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Enhancement and reduction of one-dimensional heat conduction with correlated mass disorder
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Short-range order in strongly disordered structures plays an important role in their heat conduction property.
Using numerical and analytical methods, we show that short-range spatial correlation (with a correlation length
of �m) in the mass distribution of the one-dimensional (1D) alloylike random binary lattice leads to a dramatic
enhancement of the high-frequency phonon transmittance but also increases the low-frequency phonon opacity.
High-frequency semiextended states are formed while low-frequency modes become more localized. This results
in ballistic heat conduction at finite lengths but also paradoxically higher thermal resistance that scales as

√
�m in

the L → ∞ limit. We identify an emergent crossover length (Lc) below which the onset of thermal transparency
appears. The crossover length is linearly dependent on but is two orders of magnitude larger than �m. Our results
suggest that the phonon transmittance spectrum and heat conduction in a disordered 1D lattice can be controlled
via statistical clustering of the constituent component atoms into domains. They also imply that the detection
of ballistic heat conduction in disordered 1D structures may be a signature of the intrinsic mass correlation at a
much smaller length scale.
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I. INTRODUCTION

Phonon-mediated heat conduction in low-dimensional
nanostructures is a transport phenomenon of fundamental
and applied interest [1]. In particular, the manipulation
of the thermal conductivity in nanomaterials may enable
the realization of potential applications in thermoelectric
devices, solid state refrigeration, and thermal cloaking [2].
One approach is to use a low-dimensional material such as
nanowires [3–6] in which confinement alters the intrinsic
phononic properties (e.g., anisotropy, dispersion, and mean
free path). The other is to use a bulk material such as Si or Ge
and modify its thermal conductivity (κ) via nanostructuring.
This includes the creation of periodic patterns (e.g., Si-Ge
superlattices [7–10] and nanopore arrays [11–13]), the use
of resonant superstructures [14], and alloying [15]. The
latter appears to be one of the more promising options for
obtaining the reduced thermal conductivity needed for efficient
and cost-effective thermoelectric devices because an abrupt
decrease in κ can be observed upon the introduction of a small
alloy concentration [15]. Alloying can also be combined with
confinement to further reduce the thermal conductivity.

The low thermal conductivity in alloys can be attributed
in part to mode localization which stems from the random
placement of the component atoms and impedes phonon prop-
agation. For the finite three-dimensional disordered harmonic
solid, it has been shown that only delocalized modes contribute
significantly to the heat current [16,17]. In one dimension
(1D) in particular, disorder results in the localization of all
the modes in the thermodynamic (L → ∞) limit [18–20],
although for a finite system, a fraction of the states would
always be sufficiently extended to contribute to the heat
current [21]. Valuable insights into the interplay between
localization and propagation in 1D can be gleaned within
the framework of the disordered harmonic chain (DHC),
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the simplest model of a disordered 1D structure that has
been frequently used to understand the effect of disorder on
heat conduction [20,22,23]. Broadly speaking, we know that
disorder leads to the exponential attenuation of the phonon
transmittance �, i.e., �(ω,L) ∼ exp[−L/λ(ω)], where ω and
λ are the frequency and attenuation length, respectively, in
analogy to the Beer-Lambert law in optics [23], and is a
direct consequence of localization [18–20]. It follows from the
known λ ∝ ω−2 relationship [23] that the thermal conductivity
scales as limL→∞ κ ∝ L0.5 and limL→∞ κ ∝ 〈δm〉−1, where L

and 〈δm〉 are respectively the length and mass fluctuation, for
free boundary conditions [18,24–27].

