix.
After performing the sums over the Matsubara frequencies, the
polarization function is given by

�(0)(q,iω) = −N

2

∫
d2p

(2π )2

∑
s=±

1 − cos(3θpq)

Ep+q + Ep − siω
, (5)

where θpq = θp+q − θp is the angle between vectors p + q
and p. By sending the ultraviolet cutoff to infinity, a simple
dimensional analysis reveals the functional form of the
polarization function to be γ q�(0)(q,iω) = −Nf (iω/(γ q3)).
After some algebra, the scaling function f (z) can be written
in the form

f (iz) = 1

2

∫ 2π

0
dθ

∫ ∞

0

dx x

(2π )2

∑
s=±

s

iz + s[x3 + h3(x,θ )]

×
[

1 − 4

(
1 + x cos θ

h(x,θ )

)3

+ 3

(
1 + x cos θ

h(x,θ )

)]
, (6)

where z = ω/(γ q3) and h(x,θ ) ≡ √
1 + x2 + 2x cos θ . f (z)

is a well-defined function in imaginary frequency but has
branch cuts related to the edge of the particle-hole contin-
uum on the real axis. Due to the cubic dispersion, it is
difficult to come up with a closed form solution for the
polarization function. However, the analytical structure of
f (z) near the particle-hole threshold z = 1/4 can be extracted
in the collinear scattering approximation, which dominates
the processes near that region [10]. We consider the singular
contribution of the integrand around the momenta p + q ≈
−p. Within this window it is safe to assume 1 − cos(3θpq) ≈ 2.
After expanding cos θ around θ = π to the second order, we
arrive at the following integral representation for f (z),

f (z) ∼=
∫

xdx

(2π )2

∫
dθ

x3 + (1 − x)3 + 3
2x(1 − x)θ2 − z

. (7)

Considering the rapid fall of the integrand with respect to θ

around π , one can conveniently extend the upper limit of the
angular integral to infinity, θ ∈ [0,∞[. After performing the
integrals, we arrive at the most dominant part of f (z) near
z ∼ 1/4,

f (z) = − 1

6
√

2π
ln(1 − 4|z|) + regular terms, (8)

which describes a logarithmic divergence near the edge of
the particle-hole continuum. Exploring the two asymptotic
regimes, in the z → 0 regime, f (0) = c0 ≈ 0.12 is a con-
stant [11,12] and in the z � 1 limit, f (z) → −ic∞/z is purely
imaginary, with c∞ = 3/16.

In Fig. 1, we show the behavior of the real and imaginary
parts of f (z) calculated numerically from Eq. (6). The scaling
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FIG. 1. (Color online) Left: Polarization bubble in one loop
calculated numerically from Eq. (6). The real part (black curve) has
a logarithmic singularity at the edge of the particle-hole continuum,
at ω = γ q3/4, shown in detail in the inset. Red curve: Imaginary
part. Right panel: Polarization in imaginary frequencies, which is a
purely real function. For ω/γ q3 � 1, �(0)(q,iω) → −3Nq2/(16ω)
(see text).

function has only one singularity near z ∼ 1/4. For z < 1/4,
f (z) is purely real and diverges logarithmically at z = 1/4,
in agreement with the analytical expression (8), as shown in
the inset of Fig. 1. For z > 1/4, f (z) also has an imaginary
part, which decays with 1/z. The right panel of Fig. 1 shows
f (iz) in imaginary frequency, which is a real and well-behaved
monotonic function.

In the optical regime, for z � 1, where �(0)(q,ω) →
iNc∞q2/ω, the optical conductivity can be calculated directly
from the charge polarization,

σ (ω) = e2

�
lim
q→0

iω

q2

�(0)(q,ω)

1 − V (q)�(0)(q,ω)
= 3

4

e2

�
, (9)

which is proportional to the Berry phase 3π . In the general
case, σ (ω) = νe2/(2h), with ν = π for graphene single layer
and ν = 2π for bilayers.

Self-energy. The leading self-energy correction due to the
screened Coulomb interaction is diagrammatically shown in
Fig. 2. In imaginary time, the self-energy is given by

�̂(1)(q,iω) = − 1

β

∑
ν

∫
d2p

(2π )2
Ṽ (p,iν)Ĝ(0)(q − p,iω − iν).

