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Experimental constraints and a possible quantum Hall state at ν = 5/2
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Several topological orders have been proposed to explain the quantum Hall plateau at ν = 5/2. The observation
of an upstream neutral mode on the sample edge supports the non-Abelian anti-Pfaffian state. On the other hand,
tunneling experiments favor the Halperin 331 state which exhibits no upstream modes. No proposed ground states
agree with both types of experiments. We find a topological order, compatible with the results of both experiments.
That order allows both finite and zero spin polarizations. It is Abelian but its signatures in Aharonov-Bohm
interferometry can be similar to those of the Pfaffian and anti-Pfaffian states.
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The fractional quantum Hall effect (QHE) exhibits remark-
ably rich phenomenology. About 100 filling factors have been
discovered. Some of them are well understood but many are
not. In particular, the nature of the fragile states in the second
Landau level remains a puzzle.

The quantum Hall plateaus at the filling factors [1] ν = 5/2
and ν = 7/2 are particularly interesting. Almost all known
filling factors have odd denominators. Such quantum Hall
states can be explained in a natural way within the Haldane-
Halperin hierarchy [2] and the composite fermion picture [3].
Even-denominator filling factors require additional ideas. It
was argued that electrons form pairs [4] at ν = 5/2; i.e., the 5/2
state is a topological superconductor. Pairing implies that the
lowest-charge quasiparticles carry one quarter of an electron
charge [1,5]. This was indeed observed in several experiments
[6–8]. At the same time, the nature of pairing remains an open
problem.

The investigations of the ν = 5/2 QHE liquid have fo-
cused on its topological order which is robust to small
variations of sample parameters [2]. This led to a striking
proposal of non-Abelian statistics [1,5]. In contrast to ordinary
fermions, bosons, and Abelian anyons, systems of non-
Abelian quasiparticles possess numerous degenerate ground
states at fixed quasiparticle positions. This may be useful
for quantum computing [1]. Theoretically proposed non-
Abelian Pfaffian, anti-Pfaffian, SU(2)2, and anti-SU(2)2 states
[5,9–13] have attracted much interest as possible candidates
to explain the QHE plateau at ν = 5/2 (for a review of
the proposed states see Refs. [13] and [14]). At the same
time, one can also construct Abelian states with the same
filling factor, such as the Halperin 331, K = 8, and anti-331
states [13–16].

Most of the above-mentioned states were invented before
experimental information beyond the existence of the 5/2 QHE
plateau and the value of its energy gap became available. This
made it impossible to select the correct theory of the 5/2
liquid. The last few years have seen considerable accumulation
of the new experimental results [6–8,17–25]. They provide
tight constraints on the topological order at ν = 5/2. We argue
that all previously proposed ground-state wave functions are
excluded by those constraints. To explain the 5/2 plateau
we propose a different topological order that satisfies the
experimental constraints and thus is a serious candidate to
solve the 5/2 puzzle.

In contrast to our findings, numerical investigations of
small model systems favor the Pfaffian and anti-Pfaffian
states (see, e.g., Refs. [26–29]). At the same time, existing
numerical results have a number of limitations. For example,
Landau-level mixing [30,31] was ignored in many studies. It is
also not obvious that neglecting the tiny spin-orbit interaction
[32] is justified. Numerical predictions for the energy gap are
many times higher than the experimental findings [33,34].
This may be due to disorder [34,35] but no attempts have
been made to include disorder in numerical simulations.
Analytical arguments [35] help decrease the discrepancy for
the gap but do not resolve it. Taking into account small energy
differences [29] between trial wave functions, corresponding
to different topological orders at ν = 5/2, one cannot make
definite conclusions from numerics alone about the nature of
the 5/2 state in a realistic disordered system. Only experiment
can solve the 5/2 puzzle.

Since quasiparticle statistics is defined in terms of particles
moving around each other, the smoking-gun probe of topo-
logical order is interferometry [1]. It was argued that some
of the Aharonov-Bohm interferometry results are compatible
with the non-Abelian Pfaffian state [17,36]. However, the
331 state may show similar interferometric signatures [37]
and a more sophisticated Mach-Zehnder interferometer may
be necessary to distinguish it from the Pfaffian state [38].
Spin polarization data are controversial: optical experiments
[19,20] were interpreted as a sign of zero polarization while
resistively detected NMR points [21,22] at 100% polarization.
Thermoelectric response [23] shows qualitative agreement
with a non-Abelian state but an Abelian state may exhibit
similar behavior, if it has different types of quasiparticles of
close or equal energy.