On the other hand, these semirigorous results have only
been established for the case of heat conduction with purely
random (uncorrelated) mass disorder, in which the position of
the mass fluctuation is uncorrelated across different atomic
sites [18–20,22]. In an alloy, this disorder manifests itself
as the uncorrelated placement of the constituent atoms.
However, when there is statistical clustering of the atoms
in the form of domains, the position of the atoms and the
spatial distribution of mass become correlated, introducing
short-range order and modifying the localization phenomenon.
A considerable amount of work has been done by de Moura
and co-workers [28,29] who showed by using numerical
simulations that long-range correlation leads to the formation
of low-energy extended states in the DHC. Duda and co-
workers have also studied the effects of atomic ordering on
the thermal conductivity by using molecular dynamics simula-
tions [30,31]. Using an analytical approach, Herrera-Gonzalez
and co-workers [32] also studied the relationship between
the scaling of the thermal conductivity with system size and
long-range correlated isotopic disorder. They demonstrate that
specific long-range correlations can suppress or enhance the
heat current contribution of vibrational modes in predefined
frequency windows. However, their results are confined to the
case of weak isotopic disorder and weak coupling between
the lattice and the heat baths, owing to the nature of their
perturbative approximations. Their numerical simulations are
also limited to systems with N � 103, where N is the number
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of atoms. Here, we adopt a numerical approach in this paper
to more fully and systematically explore the implications of
short-range correlated mass disorder for heat conduction,
especially with regard to its dependence on length (N �
1.6 × 105) and the extent of the short-range order in mass
correlation.

In this paper, we report the effect of short-range mass
correlation (or correlated disorder, for short) on phonon
transmittance and heat conduction through a random binary
lattice (RBL), an alloylike realization of the DHC. We restrict
ourselves to the coherent processes and neglect anharmonic
effects from inelastic scattering between phonons. This allows
us to isolate the effects of disorder on heat conduction in
micrometer-scale systems, and we expect our results to be
applicable to 1D alloy nanostructures for which the reduced
thermal conductivity can be traced to mass disorder [33,34]. In
the following sections, we first describe the 1D lattice model
and how correlated disorder is generated for the lattice. The
short-range order in the mass correlation, in the form of an
exponentially decaying spatial correlation, is characterized by
a correlation length of �m. Next, the phonon transmittance is
calculated for the uncorrelated and correlated model. We find
from numerical simulations that the short-range correlation in
the mass distribution, through the formation of domains, leads
to an emergent crossover length scale (Lc) below which the
system is effectively transparent over a wide phonon frequency
range and conducts heat ballistically. At very low frequencies,
mass correlation decreases the attenuation length, while at
higher frequencies, the attenuation length actually increases.
Thus, when L exceeds Lc, one sees a rapid onset of phononic
opacity, resulting in a dramatic increase in the thermal
resistance exceeding that in the DHC with uncorrelated mass
disorder. More intriguingly, Lc is two orders of magnitude
larger than �m. We find a formula that connects the mass
correlation length and the increase in thermal resistance in
long chains. Finally, we discuss the connection between our
purely 1D results to heat conduction in more realistic systems,
and how correlated mass disorder can affect heat conduction
at length scales much larger than the correlation length. We
also interpret the recent findings of ballistic heat conduction
in SiGe-alloy nanowires in Ref. [35] in light of our results.

II. METHODOLOGY

A. Random binary lattice model

We choose as our model system the familiar disordered
harmonic chain first studied by Dyson [36], which we also
used in our earlier paper [23]. Our system differs from that
used in other papers in that the atomic mass is not treated
as a continuous random variable [28,37]. Rather, we have a
random binary lattice, where the positions of the component
atoms are set probabilistically so that the lattice resembles
more realistic alloy systems with mass disorder. For simplicity,
only adjacent atoms are coupled. The atoms are only permitted
to move longitudinally and no attempt is made to include any
anharmonic interaction in our model.

Our system consists of three parts. In the middle, there
is a finite-size “conductor” of N equally spaced atoms. On
either side, there is a homogeneous lead, i.e., a semi-infinite

chain with no mass disorder. In effect, we have a finite
disordered system embedded in an infinite homogeneous 1D
lattice, which also corresponds to a finite disordered harmonic
chain with free boundaries [20,25]. The homogeneous leads
act as heat reservoirs and are coupled to the conductor
via the same harmonic spring terms as those between the
atoms in the disordered lattice. Coupling between adjacent
atoms is governed by the harmonic spring term V (xi,xi+1) =
1
2k(xi − xi+1)2, where k is the spring constant and xi is the
displacement of the ith atom from its equilibrium position. In
the RBL, there are two species of atoms, which we label “A”
and “B.” Species A is taken to be the substitutional impurity and
exists only within the conductor. The rest of the atoms in the
conductor and the leads are of species B. We set the mass of the
A (B) atoms to mA = 9.2 × 10−26 kg (mB = 4.6 × 10−26 kg,
the mass of a Si atom), the spring constant to k = 32 N m−1 (the
approximate strength of the Si-Si bond), and the interatomic
spacing to a = 0.55 nm. Our choice of parameters follows
that in Ref. [38]. The maximum simulated chain length is
N = 1.6 × 105 or L = Na = 88 μm.

