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Percolation transitions in bilayer graphene encapsulated by hexagonal boron nitride
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We studied the plateau-plateau transitions that characterize the electrical transport in the quantum Hall regime
in a high mobility bilayer graphene flake encapsulated by hexagonal boron nitride at magnetic fields up to 9 T and
temperatures above 300 mK. We measured independently the exponent κ of the temperature-induced transition
broadening, the critical exponent γ of the localization length, and the exponent p ruling the temperature scaling of
the coherence length, finding consistency with the relation γ = p/2κ . The observed value of κ = 0.30(0.28,0.32)
deviates from that of the quantum Hall critical point. The obtained γ = 1.25(0.96,1.54) questions the validity of
a pure Anderson transition, and reveals percolation as the underlying driving mechanism.
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Quantum phase transitions appear frequently in physics,
in superconductors, optical lattices, two-dimensional (2D)
materials, etc., presenting significant implications across these
physics fields. One main point that is still an open question
concerns electron transport in two dimensions in the presence
of disorder, and experimental efforts are underway to take a
crucial step toward understanding the interplay of disorder
and the interaction between the electrons. It is known that the
plateaus of the Hall resistivity (ρxy) in the quantum Hall regime
correspond to localized states, whereas between two adjoining
plateaus there is an extended state at a critical magnetic field
(Bc) [1]. The plateau-plateau transition (PPT) (between two
contiguous plateaus) is a localization-delocalization transition
characterized by the exponent γ controlling the divergence
of the localization length, ξ ∝ |B − Bc|−γ [2,3]. This power
law results in a temperature-induced broadening of the PPT,
i.e., (dρxy/dB)max ∝ T −κ [2,4], where κ = p/2γ and p deter-
mines the scaling of the inelastic scattering (coherence) length
Lφ ∝ T −p/2. The first estimates of γ , made in the absence of an
electron-electron (e-e) interaction, led to γ ∼ 2.4 (see Ref. [5]
and references therein). Recently, more accurate calculations
yielded γ ≈ 2.6 for the noninteracting critical point [5–7]. The
experimentally measured values for the PPT exponents in a
two-dimensional electron gas (2DEG) read κ = 0.42, p = 2,
and γ = 2.38 [8,9]. It is now accepted that noninteracting
models cannot describe the observed integer quantum Hall
critical point (IQHCP) [10]. Besides the role of the e-e
interaction, the effect of the nature of disorder on the PPT has
also been partially unraveled [11]. The IQHCP is realized in
the presence of short-range disorder, when Anderson physics
dominates the transition. For long-range disorder, however, the
PPT may be partially governed by percolation, characterized
by a different set of exponents. While deviations in the value
of κ , due to long-range disorder, have been observed [11], the
experimental observation of a PPT fully driven by an ideal
percolation mechanism still needs to be reported.

Recently, a few works have focused on the measurement
of PPT critical exponents in graphene [12–14]. Nonetheless,

*Present address: NEST, Scuola Normale Superiore and Istituto
Nanoscienze–CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy.

PPTs have not been observed in bilayer graphene, mainly
due to its low mobility when placed on a standard SiO2

substrate. However, high mobilities can be achieved by placing
the graphene flake on top of hexagonal boron nitride (h-
BN) [15–19]. Furthermore, the h-BN layer gives rise to
an ultraflat configuration of the graphene sheet, exhibiting
smooth energetic disorder and little charge inhomogeneity,
as revealed by tunneling microscopy [20,21]. Graphene on
h-BN thus appears as an ideal system to investigate the
influence of long-range disorder on the PPT. In this Rapid
Communication we measured the critical exponents κ and
γ in bilayer graphene (encapsulated by h-BN) for a number
of PPTs, both for negatively and positively charged carriers.
We determined the exponents independently, from the scaling
of the Hall conductivity, and from the analysis of the
longitudinal conductivity in the regime of variable range
hopping, respectively. Additionally, we estimated Lφ and p

from the low-field weak-localization (WL) correction to the
conductivity. The observed value of κ deviates from that of
the IQHCP and the obtained γ is fully compatible with a
classical percolation transition, and consistent with the relation
γ = p/2κ .