Several groups [8,24,25] performed tunneling experiments
which measured the quasiparticle current through a narrow
constriction. At low temperatures the zero-bias conductance
scales as T 2g−2, where the exponent g depends on the
topological order and is universal in the absence of long-range
interactions [2]. Theory predicts g = 1/2 in the anti-Pfaffian
and SU(2)2 states and g = 3/8 in the 331 state [13,14]. All
existing predictions [13] for other states are either above 1/2
or below 3/8. In the earliest experiment [24], the best fit for g

at the fixed charge e∗ = e/4 of the tunneling quasiparticle was
g = 0.45. This was interpreted initially as a signature of the
anti-Pfaffian or SU(2)2 state. Subsequent experiments [8,25]
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in other sample geometries produced g between 0.37 and 0.42
as the best fits at fixed e∗ = e/4. This supports the case for
the 331 state. It was argued that the measured exponents are
affected by long-range electrostatic forces [13]. Their effect
depends on the sample geometry and in all cases increases the
observed g. Thus, all tunneling data are compatible with the
331 state [13].

At the same time, the 331 state is incompatible with the
observation [18] of an upstream neutral mode. This means
that no proposed ground-state wave function fits all existing
data. Below we identify a different ground state that agrees
with the existing experiments.

We propose that the 5/2 liquid exhibits Halperin’s 113
topological order. This possibility was addressed in the
numerical study [39] but did not receive much further attention.
Moreover, it was pointed out [40] that the wave function from
Ref. [39] is unsuitable to explain the 5/2 plateau. The usual
Halperin nnm wave function is

�usual =�k<l(zk − zl)
n�α<β(wα − wβ)n

× �k,α(zk − wα)m exp

(
− 1

4l2
B

∑
[|zl|2 + |wα|2]

)
,

(1)

where lB is the magnetic length, and zk = xk + iyk and wα =
xα + iyα are the positions of the two flavors of electrons, the
simplest possibility for the flavor degree of freedom being spin.
The plasma analogy shows that such wave function exhibits
phase separation [40] into single-flavor regions at n < m. This
seems to invalidate the possibility of the 113 topological order.
On the other hand, the above phase-separation argument also
applies to the 112 order, believed to describe the spin-singlet
state [41,42] at low magnetic fields at the filling factor 2/3.
The apparent inconsistency is resolved by noting that the same
topological order can be encoded in many wave functions
and one can find an nnm wave function, free of pathology
at n < m. In particular, the following “negative flux” wave
function encodes the nnm order with n < m and was argued
[41,42] to describe the spin-singlet 2/3 state at n = 1 and
m = 2:

� =P̂ exp

(
− 1

4l2
B

∑
[|zl|2 + |wα|2]

)

× �k<l(∂zk
− ∂zl

)m−n�α<β(∂wα
− ∂wβ

)m−n

× �k<l(zk − zl)
m�α<β (wα − wβ)m�k,α(zk − wα)m,

(2)

where the operator P̂ takes care about appropriate antisym-
metrization with respect to the flavor degree of freedom. The
same expression (2) with n = 1 and m = 3 describes the 113
order (see a related discussion for bosons in Ref. [43]). At the
same time, we would like to emphasize that below we focus
on the observable consequences of the 113 topological order
and not a particular wave function choice. Indeed, a highly
symmetric wave function (2) might not be a good description
for a realistic disordered system.

The wave function (2) describes electrons at the filling
factor 1/2. In addition to the second Landau level at ν = 1/2,
the first Landau level is filled in the 5/2 state.