B. Short-range order in lattice

We define the mass fluctuation correlation function as
〈δm(x)δm(x ′)〉 = 〈m(x)m(x ′)〉 − 〈m(x)〉2, where m(x) is the
atomic mass at site x. It measures the short-range correlation
in mass fluctuation (or mass correlation, for short). In RBL,
we set the distribution of the constituent atoms such that the
mass correlation has the exponential form

〈δm(x)δm(x ′)〉 = cAcB�m2 exp(−|x − x ′|/�m), (1)

where �m = |mA − mB | and cA (cB) is the concentration of
A (B) atoms. For pure random disorder (�m = 0), the mass
correlation function is 〈δm(x)δm(0)〉 = cAcB(mA − mB)2δx,0.
To generate the lattice configuration with the mass correlation
in Eq. (1), we first divide the conductor into smaller domains
alternating between having all A or all B atoms. The number
of sites in each domain of A atoms (dA) is generated according
to the probability distribution P (d) = 〈dA〉−1 exp(−d/〈dA〉),
where 〈dA〉 = �m[a(1 − cA)]−1 is the average type-A domain
size. The size of each type-B domain (dB) is similarly
defined. For simplicity’s sake, we set cA = cB = 0.5. In the
uncorrelated disorder case, we do not create smaller domains
but instead set the probability of each site having an A (B) atom
to cA (cB). Figure 1 shows the normalized mass correlation
function 〈δm(x)δm(x ′)〉/〈δm(x)2〉 for uncorrelated and corre-
lated (�m = 10a) mass disorder. A schematic representation
of the mass distribution can also be seen in the inset of Fig. 1.

C. Phonon transmittance calculation

There are two approaches to computing the phonon
transmittance through the RBL. The first is the well-known
nonequilibrium Green’s function method [38,39] in which the
transmittance is given by �(ω) = Tr(�L G�R G†), where G is
the nonequilibrium Green’s function and 	L (	R) is the term
coupling the left (right) lead to the conductor. More details
of this method can be found in Refs. [23,38]. The second
approach is via the eigenvalue of the products of transfer
matrices [28,29], which we describe in Appendix A. In either

155459-2



ENHANCEMENT AND REDUCTION OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 90, 155459 (2014)

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

x/a

〈δ
m

(x
)δ

m
(0

)〉
/〈δ

m
2 〉

Ensemble average (Λ
m

 = 0)

Ensemble average (Λ
m

 = 10a)

Analytical fit (Λ
m

 = 10a)

Λ
m

=0

Λ
m

=10a

FIG. 1. (Color online) Plot of the ensemble-average mass corre-
lation function for uncorrelated (diamond symbol, �m = 0) and cor-
related (circle symbol, �m = 10a) mass disorder at cA = cB = 0.5.
The mass correlation is calculated numerically from 100 realizations
of disorder. The analytical fit based on Eq. (1) is also shown (dashed
line). A representative schematic of their mass distributions is shown
in the inset. The correlated distribution consists of much larger
domains of A and B atoms.

case, the ensemble average of the transmittance 〈�(ω)〉 is taken
over 100 independent realizations of mass disorder.

III. RESULTS

A. Length dependence of phonon transmittance

Figure 2 shows the transmittance as a function of L and ω

for (a) �m = 0, (b) �m = 10a, and (c) �m = 50a. In the un-
correlated case in Fig. 2(a), the transmittance function scales as
〈�(ω,L)〉 = exp[−L/λ(ω)], where λ ∝ ω−2. In Fig. 2(b),
when �m = 10a, the attenuation length still scales as λ ∝ ω−2

at low frequencies, but for ω > 1 THz it deviates from that
behavior as it varies weakly with ω at a characteristic length
scale of λ ∼ 0.5 μm. Figure 2(c) also shows a frequency
regime in which λ is weakly ω dependent in the range
0.5–10 THz. The characteristic attenuation length scale is,
however, at ∼2.5 μm. The plots in Fig. 2 show that a
finite �m alters the attenuation length at high frequencies.
To see this more clearly, we plot λ(ω) in Fig. 3 estimated
numerically from (a) the Lyapunov exponent [λ = a(2γ )−1]
and (b) the attenuation of the transmittance function [λ(ω) =∫

dL〈�(ω,L)〉]. There is good agreement between the λ(ω)
values computed from the two methods with the λ from (b)
being slightly larger.