(10)
Through power counting, the leading divergences appear at
long wavelengths, where the large N limit is a good approxima-
tion. At large N , the dynamically screened potential is approx-
imated by Ṽ (q,iω) ≈ γ q/[Nf (iω/γ q3)] + O(N−2) [13–15].
Since f (iz) is a well-behaved function, with no singularities
or branch cuts, the self-energy in one loop can be calculated
directly in the zero temperature limit. The leading contribution

FIG. 2. One-loop correction to the self-energy with the dressed
Coulomb interaction.
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is logarithmically divergent,

�(1)(q,iω) = 1

2π2N
[αdiω + αoγ q3ĥ(q)]ln

(
�

q

)
, (11)

where t⊥ = γ�3 defines the ultraviolet cutoff in momentum,
namely, � = t⊥/(�v). The coefficients

αo =
∫ ∞

0
dz

1

f (iz)

z2(10 − 16z2 + z4)

(1 + z2)4
(12)

and

αd =
∫ ∞

0
dz

1

f (iz)

1 − z2

(1 + z2)2
(13)

can be found though numerical integration using the exact
f (iz) from Eq. (6). Although αo and αd both diverge
logarithmically with the upper limit of integration at large
z, we will postpone their regularization for the moment, since
these divergences cancel exactly in the renormalization of γ

and hence have no consequence in the renormalization of the
spectrum.

The self-energy can be separated into two terms, �̂(q,iω) =
iω�dσ0 + �0q

3ĥ0(q), where �d is the diagonal term, and �o

describes the off-diagonal matrix elements. The diagonal part
of the self-energy has a frequency dependence and defines the
quasiparticle residue renormalization,

Z−1
ψ = 1 − ∂�̂/∂(iω) = 1 − �d. (14)

The renormalized Green’s function is Ĝ(q,iω) = Zψ [iω −
γ ĥ0(q)Zψ (1 + �o)]−1. In one loop, the renormalized energy
spectrum is

γ (q)

γ
= 1 + �o

1 − �d

≈ 1 − α1

N
ln

(
�

q

)
+ O(1/N2), (15)

where

α1 = α0 + αd

2π2
=

∫ ∞

0

dz

2π2

1

f (iz)

17z4 − 11z2 − 1

(1 + z2)4
≈ 0.52

(16)
is a finite well-defined quantity.

The logarithmic renormalization of the quasiparticle veloc-
ity in one loop dictates the RG equation of γ ,

βγ ≡ dγ

dl
= −γ

α1

N
, (17)

where l = ln(�/�′), with �′ < � the renormalized cutoff,
whose solution is

γ (q) = γ [(�v/t⊥)q]α1/N . (18)

The energy spectrum acquires an anomalous dimension η =
α1/N , which leads to the renormalization of the dynamical
exponent, ω ∝ qz, with z = 3 + α1/N + O(N−2). This result
can be related with the graphene bilayer case, where η =
0.078/N [16] and with the large N limit of the single layer
case, where η = −4/(π2N ) [13,14].

This analysis can be explicitly verified by checking the two-
loop correction in the self-energy. The RG equation describes a
resummation of leading logs to all orders in 1/N . The N−2 log2

terms cancel exactly in the vertex correction diagram at two
loops, and hence vertex corrections do not renormalize in the
RG flow [16]. The leading logarithmic terms appear in the

remaining diagrams of the same order, and lead to a second-
order correction to Eq. (15), γ (2)(q)/q = 1

2α2
1/N

2 ln2(�/q),
in agreement with the result of the RG equation up to 1/N2

order.
Quasiparticle residue. To calculate the quasiparticle residue

renormalization Zψ through Eq. (14), one needs to regu-
larize integral (13). That can be done by introducing an
upper cutoff zc which accounts for the condition where
the large N limit breaks down, namely, −V (p)�(0)(p,iν) =
2πNe2�2/(�vp2)f (izc) ∼ 1. At large z, where f (iz) →
3/(16z), the leading contribution is αd ∼ −16 ln(�/p). Re-
placing ln(�/q) → ∫ �

q
dp/p in Eq. (11) and carrying out the

momentum integration, the quasiparticle residue Zψ is given
by

Z−1
ψ → 1 + 4

π2N
ln2(�/q) + O(1/N2) (19)

in one loop, and is suppressed logarithmically in the infrared.
In the RG spirit, we now reestablish the bare value of

the quasiparticle residue Z0 in the bare Green’s function
Ĝ0 ∝ Z0 [17], and set Z0 → 1 at the end. Since δĜ =
Ĝ0�̂Ĝ0 ∝ δZψ in lowest order in the Dyson equation, then
δZψ = Z2

0�̂d ∝ Z0 in large N . Equation (19) then becomes
δZψ = −4Z0/(π2N )δ ln2(�/q), which corresponds to the RG
equation