The topological properties of the 113 order are encoded in
the K matrix [2]

K =
(

1 3
3 1

)
(3)

and the charge vector q = (1,1). The standard formalism
[2] shows that all excitations are built from two flavors
of quasiparticles, represented by the vectors l1 = (1,0) and
l2 = (0,1), and carrying the charge

e∗ = eqK−1lT1,2 = e/4 (4)

in agreement with the experiment. The mutual statistics of the
two particle flavors is described by the phase, accumulated by
a quasiparticle of one flavor after it makes a full circle around
a quasiparticle of the other flavor:

θ12 = 2π l1K−1lT2 = 3π/4. (5)

The statistics of two identical particles is given by the phase,
accumulated when they exchange their positions:

θ11 = θ22 = π l1K−1lT1 = −π/8. (6)

The simplest interpretation of the two quasiparticle flavors
implies a spin-unpolarized state, where excitations with two
different spin projections are allowed. The spin-unpolarized
wave function (2) is not an eigenstate of the total spin S2.
In the absence of the spin-orbit interaction this would imply
spontaneous symmetry breaking. In a realistic GaAs system,
the energy scale of the spin-orbit interaction is comparable to
the gap for charged excitations in the 5/2 state [32].

The 113 order is also possible in a spin-polarized system.
For example, one can rewrite Eq. (3) as

K = WT K ′W ; K ′ =
(

1 2
2 −4

)
; W =

(
1 1
0 1

)
. (7)

The matrix K ′ describes the same 113 topological order and
can be interpreted within the hierarchical construction for
spin-polarized electrons: a condensate of charge-2e quasiholes
forms on top of the integer QHE state [44]. A simple wave
function with the 113 order can be obtained by observing that
the 113 order is present in the particle-hole dual of the K = 8
state [44].

We now turn to the edge physics [2]. The edge action is

L = − �

4π

∫
dxdt

⎧⎨
⎩

∑
i,j=1,2

Kij∂tφi∂xφj

+
∑

j=I1,I2

∂tφj ∂xφj +
∑

i,j=1,2,I1,I2

Vij ∂xφi∂xφj

⎫⎬
⎭ , (8)

where the fields φ1,φ2 describe the fractional QHE edge
modes and φI1,φI2 describe the two integer edge channels. By
introducing the charged mode φρ = φ1 + φ2 and the neutral
mode φn = φ1 − φ2 we can rewrite the action in the form

L = − �

4π

∫
dtdx[2∂tφρ∂xφρ − ∂tφn∂xφn

+ 2vρ(∂xφρ)2 + vn(∂xφn)2 + 2vρn∂xφρ∂xφn]
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− �

4π

∫
dtdx

⎡
⎣ ∑

i=I1,I2

(∂tφi∂xφi + vi(∂xφi)
2)

+ 2u12∂xφI1∂xφI2 + 2
∑

i=ρ,n;j=I1,I2

wij∂xφi∂xφj

⎤
⎦ , (9)

where the charge density in the fractional edge channels
is ρF = e∂xφρ/(2π ) and the charge density in the integer
channels is ρI = e(∂xφI1 + ∂xφI2)/(2π ). In what follows we
will ignore the integer edge channels and concentrate on the
first two lines in the action (9). The integer channels have little
effect on our results as discussed in the Supplemental Material
[44].

The minus sign in front of ∂tφn∂xφn signifies the existence
of an upstream neutral mode in agreement with the experiment.
We now turn to the quasiparticle tunneling. The most relevant
quasiparticle operators create excitations of charge e/4 and
have the form O1,2 = exp(iφ1,2) = exp(i[φρ ± φn]/2). As a
starting point, we consider the flavor-symmetric situation with
the symmetry φ1 → φ2, φ2 → φ1. In such case vρn = 0 in
Eq. (9) and the scaling dimensions of the operators O1,2 are
identical and equal � = 3/16. Weak quasiparticle tunneling
between two edges at the point x = 0 is described by the
contribution to the action [2]

LT =
∫

dt
∑
i=1,2


iO
(t)
i (x = 0)O(b)†

i (x = 0) + H.c., (10)

where the indices t and b refer to the top and bottom edges.
The low-temperature tunneling conductance G(T ) can be esti-
mated [2] by performing the renormalization group procedure
up to the energy scale E ∼ T and setting G(T ) ∼ 
2(T ). Thus,
G(T ) ∼ T 2g−2, where g = 3/8 in good agreement with the
data.