Two trends are immediately clear in Fig. 3. First, a nonzero
�m causes the attenuation length to deviate from λ0 (�m = 0).
At higher frequencies, transmittance is enhanced, i.e., λ > λ0.
As �m increases, the frequency range in which λ is weakly
ω dependent becomes wider. Furthermore, λ 
 �m, and λ(ω)
also increases with �m. Second, transmittance is reduced at
low frequencies, i.e., λ < λ0. The low-frequency phononic
opacity is increased by the mass correlation. The weak ω

dependence of the attenuation length of the higher-frequency
modes also implies that these modes are “semiextended”
and participate in ballistic heat conduction when the lattice
size is comparable to their attenuation lengths. Physically,
the short-range order in the mass distribution results in
the partial delocalization of the higher-frequency modes but

FIG. 2. (Color online) Plot of transmittance function 〈�(ω,L)〉
as a function of chain length L and frequency ω for (a) �m = 0, (b)
�m = 10a, and (c) �m = 50a. In the uncorrelated case (�m = 0),
the transmittance scales as 〈�(ω,L)〉 ∼ exp[−L/λ(ω)], where λ ∝
ω−2. However, for the correlated mass distribution in (b) and (c),
the transmittance has the form 〈�(ω,L)〉 ∼ exp[−L/λ(ω)] but the
attenuation length no longer scales as λ ∝ ω−2. In the intermediate-
frequency range (ω = 1–10 THz) for �m = 50a, the attenuation
length is almost a constant with λ ∼ 3 μm or about two orders of
magnitude larger than �m.

greater localization of the low-frequency modes. This alters the
relative participation of the phonon modes in length-dependent
heat conduction.

B. Thermal resistance

To determine the effect of the altered transmittance on
heat conduction, we compute the length-dependent thermal
resistance R(L) using the Landauer formula [38,39],

R(L) =
[

1

2π

∫ ωL

0
�ω

df (ω)

dT
〈�(ω,L)〉dω

]−1

, (2)
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FIG. 3. (Color online) Plot of the attenuation length λ computed
from (a) the transfer matrix method and (b) the transmittance function,
as a function of frequency ω for different values of the mass
correlation length (�m/a = 0, 2.5, 5, 10, 25, 50, and 75) in the
frequency range of 0.5–10 THz. The attenuation length in (a) is
slightly smaller than in (b). However, the change in λ with �m is
qualitatively the same for both methods. The arrow indicates the
direction of increasing �m. In the uncorrelated case (�m = 0), the
attenuation length scales as λ ∝ ω−2. Mass correlation increases
(decreases) the attenuation length at high (low) frequencies. In the
0.5–10 THz range, the attenuation length for �m = 75a (or 41.25 nm)
is around 3 μm, about two orders of magnitude larger. We interpret
this as the formation of semiextended vibrational states.

where T and � are respectively the temperature and Planck
constant, and f (ω) = [exp( �ω

kBT
) − 1]−1is the Bose-Einstein

occupation factor. ωL is the cutoff frequency determined by
the pristine lead (ωL = √

4k/mB). 〈�(ω,L)〉 is derived from
our nonequilibrium Green’s function (NEGF) computation. In
the high-temperature limit, Eq. (2) becomes limT →∞ R(L) =
[ kB

2π

∫ ∞
0 〈�(ω,L)〉dω]−1.

