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Excited state entanglement in one-dimensional quantum critical systems:
Extensivity and the role of microscopic details
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We study entanglement via the subsystem purity relative to bipartitions of arbitrary excited states in
(1+1)-dimensional conformal field theory, equivalent to the scaling limit of one-dimensional quantum critical
systems. We compute the exact subpurity as a function of the relative subsystem size for numerous excited states
in the Ising and three-state Potts models. We find that it decays exponentially when the system and the subsystem
sizes are comparable until a saturation limit is reached near half-partitioning, signaling that excited states are
maximally entangled. The exponential behavior translates into extensivity for the second Rényi entropy. Since the
coefficient of this linear law depends only on the excitation energy, this result shows an interesting relationship
between energy and quantum information and elucidates the role of microscopic details.

DOI: 10.1103/PhysRevB.90.161404 PACS number(s): 11.25.Hf, 03.67.Bg, 03.67.Mn, 89.70.Cf

Entanglement is the essence of quantum theory. Beyond
quantum informational aspects, the amount of entanglement
coded into a quantum many-body system is an increasingly
important quantity that provides a universal way to charac-
terize quantum fluctuation. The ground state entanglement in
particular can classify quantum phases; e.g., it can inform us
about interesting, topological phases [1] and whether a system
is close to criticality [2].

On the other hand, entanglement of excited states is also
a very interesting quantity. In fact, recently there has been
a quickly growing interest in this subject [3]. While ground
states characterize system specific quantum fluctuations and
they usually follow the area law [4], the entanglement entropy
of highly excited states are expected to be more generic,
independent of the specific system, and go to an extensive,
thermodynamic entropy instead.

This picture gets modified for critical systems. Here the area
law for the ground state is enhanced into a logarithmic law [5,6]
with a universal coefficient. For low-lying excited states the
logarithmic behavior was shown to remain unchanged when
the subsystem size is infinitesimal compared to the whole. On
the other hand, when the subsystem is comparable to the whole
interesting features emerge, in particular hints of a thermody-
namic behavior for very small (but not infinitesimal) subsystem
sizes, connecting energy with the amount of entanglement in a
universal way [7,8]. Despite these advances, there is still very
little known about the entanglement of excited states in critical
systems, which however are especially interesting because of
universality. Interesting questions include the following. What
happens for highly excited states? How does entanglement
behave for comparable subsystems? What is the relationship
between entanglement and excitation energy beyond the small
subsystem limit?

In this paper we endeavor to answer these questions
by studying excited states in (1+1)-dimensional (unitary)
conformal field theories. We set up a systematic framework
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to compute the Rényi entropies for arbitrary excited states
relative to connected bipartitions, by generalizing the approach
of [8], where the case of primary states was considered.
The main motivation is that primary states represent only
the lowest-lying excitations and in many important cases
(e.g., minimal models) there are only a few of them in the
Hilbert space. In order to examine more excited states, and,
in particular, to access highly excited ones, it is necessary to
generalize the previous approach to descendant states.

We study in particular the scaling of the second Rényi
entropy S2(d) (defined precisely below) with the relative
subsystem size d = LA/L in the critical Ising and three-state
Potts models for several individual excited states. We chose
the second Rényi entropy in addition to being computation-
ally the simplest case, because it has the interpretation of being
the logarithm of the purity of the subsystem (defined as the
participation ratio in the Schmidt basis; also see later). We
note that the choice of the particular models is arbitrary and
one could choose any other minimal model, or in general a
(1+1)-dimensional conformal field theory (CFT), where the
four-point functions of primary fields are known, and obtain
the Rényi entropies by the present approach.

We find that for almost all the excited states there are three
distinct regimes of the second Rényi entropy as a function of
the relative subsystem size. The first regime has already been
understood in earlier works [7,8] and it corresponds to the
small subsystem size limit described by a logarithmic scaling
with the first correction being linear in the excitation energy

S�
2 (d → 0) = c

4
log sin πd + (�� + �̄�)

2
(πd)2 + · · · ,

(1)

with c the central charge and �� , �̄� the chiral and antichiral
scaling weights of the operator �. (Here and in the rest of this
paper we do not write out additive constants common to all
states, e.g., the UV regularization factor.) Although this form
was proved rigorously only for primary states it is expected to
hold for other excited states as well [7], and we could confirm
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this for the states that we considered. Beyond this regime no
general feature was known until now.

The second regime is the most interesting and its identifi-
cation is the main result of this Rapid Communication. It is
characterized by an extensive Rényi entropy, growing linearly
with the subsystem size

S�
2 (d) ≈ s(E�)d, dlog < d < dsat. (2)

The scaling law only depends on the excitation energy and it is
sublinear in it. In other words, in the accessible energy range
we see a quasithermodynamic entropy. Extensivity translates
for the subsystem purity as exponential decay, signaling that
the excited states are maximally entangled. We refer to [9]
where extensive terms were observed for special states in the
entanglement entropy in holographic systems.