At the same time, there is no reason for precise flavor
symmetry. A nonzero vρn changes the above result. The
scaling dimensions of the operators O1,2 become different and
correspond to two contributions to the conductance G2,1(T ) ∼
T 2g±−2 with

g± = 1√
1 − c2

(
3

8
± c

2
√

2

)
, (11)

where c = √
2vρn/(vρ + vn). This might suggest that the

tunneling conductance is nonuniversal and no meaningful
comparison with the experiment is possible. However, we
show below that a theory, based on the 113 order, does
predict the scaling of the conductance with g, close to 3/8,
even without the flavor symmetry. In contrast to the famous
spin-polarized 2/3 state [45] our explanation of universality
does not involve disorder on the edge.

Even arbitrarily weak disorder guarantees proper quanti-
zation of the quantum Hall conductance G = νe2/h in a bar
geometry in a system with upstream modes, if the edges are
long enough. At the same time, the tunneling conductance
only depends on what happens within a thermal length from
the tunneling contact. Hence, the low-temperature tunneling
conductance is affected by disorder only if disorder is relevant
in the renormalization group sense [45]. In our problem,
disorder is responsible for electron tunneling between the two

FIG. 1. Density profile of a 2D electron gas in a magnetic field.
The density is constant in narrow incompressible strips.

fractional modes φ1 and φ2. The corresponding contribution
to the action LD = ∫

dtdx {ζ (x) exp[2iφn(x)] + H.c.}, where
ζ (x) is a random complex number. One can check that LD is
always irrelevant. Thus, disorder does not lead to a universal
conductance scaling and Eq. (11) applies. The explanation for
the observed g ≈ 3/8 is different: we argue that c � 1.

We wish to estimate vn, vρ , and vρn (9) in the tunneling
experiments [8,24,25]. In all those experiments, the edges are
defined by top gates. As observed in Ref. [46], the charge
density profile in such situation is almost the same as in the
absence of the magnetic field. The edge consists of several
compressible strips, separated by narrow incompressible strips
of fixed charge density (Fig. 1). The widths of the compressible
strips and their distances from the gates depend on the filling
factor and other details and are estimated to be between
hundreds of nm and a few μm [46]. The widths of the gates
and their distances from the electron gas are within the same
range. This gives us an estimate of the distance between the
edge states and the gates. In the simplest picture, the widths
of various edge channels can be estimated from the widths
of the compressible strips. Quantum localization modifies
such picture [46]. We expect that an edge channel is located
within a compressible region between two incompressible
strips with filling factors ν1 < ν2. The part of the compressible
strip on one side of the edge channel should be understood
as an incompressible QHE liquid with the filling factor ν2

and localized quasiholes. The part of the compressible strip
on the other side of the channel should be understood as
an incompressible QHE liquid of the filling factor ν1 with
localized quasiparticles. The width a of the edge channel
depends on the localization length and is less than the
total width of the compressible strip. We expect a > lB . A
localization length < lB would mean that disorder is too strong
for QHE correlations to exist.

Let us now estimate vρ . If the distance from the edge to the
gate is comparable to a then the energy cost of the average
linear charge density ρ = e∂xφρ/(2π ) in a region of size
a × a is

δE ∼ (aρ)2/(εa), (12)

where ε is the dielectric constant. This energy cost enters the
action (9) as a�vρ(∂xφρ)2/(2π ). Hence, vρ ∼ e2/(�ε). The
velocity vρ increases by a factor of ln(d/a), if the edge width
a is much smaller than the distance d 	 lB from the gate [47].
This comes from the energy cost of the interaction between
the sections of the edge at the distances l, d > l > a.
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FIG. 2. Aharonov-Bohm interferometer. Quasiparticles move
along the edges and tunnel between the edges at the quantum
point contacts QPC1 and QPC2. Several quasiparticles are localized
between the edges.