The high-temperature thermal resistance is shown in
Fig. 4(a) for different values of �m (�m/a = 0, 2.5, 5, 10,
25, 50, and 75). We take the �m = 0 curve (which we term
R0) to be the baseline for comparison. R0(L) scales as L0.5

at all values of L, as predicted for uncorrelated disorder.
However, for correlated disorder (�m �= 0), R(L) deviates
from the R ∝ L0.5 behavior. At small L, R < R0 and is
weakly dependent on L, implying that the system conducts
heat ballistically. This is due to the enhanced attenuation length
and transmittance of the high-frequency modes relative to the
uncorrelated case. We also observe that limL→0 R converges
to the same value (R =

√
8π

kBωL
≈ 1.2 × 1010 K/W) regardless

of the correlation length. This value is determined by the
cutoff frequency and impurity mass. As L → ∞, the relative
contribution of the low-frequency modes grows. Thus, R

increases rapidly and exceeds R0, scaling as L0.5, because
of greater low-frequency phononic opacity.

We quantify the dependence of the thermal resistance on
mass correlation here in the L → ∞ limit. As noted earlier,
the ratio limL→∞ R/R0 grows monotonically with �m. The
thermal resistance in the �m = 0 case [23],

lim
L→∞

R0(L) =
√

4π〈δm2〉L
ka〈m〉k2

B

, (3)

is proportional to the local mass fluctuation
√

〈δm2〉. Equa-
tion (3) is generalized (see Appendix B for the derivation) by
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FIG. 4. (Color online) (a) Plot of the thermal resistance R as a
function of chain length L for different values of the mass correlation
length (�m/a = 0, 2.5, 5, 10, 25, 50, and 75) in the T → ∞ limit.
The arrow indicates the direction of increasing �m. For �m = 0, i.e.,
the uncorrelated case, R scales as R ∝ L0.5, as expected. However,
when mass correlation is finite, the thermal resistance relative to the
uncorrelated case decreases at small L. As L → 0, the resistance
converges to a constant, implying the existence of ballistic heat
conduction. At large L, the thermal resistance goes up as we increase
the mass correlation length. (b) Plot of the rescaled thermal resistance
normalized by [tanh( a

2�m
)]1/2 as a function of L. In the L → ∞ limit,

R[tanh( a

2�m
)]1/2 for different values of �m appears to converge.

replacing 〈δm2〉 with
∑

x〈δm(x)δm(0)〉, which sums over the
mass fluctuation across atomic sites, to yield

lim
L→∞

R(�m,L) =
√

4π
∑

x〈δm(x)δm(0)〉L
ka〈m〉k2

B

, (4)

where 〈δm(x)δm(0)〉 = 〈δm2〉e−|x|/�m , giving us limL→∞
R(�m,L) = R0(L)[tanh( a

2�m
)]−1/2 since limN→∞

∑Na
x=−Na

e−|x|/�m = 1/ tanh( a
2�m

). We recover Eq. (3) from Eq. (4) for
�m = 0, while for large �m we obtain limL→∞ R(�m,L) ∝√

�m. It should be noted that the results in Eqs. (3) and (4)
are derived assuming that the semi-infinite homogeneous
leads act as heat baths and are coupled to the lattice via
the same harmonic spring terms as those between the atoms
in the disordered lattice. We plot the normalized thermal
resistance R[tanh( a

2�m
)]1/2 in Fig. 4(b). In the L → ∞ limit,

R[tanh( a
2�m

)]1/2 for different values of �m converges to R0(L),
suggesting that Eq. (4) captures the effect of mass correlation
on thermal resistance.

C. Crossover length

At low frequency, the attenuation length for the un-
correlated case is limω→0+ λ0(ω) = 4ka〈m〉/(〈δm2〉ω2) [23].
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FIG. 5. (Color online) Plot of the ratio of the crossover length Lc

to the mass correlation length �m as a function of �m. The crossover
length is the minimum attenuation length at which λ(�m,ω) >

tanh( a

2�m
)λ(�m = 0,ω), i.e., λ deviates from the λ ∝ ω−2 behavior.

We observe that Lc is about 250 times (or two orders of magnitude)
larger than �m.

The corresponding attenuation length for correlated dis-
order is limω→0+ λ(�m,ω) = tanh( a

2�m
)λ(�m = 0,ω) (see

Appendix A for the derivation). In the �m → 0 limit, we
recover limω→0+,�m→0 λ(�m,ω) = λ0(ω), while for large �m

we obtain limω→0+ λ(�m,ω) ∝ 1/�m, i.e., the attenuation
length is inversely proportional to the mass correlation length.