There is a third regime, which turns out to be unique to
every state and it corresponds to the saturation of the entropy
to facilitate the symmetry S(d) = S(1 − d). This part of the
Rényi entropy can be used to differentiate between degenerate
states and allows for instance the identification of excited states
of the microscopic theory in terms of CFT states (suggested
first in [8]).

In our explicit calculations we determined that these
regimes can be found for all (primary and descendant) states
in the accessible energy range, except for the lowest-lying
excitation in the Ising CFT corresponding to the twisted
vacuum in the spin chain model. Therefore, it is reasonable
to believe that these features constitute a general property of
the second Renyi entropy (subsystem purity) for most of the
excited states. In fact, the only states for which Eqs. (1) and (2)
are expected to break down are those corresponding to ground
states of some local Hamiltonians (see [10] and also [11] for
an analysis in the XY spin chain).

In addition to the present results we expect that generalizing
the computation of Rényi entropies to arbitrary states in
CFT will enable a number of exciting future applications,
e.g., the study of ground and excited state entanglement in
one-dimensional massive field theories (integrable or not)
through the truncated conformal space approach [12] or the
study of local quenches [13] in both gapless and gapful
systems.

In the rest of this paper we first introduce the measure of en-
tanglement considered here and then outline the computation
technique to find the exact Rényi entropies and, in particular,
the second one equivalent to the subsystem purity, for arbitrary
excited states. We also present representative results for excited
states in the Ising and three-state Potts universality classes.

Rényi entropies in CFT. To define a measure of entangle-
ment for a system in a pure state it is enough to look at a spatial
bipartition (A ∪ B). A family of measures coming from the
reduced density matrix on A consists of the Rényi entropies,
defined as

Sn = 1

1 − n
log TrAρn

A, ρA = TrB |�〉〈�|. (3)

Beside the von Neumann entropy S1 = limn→1 Sn, also espe-
cially important is the second Rényi entropy that measures
the purity of the subsystem. The concept of purity can be

introduced considering the Schmidt decomposition,

|�〉 =
∑
m

cm|am〉|bm〉. (4)

In terms of these bases relative to the partitions the reduced
density matrix takes the form

ρA =
∑
m

c2
m|am〉〈am|, (5)

where we can see that the coherences are zero and in this
sense the basis involved in the Schmidt decomposition is
a maximally entangled basis. The participation ratio P =∑

m c4
m = TrAρ2

A on this basis then describes the purity of the
subsystem. If the subsystem can be described by a pure state
purity would be one, while for mixed states it would give the
inverse of the effective number of maximally entangled states
needed to describe it. The more this number goes to zero the
less pure the mixed state is, therefore the more the partitions
are entangled. Since the dimension of the subsystem Hilbert
space scales exponentially with its size, exponential decay
(i.e., extensivity of the Rényi entropy) would mean maximally
entangled states.

Turning now to the computation of this subpurity in our
field theoretical setting we expand the traces in (3): the relevant
expression can be written in terms of sums on two bases relative
to A and B (e.g., but not necessarily the Schmidt bases). Since
we are in finite volume the energy levels are quantized and we
can write

P = TrAρ2
A =

∑
a

〈a|
(∑

b

〈b||�〉〈�||b〉
)2

|a〉 (6)

=
∑
aa′bb′

〈ab|�〉〈�|a′b〉〈a′b′|�〉〈�|ab′〉, (7)

where states labeled by a, a′ live on the partition A, while b, b′
live on B. The main problem is that a priori it is not clear how to
obtain the sets of states living on restrictions in terms of those
living on the full domain. However, one can reinterpret the
sum by noticing that it is equivalent to a four-point function
(first noticed in [8]) on a nontrivial geometry, that consists
of two sheets (with periodic boundary conditions on each)
sewed together along A in a circular manner (for a pictorial
representation, see e.g. [6] where this surface is denoted by
R2).

It is useful to go from interconnected cylinders (R2) to
interconnected planes (R̄2) by the exponential mapping ξ =
e− 2πi

L
(x+it), where the physical energy eigenstates are generated

by the insertion of the usual primary and descendant fields. The
purity is then just the unusually normalized four-point function

P = N�F� = N�〈�(01)�(01)†�(02)�(02)†〉R̄2
, (8)

where the operator � implements the state |�〉 on the complex
plane as

�(0)|0〉 = |�〉 (9)

and the normalization N� is such that Trρ = 1.
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To evaluate P we map R̄2 to a single complex plane by the
transformation

ζ = fd (ξ ) =
(

eiπdξ − e−iπd

1 − ξ

)1/2

. (10)

The above mapping consists of the composition of a global
conformal mapping (Moebius transformation) and taking
the square root. The first component maps to a surface
topologically identical to the Riemann surface of the square
root, being two sheeted with the connecting branch cut on
the positive real line. Taking the square root then maps to the
complex plane, and the two sheets are prescribed to be mapped
to the two branches of the complex square root, e.g., ξ = 01,2

maps to e
iπ
2 (2m−1−d), m = 1,2. It is important to perform UV

and IR regularizations by excluding the neighborhoods of the
common points of A and B and going to finite volume, making
the entropies finite. The UV regulator will only appear in the
normalization.