These results can lead to the conception of experiments
aimed at exploring the quantum phase transitions in two
dimensions in different artificial potential landscapes, such
as the moiré periodic potential that can be created and
controlled in slightly twisted graphene/h-BN stacks [22].
This could also open the avenue to further research for the
investigation of the relevance of the quantum phase transitions
and percolation in other phenomena of condensed matter
physics, for instance, the quantum percolation in cuprate
high-temperature superconductors [23].

The sample studied is a van der Waals heterostructure
consisting in a stacking of h-BN, bilayer graphene, and
h-BN, produced using the dry transfer technique described in
Ref. [24]. In order to have the highest experimental accuracy,
the sample under study was etched in the geometry of a Hall
bar with a width over length ratio (W/L) equal to 1/6. In order
to avoid large density gradients along the sample [25,26], the
size of the sample was purposely small (length ≈6 μm).

The electrical contacts were patterned by evaporation of
titanium and gold and a back gate contact was also connected
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in order to to tune the carrier density. To avoid breaking
the dielectric (which would result in current leakage) the
back gate voltage (Vg) was not increased above 35 V. The
sample was cooled down in a cryo-free refrigerator and
the measurements were taken using the standard dc lock-in
technique at a frequency of ∼15 Hz with an excitation current
of 10 nA obtained by applying a voltage drop of 5 V on
a 500 M� resistor. First, we characterized the sample at
290 mK by measuring the resistance as a function of Vg in
the absence of magnetic field [27]. In Fig. 1 we present the
corresponding data, which show the presence of the charge
neutrality point (CNP) at 0.4 V. We obtained the carrier density
at different Vg from the dependence of the Hall resistance on
the magnetic field (B): The electron (or hole) density is given
by n = 1/se at low magnetic fields, where e > 0 denotes the
elementary charge and s = dρxy/dB. The Hall mobility of this
sample varied from μ � 3.2 × 104 cm2 V−1 s−1 at a carrier
density n � 2 × 1011 cm−2 to μ � 4.3 × 104 cm2 V−1 s−1 for
n � 1012 cm−2. These values of mobility are among the highest
reported values for supported bilayer graphene.

In the presence of a magnetic field, we measured simulta-
neously the two Hall and two longitudinal resistances, finding
no substantial differences in the measurements. The fact that
the two measured Hall resistances have the same quantitative
behavior proves that the density on both extremes of the Hall
bar is nearly the same. Thus the density gradients along the
sample are negligible [26], revealing the high quality of the
sample.

Figure 2 shows the isotherms of the longitudinal resistivity
(ρxx) and of the Hall resistivity (ρxy) near the quantum phase
transitions as a function of B at different carrier densities. In
Figs. 2(a)– 2(f) we observe the typical features of the IQHE
in bilayer graphene, with a Hall resistance which is quantized
following the relation ρxy = h/νe2 with ν = ±4,±8 ± 12, . . .

due to the valley and spin degeneracy. In the transient between
the quantum Hall plateaus all the isotherms of ρxy acquire
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FIG. 1. (Color online) Longitudinal resistivity ρxx vs back gate
voltage Vg at T = 5 K in the absence of magnetic field. The CNP is
found to be at 0.4 V. The right axis (red) shows ρ−1 as a function of
the carrier density n (upper abscissa axis) at T ∼ 0.3 K. Dashed lines
highlight the linear dependence of ρ−1 on n away from the CNP.

the same value at a critical field Bc. Accordingly, between
the extremes of the Shubnikov–de Haas oscillations there is a
magnetic field at which the ρxx isotherms cross. This behavior
is observed at temperatures ranging from 0.3 to 50 K, and is
characteristic of a PPT [9].

In Fig. 2(g) we plot the values of
(
dρxy/dB

)
max versus

temperature in a log-log scale for the observed PPTs at
different densities. The data show a saturation temperature
of ∼5 K and become independent of T below this value. This
effect is due to the finite size of the sample. Since the coherence
length increases with decreasing temperature (Lφ ∝ T −p/2),
we expect that at low enough T the value of Lφ becomes
comparable to the Hall bar width (W = 1 μm), which is the
smallest dimension of the sample. At this point the dominant
length scale will be W itself rather than Lφ , which gives rise
to the saturation observed. (In this sense one can see Lφ as a
T -dependent effective size of the sample [8].) The saturation
of the coherence length is confirmed by the values of Lφ(T )
that we obtained from weak-localization (WL) measurements,
which are shown in the inset of Fig. 3. The latter inset shows the
magnetoconductivity measured for small fields (|B| � 12 mT)
at different temperatures, which evidence pronounced dips due
to WL. From the best fit to the magnetoconductivity—using
the theoretical approach described in Ref. [28]— we determine
Lφ at each temperature [29], as shown in Fig. 3. Below 5 K, the
coherence length approaches 1 μm and the power law behavior
is clearly lost.