We expect that the neutral mode runs at the same place as
the charged mode and the excitations of the neutral mode
redistribute the two electron flavors without changing the
overall charge density beyond the magnetic length lB . Thus,
the neutral mode only participates in short-range interaction
of radius lB . We find vn by estimating the energy cost of the
disbalance ρn = ρ1 − ρ2 between the charge densities of the
two flavors. We get an estimate similar to Eq. (12), but with an
additional factor lB/a to account for the short-range character
of the interaction [48]. This is similar to the calculation of the
charge velocity in the presence of the top gate [49], where
the interaction radius is set by the distance to the gate. Thus,
vn ∼ vρn ∼ lB

a[1+ln(d/a)]vρ � vρ . Hence, c � 1 and g ≈ 3/8.
The latter conclusion is not affected by the integer edge
channels [44]. Indeed, due to spatial separation, the interaction
of the neutral mode with the integer channels is weaker than
its interaction with the fractional charged mode.

Our physical picture differs from the simplest picture of
the charged and neutral channels in a very clean ν = 2 system.
There, two spin channels correspond to two wide compressible
strips, separated by an incompressible region. Nevertheless,
even at ν = 2 one expects the charged mode to be much faster
than the neutral mode [50]. This is the only thing that matters
for our estimate of c. Besides, with two contrapropagating
channels, the generalization of the ν = 2 picture for ν = 5/2
would imply two wide compressible regions, one with 2 < ν <

νmax and the other with 5/2 < ν < νmax, and an incompressible
strip with ν = νmax > 5/2 in the middle. Such nonmonotonic
charge distribution with ν > 5/2 in an area of width s 	 lB
differs significantly from the charge distribution in the absence
of the magnetic field and is unlikely.

What are the signatures of the 113 “negative flux” state in
an Aharonov-Bohm interferometer [1] (Fig. 2)? We consider
two possibilities: (1) only one quasiparticle flavor can tunnel

through the tunneling contacts in Fig. 2; (2) the flavor-
symmetric situation: tunneling amplitudes are identical for
both flavors. The realistic situation is likely in between.
In the first case the current through the interferometer
changes periodically as a function of its area with the
period, corresponding to the additional magnetic flux �1/4 =
hc/e∗ = 4hc/e through the device. In the second case, we
need to add two periodic patterns of period �1/4 due to
the two flavors. Their phase difference �θ depends on the
numbers n1,2 of the localized quasiparticles of the two flavors
inside the interferometer. One finds �θ = (2θ11 − θ12)(n1 −
n2) = π (n1 + n2)mod2π . Hence, the two interference patterns
cancel, if an odd number of quasiparticles are localized in
the device. The same behavior is expected for the Pfaffian
state [1] and the flavor-symmetric 331 state [37]. At the
same time, a more complex Mach-Zehnder setup is known
to unambiguously distinguish the 331 and Pfaffian states [38]
and may help probe the 113 topological order.

All states, reviewed in Ref. [13], exhibit universal tunneling
transport with g = integer/8. According to Eq. (11), the 113
state is different and a very precise tunneling experiment
will show g = g−, where 2/8 < g− < 3/8. Another unique
signature of the 113 state is the existence of two contributions
to the tunneling current with the exponents g− ≈ g+ (11) such
that g− + g+ = 3/4 to the second order in the small parameter
c. The above predictions and our interpretation of the tunneling
experiments assume that edge reconstruction does not have a
major effect on transport. Edge reconstruction is likely in a pure
5/2 liquid [51,52] but we expect disorder to localize additional
modes and thus suppress edge reconstruction effects. This
expectation is compatible with a relatively weak noise due
to edge reconstruction, as observed in a recent experiment
[53].

In conclusion, we propose a topological order whose
properties agree with the existence of an upstream neutral
mode and the observed behavior in tunneling experiments at
ν = 5/2. No other proposed state fits with the existing body of
the experimental facts. Certainly, more experiments are needed
before one can conclusively establish the nature of the 5/2
QHE liquid. In particular, the confirmation of the upstream
neutral mode [18] with a different method [54–59] is desirable.
Further experiments would strengthen the conclusion [8,24,25]
that the measured tunneling exponents are determined by the
physics at the low-energy fixed point. Meanwhile the 113
“negative flux” state should be taken as a serious candidate
to explain the even-denominator QHE at ν = 5/2.

We thank A. Kitaev and A. M. M. Pruisken for useful
discussions. This work was supported by the NSF under Grant
No. DMR-1205715.
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