In case of the vacuum � ≡ 1 the nontrivial part is given by
only the normalization

N� = N1 = ZR̄2

Z2
R̄1

=
(

L

πε
sin πd

)− c
4

, (11)

with c being the central charge, L the IR, and ε the UV
regulators. N1 gives rise to the ubiquitous logarithm law [5,6]
for the ground state. This formula can be seen simply by
noticing that the transformed geometry is equivalent to a
finite cylinder where the partition function is well known.
It is also easy to see that the leading logarithmic law for
small subsystem sizes is universal and it is independent of
which state is examined by considering that R̄2 goes to two
independent planes when the subsystem size goes to zero.
Then, the four-point function gives 1 because the states are
normalized on the plane and only N� remains.

When moving on to excited states one needs to evaluate
a nontrivial F� . This transforms under the same mapping fd

into the equal-time (|ζ | = 1 in radial quantization) four-point
function

F� = 〈T{�(01)}T{�(01)†}T{�(02)}T{�(02)†}〉C (12)

on the complex plane. T represents the transformation of the
fields under fd (ξ ). For primary states the transformation of the
fields is simple,

T{�(0)} = f ′
d (0)2h+2h̄�(fd (0)), (13)

with h (h̄) being the (anti)chiral primary weights. In this case
F� is given by a four-point function of the same operators �

that generate the physical state [8,14],

F� ∝ f ′8h+8h̄
d 〈�(ζ1)�(ζ2)�(ζ3)�(ζ4)〉C, (14)

with ζ1,2 = e
iπ∓iπd

2 , ζ3,4 = e
3iπ∓iπd

2 , and the only ambiguity is a
phase factor that is set by F� being positive real.

Descendant states. For descendants Eq. (12) must be
evaluated much more carefully. In fact, in this case because
of the generation of lower descendants when performing the
transformation for every descendant state there is a different
formula in terms of four-point functions on the plane, which
can in turn be evaluated by standard methods.

To make progress we need to transform descendant oper-
ators under fd . (Note that the images of the adjoints can be
obtained from fields living in ξ = 0 by f−d .) The first term of
the transformation law of a (chiral) descendant operator (with
the nonchiral case being a product of the chiral and antichiral
contributions) is easily obtained in general as

T{φ(ζ )} =
(

∂f

∂ζ

)�

φ(f (ζ )) + · · · (15)

for a field φ with scaling weight �; however, for a descendant
field all the lower descendants in the given tower are also
generated (represented above by “· · · ”) and they can by no
means be disregarded in the four-point functions. To perform
this transformation for general fields we propose to use the
construction of [15] prescribing the form

T{φ(ζ )} =
[ ∞∏

n=0

eRn[f,ζ )Lnφ

]
(f (ζ )). (16)

After expanding the exponentials the infinite product of
operators can be rewritten as

∞∏
n=0

eRn[f,ζ )Lnφ

= eR0L0

(
1 + R1L1 + 1

2
R2

1L
2
1 + R2L2 + · · ·

)
φ. (17)

There is a finite number of terms since any string of generators
with a combined descendance level larger than the descen-
dance level m of φ (of scaling dimension � = h + m) gives
zero. The appearing Rn[f,ζ ) coefficients are also known [15],
the first few being

R0[f,01,2) = log f ′ = log(±eiπd/2 sin πd), (18)

R1[f,01,2) = f ′′/2f ′ = 3 + e2iπd

4
, (19)

R2[f,01,2) = Sf/6 =
(

e2iπd − 1

4

)2

, (20)

with the Schwarzian Sf . The sign in the first line is crucial
and comes form mapping the first and second planes to the
different branches of the square root. By evaluating (17) it is
a matter of algebraic manipulations to find the transformation
law for any specific field φ.