We define the crossover length scale Lc as the minimum
attenuation length at which λ(�m,ω) � tanh( a

2�m
)λ(�m =

0,ω), i.e., the smallest attenuation length for the correlated
case is greater than or equal to the rescaled attenuation length
for the uncorrelated length. Physically, Lc sets the length scale
above which Eq. (4) describes the thermal resistance and
the R ∝ L−0.5 scaling behavior applies as the contribution
of the semiextended high-frequency modes vanishes. For
L  Lc, the system becomes thermally transparent [i.e.,
〈�(ω,L)〉 ≈ 1] and heat conduction becomes quasiballistic
given the participation of the semiextended states. Figure 5
shows the numerically computed ratio Lc/�m as a function
of �m. We observe that Lc averages about 250 times (or
two orders of magnitude) larger than �m over the range of
correlation lengths considered. This demonstrates that ballistic
heat conduction over a given length may be associated with a
mass correlation that is two orders of magnitude smaller.

IV. DISCUSSION

Our simulation results imply that heat conduction in alloys
is not merely a function of the mass difference and the relative
concentrations [23] but also depends on the mass distribution.
In the perfect alloy, the solubility of the component species is
assumed to be equal and the atoms are randomly distributed
across lattice sites. However, differences in miscibility and
growth kinetics [40] may lead to phase segregation or the
formation of domains [41], introducing short-range order in the
mass distribution and forming semiextended high-frequency
modes that are spatially larger than the correlation length.
Hence, it is possible for an alloy 1D nanostructure to conduct
heat ballistically at a finite length scale that is much larger
than the average domain size. The key point here is that the
short-range order drastically increases the localization length
of these high-frequency modes, allowing them to contribute

substantially to heat conduction. Furthermore, the weakly
frequency-dependent localization length of the high-frequency
modes sets an intrinsic length scale below which a change in
the length of the lattice does not affect the phonon contribution
to the heat current, i.e., the coherent heat conduction can be
ballistic over a finite length.

The interplay between ordering and heat conduction has
been observed in planar SiGe superlattices [10]. Chen and
co-workers found that the thermal conductivity is considerably
lower in SiGe with pure layers separated by sharp interfaces
than it is in homogeneous SiGe alloys. This is attributed to
the higher scattering efficiency of low-frequency phonons by
the pure domains created from the long-range compositional
order. Moreover, the thermal conductivity is further reduced
when there is some grading in the concentration profile at the
interface which introduces short-range disorder and enhances
the scattering of higher-frequency phonons. This variation in
the thermal conductivity and frequency-dependent scattering
efficiency in the superlattice structure highlights the role of
correlated disorder in heat conduction.

To elucidate the effect of correlated disorder in quasi-
one-dimensional nanostructures, we calculate the thermal
resistance as a function of length for a model 1.1-nm-wide
rectangular Si nanowire that has a 50:50 mix of isotopes at
300 K. To mimic the effect of mass disorder in a Si0.5Ge0.5

nanowire, we set the atomic mass of the lighter and heavier
isotope to be equal to that of Si and Ge, respectively. The
transmittance is calculated using the NEGF method and then
used to compute the thermal resistance [see Eq. (2)] as a
function of temperature. Figure 6 shows the results averaged
over ten instances of disorder for uncorrelated and correlated
(�m = 20a or 11 nm) disorder for nanowires up to 2.5 μm.
We observe that the thermal resistance in the uncorrelated case
is significantly more length dependent than in the correlated
case, where the weak length dependence suggests ballistic
heat conduction and is reminiscent of the experimental results
observed in Ref. [35]. Qualitatively, the length dependence is
also similar to that in Fig. 4(a), where a finite correlation length
also leads to micrometer-scale quasiballistic heat conduction.
While our model represents a very drastic idealization of real
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FIG. 6. (Color online) Thermal resistance as a function of length
for a strongly mass-disordered, 1.1-nm-wide rectangular Si nanowire
with uncorrelated (circle) and correlated (square) disorder. Fifty
percent of the atoms have their masses set equal to that of Ge while
the rest have theirs set to that of Si. The correlation length in the
correlated disorder case is 11 nm.
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SiGe nanowires with anharmonic phonon-phonon interactions
and boundary scattering completely neglected, it does suggest
that even some short-range order can have a dramatic effect
on heat conduction in quasi-one-dimensional nanostructures,
especially when phonon transport is limited by alloy scattering.