Having understood the observed saturation phenomenon,
we proceed to characterize the critical exponent κ of the PPTs,
using only the data at T � 5 K. From the linear fit of the values
of (dρxy/dB)max shown in Fig. 2(g), we obtain κ for several
transitions at different densities, as summarized in Table I.
As we can see, 0.27 � κ � 0.32 independently of either the
density or the Landau level indices of the transition. From the
sample mean of the set we estimate the critical exponent to be

κ = 0.30(0.28,0.32), (1)

where the values in parentheses denote the 95% confidence
interval [30]. This κ value is, within the estimated confidence
interval, distinctly different from that typically associated with
an Anderson-type transition, namely, κ � 0.42, as confirmed
recently in monolayer graphene [14]. In order to gain a deeper
understanding of the transition, we calculated the resulting
value of the universal exponent γ from the relation γ = p/2κ .
The value of p is obtained independently by fitting the
dependence of Lφ on temperature. The best fit, shown in Fig. 3
(black line), yields

p = 0.90 ± 0.02. (2)

It is worth mentioning that previous works carried out on
monolayer [31,32] and bilayer [28] graphene have found a
similar value of p ≈ 1, while in Ref. [33] in epitaxial graphene
it was shown to be sample dependent with values different
from 1 and 2. We can also note that the obtained p value
implies a dynamic critical exponent z = 2/p = 2.2 ± 0.05,
in contrast to z = 1 observed in 2DEG [8]. The measured
values of the exponents κ [Eq. (1)] and p [Eq. (2)] lead to
γ = 1.49(1.38,1.59).

This latter result suggests a connection with the model of
Trugman [34], which considers a PPT governed by a perco-
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FIG. 2. (Color online) (a)–(f) show the isotherms at a few selected temperatures of the Hall resistivity ρxy as a function of the magnetic
field at different densities. (a)–(c) show the QHE in the electronlike regime at densities n = 14.6 × 1011 cm−2, n = 10.2 × 1011 cm−2, and n =
6.07 × 1011 cm−2, respectively. (d)–(f) show the QHE in the holelike regime at densities n = (−)4.74 × 1011 cm−2, n = (−)6.84 × 1011 cm−2,
and n = (−)9.03 × 1011 cm−2, respectively. The insets show the isotherms of the longitudinal resistivity ρxx as functions of the magnetic field.
For clarity, gray horizontal lines indicating the values h/je2 are included. (g) shows (dρxy/dB)max as a function of the temperature in log-log
scale for the PPTs displayed in (a)–(f). The estimated experimental error bars are smaller than the size of the symbols. Dashed lines correspond
to linear fits of the data according to (dρxy/dB)max ∝ T −κ .

lation regime, for which the critical exponent is analytically
known to be γ = 4/3 [35]. Another observation compatible
with the existence of a percolation regime derives from the
analysis of the dependence of the zero-field longitudinal
conductivity on the carrier density. Following Morozov and
co-workers [36], the longitudinal conductivity in graphene can
empirically be expressed as 1/ρ(Vg) = 1/ (ρL + ρS), where
ρS is a density-independent resistivity caused mainly by short-
range scattering, whereas ρ−1

L ∝ n and is due to long-range

FIG. 3. (Color online) Coherence length Lφ as a function of
temperature obtained by WL measurements at n = 2.7 × 1011 cm−2.
The best fit of the data to Lφ ∝ T −p/2 (black line) yields p =
0.90 ± 0.02, considering data for T � 3 K. The inset shows the WL
peak as a function of the magnetic field (at a set of selected different
temperatures), from whose fits (red solid lines) the coherence length
at each temperature is obtained [28].

scattering. As we can see in Fig. 1, 1/ρ(Vg) changes linearly
with the density away from the CNP. It can therefore be argued
that ρS ≈ 0, and that long-range scattering is dominant in our
sample. Consequently, the underlying mechanism of the PPT
might differ from that of an Anderson-type transition, whose
IQH critical point is realized in the presence of short-range
disorder [11].