After the transformation one is left with a sum of four-point
functions of descendant fields in the form

F� =
∑
abcd

cabcd〈φa(ζ1)φb(ζ2)φc(ζ3)φd (ζ4)〉C. (21)

The exact evaluation of such n-point functions is in principle
known and it can be obtained from the four-point function of
the associated primary fields by acting on it with an appropriate
differential operator. The simplest example is the four-point
function of three primaries and one descendant, e.g.,

〈L−n�1(x1)�2(x2)�3(x3)�4(x4)〉

=
4∑

i=2

{
(n − 1)hi

(xi − x1)n
− 1

(xi − x1)n−1

∂

∂xi

}

×〈�1(x1)�2(x2)�3(x3)�4(x4)〉, (22)
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FIG. 1. (Logarithmic) plots of the subsystem purities of the first
few spin-zero excited states in the Ising universality class (� = ψψ̄ ;
the legend shows only the chiral generators ψ). We organized the
plots according to the descendance level of the excited states (and the
primaries are not shown). The exponents of the purity in the (first)
exponential domain depend on the excitation energy in a nonlinear
way. The Rényi entropy S2 = − log P can also be read off these plots.
For the level one and two states we also show data from the critical
Ising spin chain marked on the plots by points. The agreement is very
convincing and serves as a check of the present framework. Note that
the scale is arbitrary depending on the regularization (e.g., system
size) and was set so that the exponential decay would begin around
P = 1.

where the particular differential operator is easily inferred
from the conformal Ward identities. To find the differential
operator in the general case, i.e., for arbitrary strings of
Virasoro generators, we rewrote the generators as contour
integrals

Lnφ(x) = 1

2πi

∮
x

dζ (ζ − x)n+1T (ζ )φ(x) (23)

and we deformed the contours successively from one operator
insertion point to the others, back and forth. When doing the
deformations the generators {Ln}n�−1 are generated which
can be seen by expanding (ζ1 − x)n+1 in powers of (ζ2 − x).
Using this technique it is possible to reduce any n-point
function into a sum of ones that involve only the generator
L−1, which is equivalent to partial differentiation. The residual
four-point functions of primaries can be obtained exactly, for

vacuum

0 0.25 0.5 0.75 1

1
0.6

0.2 P

P

P

P

0.05

d

L 1

0 0.25 0.5 0.75 1

1
0.6

0.2

0.05

d

L 2

L 21

0 0.25 0.5 0.75 1

1
0.6

0.2

0.05

d

L 3

∋

∋

∋

∋

L 31

0 0.25 0.5 0.75 1

1
0.6

0.2

0.05

d

FIG. 2. (Logarithmic) plots of the subsystem purities of the first
few spin-zero excited states from the identity and energy towers in
the Potts universality class.

instance, by means of the Coulomb gas construction [16]
as a sum of chiral×antichiral products of hypergeometric
functions (conformal blocks) [17]. All these computations
become extremely cumbersome, producing a large number of
terms for already the simplest descendant states. Therefore, we
algorithmized the transformation and the computation of the
differential operator and did them still analytically but assisted
by computer. Further details of this approach will be discussed
in a later publication [18], where we shall present a different
application of excited state Rényi entropies.

Results and discussion. In Figs. 1 and 2 we show results
for the subsystem purity for excited states in the Ising
(c = 1/2) and the three-state Potts (c = 4/5) models. For
the former case we also checked the results for energetically
nondegenerate states in the zero momentum sector (where
the identification with the corresponding excited states in the
CFT is straightforward by comparing excitation energies) by
performing calculations on the critical Ising spin chain (of
200 spins) and found perfect agreement (see Fig. 1) [19]. In
Table I we show some of the exact F� functions in the Ising
model.

In addition to the general characteristics already discussed
we see that for certain states one can identify multiple decay
exponents important in different domains of the subpurity.
While the first exponent depends only on the excitation
energy (2) the further exponents are different for degenerate

TABLE I. Square roots of the scaling functions F� for some spin zero states in the Ising CFT given as sums of cosines,
√

F� (d) =∑nmax
n=0 cn cos(2πnd).

ψ 1 cos 2πd cos 4πd cos 6πd cos 8πd cos 10πd cos 12πd

1 1
ε 7

8
1
8

L−1ε
1558
2048

439
2048

26
2048

25
2048

L−21 426347
524288

53640
524288

38076
524288

6200
524288

25
524288

L−2ε
6085442
8388608

1693410
8388608

514952
8388608

49813
8388608

9270
8388608

35721
8388608

L−31 5569438
8388608

2319464
8388608

250807
8388608

187108
8388608

29426
8388608

31924
8388608

441
8388608
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states. Based on this observation we can also define a purity
spectrum {p1,p2, . . . ,pn} consisting of all the exponents
relative to the specific state. Indeed, it would be very interesting
to better understand this form of the purity through an explicit
calculation of the exponents in terms of the conformal data
and to understand their physical meaning. In fact, a similar
structure was found in [11] for the massive XY spin chain
and it was suggested that (at least some) excited states can
be reinterpreted as ground states of systems of coupled spin

chains, where applying the area law leads to an extensive
behavior for the entanglement entropy with slope changes
depending on the specific state.
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