Our results also highlight the role of short-range order in
the alloy structure on phonon-mediated heat conduction, a
factor which has not been given significant consideration in
the literature. It is known that the attenuation length λ in the
transmittance is proportional to the mean free path via the
Thouless relation [42,43]. Thus, if the positions of the alloy
atoms are correlated, our results imply that the mean free paths
of the low-frequency phonons are accordingly reduced while
those of the high-frequency modes are extended, modifying the
phonon contribution balance to the thermal conductivity. One
potential application of this is the manipulation of the thermal
conductivity of alloys by controlling the spatial distribution of
the alloy components. One approach to the control of heat flow
has been to engineer the spectrum of the phonons in order to
select for phonons of specific frequencies that can be managed
by a periodic structure [1]. In particular, the fabrication of
thermocrystals [1] requires the suppression of the very-low-
frequency phonons which may be realized by using a SiGe
alloy with finite short-range order.

V. CONCLUSION

We have simulated heat conduction in the 1D alloylike
RBL for correlated and uncorrelated mass disorder. We find
that correlated mass disorder enhances (reduces) the high-
frequency (low-frequency) phonon transmittance, leading to
ballistic heat conduction that persists over a length scale that
is two orders of magnitude larger than the mass correlation
length. However, in very large systems, correlated mass
disorder increases the thermal resistance of the system because
of the greater low-frequency phononic opacity.
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APPENDIX A: ANALYTICAL ESTIMATE OF
LOW-FREQUENCY INVERSE LOCALIZATION LENGTH

FOR CORRELATED MASS DISORDER

We derive an analytical expression for the inverse lo-
calization length in the ω → 0+ limit for a given mass
correlation, using the transfer matrix method [44,45]. The
transmittance through a lattice of N atoms can be written
as the absolute square of the transmission function, i.e.,
�(ω) = |τN |2, where τN is the transmission function with
the amplitude limN→∞ |τN | = exp[−γ (ω)N ]. The inverse
localization length γ (also commonly known as the Lyapunov
exponent) at frequency ω is thus defined as

γ (ω) = lim
N→∞

1

N
ln |τN |, (A1)

and |τN | can be computed from the norm of the product of N

transfer matrices [20], i.e.,

|τN | =
∥∥∥∥∥∥

N∏
p=1

Tp

∥∥∥∥∥∥ . (A2)

The transmittance attenuation length is λ(ω) = a[2γ (ω)]−1,
where a is the interatomic spacing. λ can be directly computed
numerically from Eqs. (A1) and (A2), as in Refs. [28,29], or
estimated analytically in the ω → 0 limit as follows.

The pth transfer matrix in Eq. (A2) is defined as

Tp =
(

2 − xp −1
1 0

)
, (A3)

where xp is the dimensionless random variable corresponding
to the pth atom in the chain such that xp = mpω2/k and
0 � xp � 2, and is a particular formulation of the equation of
motion for the spatial displacement of the pth atom [28].

For weak disorder or at low frequencies, we can find an
analytical approximation for the localization length following
the method described in Refs. [44,45]. Let xp = 〈x〉 + δxp,
where 〈xp〉 = 〈x〉 and 〈δxp〉 = 0. The expression in Eq. (A3)
can thus be linearized as

Tp =
(

2 − 〈x〉 −1
1 0

)
+

(−1 0
0 0

)
δxp.