In the search for confirmation of the percolation picture, we
independently obtained the critical exponent γ by analyzing
the temperature dependence of the longitudinal conductivity.
For small enough kBT , the conduction in the tails of the
Landau levels is governed by a regime similar to variable
range hopping (VRH) [37,38] and the dependence of the
conductivity on temperature takes the form σxx ∝ e−√

T0/T /T .
The characteristic temperature T0 is a quantity inversely
proportional to the localization length ξ , and thus close enough

TABLE I. Estimates of κ obtained from the scaling law(
dρxy/dB

)
max

∝ T −κ and the fits shown in Fig. 2(g), for different
PPTs and carrier densities. Errors for κ follow from the fits and
denote one standard deviation. Negative carrier densities correspond
to the hole transport regime.

n (1011 cm−2) PPT κ

14.6 ν = 16 → 12 0.27 ± 0.01
10.2 ν = 12 → 8 0.32 ± 0.01
10.2 ν = 16 → 12 0.30 ± 0.01
6.07 ν = 12 → 8 0.32 ± 0.01
(−)4.74 ν = −8 → −4 0.30 ± 0.02
(−)6.84 ν = −8 → −4 0.29 ± 0.02
(−)9.03 ν = −16 → −12 0.32 ± 0.02
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FIG. 4. (Color online) Log-log plot of the characteristic tempera-
ture T0 of the conductivity in the tails of the Landau levels as a function
of the relative filling factor for the analyzed PPTs. The factor 1/4 in
the abscissa axis is due to the fourfold degeneracy of the Landau
levels. Dashed lines correspond to linear fits. The legend indicates
the measured value of νc for the different transitions considered.

to the critical point it must scale as T0 ∝ |ν − νc|γ , using the
filling factor as the driving parameter of the transition. The
latter scaling law allows for a direct estimation of γ . This
approach was shown to be very well suited to access directly
the scaling behavior of the localization length [39], and it
has been recently adopted in the study of PPTs in monolayer
graphene [14]. For a given transition and a fixed magnetic field,
the value of T0 is obtained by fitting σxx(T ) to the expression
given above [40]. This procedure is carried out at different B

to obtain T0 as a function of the filling factor for the different
transitions, as shown in Fig. 4. The linear fits of the latter
data in a log-log plot (dashed lines in Fig. 4) provide a set of
estimates for γ , whose sample mean is

γ = 1.25(0.96,1.54). (3)

This value is entirely compatible with a classical percolation
transition, and remarkably agrees within the given confidence

interval with our previous estimate obtained from the inde-
pendent measurements of the exponents κ and p. Our γ

value is definitely different from the one corresponding to
the interacting critical point for an Anderson-type transition,
γ = 2.38, which has been found in monolayer graphene on
SiO2 [14].

In conclusion, we have measured several plateau-plateau
transitions in a high mobility bilayer graphene flake en-
capsulated by two h-BN layers, studying the criticality of
the transitions with two different approaches. The first one
exploits the scaling law of the Hall resistivity, while the second
is based on the analysis of the magnetoconductivity at the
Landau level tails. Our results show that the transitions in
this specific structure seem to be governed by a classical
percolation regime, in agreement with recent theoretical results
[41]. This is confirmed by a direct determination of the
localization-length critical exponent γ , as well as from the
estimate obtained from independent measurements of κ and
the coherence length exponent p. Furthermore, the observed
behavior ρ(Vg) ∝ n−1 for the zero-field resistivity indicates
the existence of a dominant effective long-range scattering
mechanism, compatible with a percolationlike regime. Our
results are also consistent with recent experimental measure-
ments of the profile of the energetic disorder in graphene on
h-BN, revealing the existence of smooth fluctuations for the
Dirac point energy [20,21].

As regards the theory that underlies the connection between
quantum phase transitions, disorder, and percolation, further
investigation will be devoted to the development of theoretical
models that could take into account other degrees of freedom
of the electrons, such as the spin polarization. The theoretical
calculation will also take into account different measurement
configurations, such as the nonlocal transport, that give access
to specific aspects of the electronic transport in graphene
[18], but can also be applied to other systems such as
superconducting structures [42].
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