βψ = dZψ

dl
= − 8

π2N
lZψ, (20)

with l = ln(�/�′), whose solution is

Zψ (q) = exp[−4/(π2N ) ln2(�/q)], (21)

in agreement with Eq. (19) up to 1/N order.
Quasiparticle lifetime. In real frequency, the polarization

function has a logarithmic branch cut. To calculate the
quasiparticle scattering rate τ = Zψ Im �̂, we use the method
in Refs. [18,19] to separate the self-energy into the line part and
the residue part, �̂ = �̂line + �̂res. The line part is obtained
by performing the Wick rotation iω → ω + i0+ in the self-
energy (10), and is purely real. The residue part follows from
the residue calculated around the pole of the Green’s function,

�(1)
res (q,ω) = −1

2

∑
s=±

∫
d2p

(2π )2
Ṽ (|q|,ω)[1 + sĥ(q − p)]

×[θ (ω − sγ |q − p|3) − θ (−sγ |q − p|3)], (22)

with θ a step function. The scattering rate is given by
τ (q,ω) = Zψ Im �res(q,ω). In the on-shell region, near
ω ∼ γ q3, τ (ω) = ωZψg(ω/t⊥), where

g(y) = 1

2N
Im

∫
|x|<1

d2x

(2π )2

|q̂ − x|
ᾱy2/3|q̂ − x|2 + f

(
1−x3

|q̂−x3|
) (23)

is a scaling function in one loop, with y = ω/t⊥,
ᾱ = �v/(2πNe2) is a dimensionless constant, and q̂ = q/q.
The function g(y) has a very slow variation, as shown in
Fig. 3(a), and, as a consequence, τ (ω) ∼ ωZψ [(ω/γ )1/3] has
a sublinear scaling with energy within logarithmic accuracy.
In the large N limit (ᾱ → 0), which is valid at low energy,
g(y) ≈ 0.043 is a constant. Since the ratio τ (ω)/ω � 1, the
quasiparticles are well defined even in the ω → 0 limit.
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FIG. 3. (Color online) (a) On-shell scattering rate τ (ω) vs energy
in units of t⊥ ∼ 0.4 eV. (b) Density plot of the spectral function as a
function of energy (ω/t⊥) and momentum (q/�). Solid black line:
Bare energy spectrum. White line: Renormalized one. Light regions
indicate a higher intensity.

The spectral function is given by A(q,ω) =
−2 tr Im GR(q,ω), where

ĜR(q,ω) = 1

2

∑
s=±

Zψ (q)[1 + sĥ0(q)]

ω − sγ (q)q3 − iτ (ω) + i0+ (24)

is the retarded part of the renormalized Green’s function. The
spectral function is shown in Fig. 3(b). The solid black line
describes the bare energy spectrum, while the light region
describes the renormalized one, which corresponds to the
pole of the renormalized Green’s function. There is a clear
deviation of the two curves, which could be observed with
ARPES experiments.

Other physical observables. The renormalization of the
quasiparticle velocity encoded in the RG flow of γ leads
to the renormalization of many physical observables. For
instance, the specific heat for noninteracting particles with
cubic dispersion in 2D scales with C ∼ (T/γ )2/3, where T is
the temperature. From Eq. (18), the scaling of γ with energy is
γ ∼ ωα1/(3N). At ω ∼ T , the temperature scaling of the specific
heat is renormalized to

C ∼ T 2(1−α1/(3N)]/3 ≈ T 2/3−0.1/N , (25)

neglecting slower logarithmic corrections due to the scaling of
Zψ , with T � T0, where T0 is defined by the infrared energy
cutoff of 10 meV due to trigonal warping effects [4]. In the
same way, the renormalized DOS is ρ(q) = [6πγ (q)]−1/q ∼
q−(1+α1/N), which can be measured directly on surfaces with
scanning tunneling spectroscopy experiments [20,21].

In 2D systems, the electronic compressibility can be char-
acterized with single electron transistor measurements [22].
By dimensional analysis, the free electronic compressibility
scales with temperature as κ ∼ γ −2/3T −1/3 [23]. In the same
spirit, interactions renormalize the scaling of the inverse
compressibility,

κ−1 ∼ T [1+2α1/(3N)]/3 ≈ T 1/3+0.1/N , (26)

which strongly deviates from the noninteracting result.
In summary, we conducted a comprehensive analysis in

the metallic phase of ABC graphene trilayers. We derived the
effect of electron-electron interactions in the renormalization
of a variety of physical observables.
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