We choose an eigenvector transformation U , such that T̃p =
U †TpU , to obtain

T̃p =
(

eiθ 0
0 e−iθ

)
+ 1

2i sin θ

(−eiθ −e−iθ

eiθ e−iθ

)
δxp,

where θ is defined by cos θ = 1 − 1
2 〈x〉 and sin θ = [〈x〉 −

〈x〉2/4]1/2. For notational convenience, we define

A =
(

eiθ 0
0 e−iθ

)
,

B = 1

2i sin θ

(−eiθ −e−iθ

eiθ e−iθ

)
,

so that we can write the pth transfer matrix as T̃p = A + Bδxp.
The N product of the transfer matrices is

N∏
p=1

T̃p = (A + Bδx1) · · · (A + BδxN ). (A4)

The expression in Eq. (A4) can be systematically expanded
in powers of δxp. The zeroth-, first-, and second-order terms
are

AN, (A5)

N∑
p=1

Ap−1BAN−pδxp, (A6)

and

N−1∑
p=1

N∑
q=p+1

Ap−1BAq−p−1BAN−qδxpδxq, (A7)
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respectively. To find the low-frequency scaling behavior, we
need only consider the zeroth- and first-order terms. Thus, we
write Eq. (A4) as

N∏
p=1

T̃p ≈ AN +
N∑

p=1

Ap−1BAN−pδxp. (A8)

The (1,1) term of the 2 × 2 matrix in Eq. (A8) is equal to
1/τN and, after some algebra, can be written as eiNθ [1 −
(2i sin θ )−1 ∑N

p=1 δxp]. Hence,

|τN |2 =

⎡
⎢⎣1 + i

cos Nθ

sin θ

N∑
p=1

δxp + 1

4 sin2 θ

⎛
⎝ N∑

p=1

δxp

⎞
⎠

2
⎤
⎥⎦

−1

and its logarithm can be approximated as

ln |τN |2 ≈ − i cos Nθ

sin θ

N∑
p=1

δxp − 1

4 sin2 θ

⎛
⎝ N∑

p=1

δxp

⎞
⎠

2

.

(A9)

The localization length is defined as γ =
− limN→∞ 1

N
〈ln |τN |〉. The ensemble averaging 〈· · · 〉

removes the terms linear in δxn in Eq. (A9). Bearing in
mind that we are only considering the low-frequency scaling
behavior, the expression for the inverse localization length is

lim
ω→0+

γ (ω) = lim
N→∞

1

8N sin2 θ

〈⎛
⎝ N∑

p=1

δxp

⎞
⎠

2〉

= lim
N→∞

1

8N sin2 θ

N∑
p=1

N∑
q=1

〈δxpδxq〉. (A10)

In the correlated case,

〈δxpδxq〉 = 〈δx2〉 exp(−|xp − xq |/�m),

and the double sum in Eq. (A10) becomes

N∑
p=1

N∑
q=1

〈δxpδxq〉 ≈ N〈δx2〉 coth

(
a

2�m

)
.

Therefore, the inverse localization length is

lim
ω→0+

γ (ω) ≈ 〈δm2〉ω2

8k〈m〉 coth

(
a

2�m

)
. (A11)

Note that in the uncorrelated case, the correlation length is
�m = 0 and the expression in Eq. (A11) yields

lim
ω→0+

γ (ω) = 〈δm2〉ω2

8k〈m〉 ,

as expected. We remind the reader that the analytical ex-
pression in Eq. (A11) only applies at low frequencies. At
higher frequencies, this approximation fails and the Lyapunov
exponent is calculated directly from Eq. (A1).

APPENDIX B: THERMAL RESISTANCE IN THE
THERMODYNAMIC (L → ∞) LIMIT FOR CORRELATED

MASS DISORDER

Given the expression for γ (ω) in Eq. (A11), we can obtain
the expression for the thermal resistance in the L → ∞ limit.
The phonon transmittance is

lim
L→∞

〈�(ω,L)〉 = exp[−2γ (ω)L/a]

and the high-temperature length-dependent thermal conduc-
tance is

lim
L→∞

σ (L) = kB

2π

∫ ∞

0
〈�(ω,L)〉dω. (B1)

The integrand in Eq. (B1) vanishes as ω → ∞ and only its
low-frequency part contributes to the integral, allowing us to
use Eq. (A11). Thus, the explicit expression for Eq. (B1) is

lim
L→∞

σ (L) =
[

ka〈m〉k2
B

4π〈δm〉2L
tanh

(
a

2�m

)]1/2

.

As a function of the mass correlation length, the asymptotic
(L → ∞) expression for the thermal resistance R = 1/σ is

lim
L→∞

R(�m,L) = R0(L)√
tanh

(
a

2�m

) ,

where R0(L) = limL→∞ R(�m = 0,L).
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