
PHYSICAL REVIEW B 90, 155458 (2014)

Large-scale conductivity-tensor calculations for Hall effects in time-dependent wave-packet
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We present a computational methodology to evaluate the conductivity tensors of “large-scale” systems in a
magnetic field based on the time-dependent wave-packet diffusion method. As demonstrations, we first apply the
method to the two-dimensional square lattice model with static disorder and confirm appropriate magnetic-field
dependence of conductivities from weak to strong magnetic-field regimes. Furthermore, we extend the method
to apply to realistic systems and evaluate the influence of dynamical disorder on the Hall effects of organic
semiconductors, taking microscopic molecular vibrations into account.

DOI: 10.1103/PhysRevB.90.155458 PACS number(s): 72.80.Le, 73.50.−h, 73.61.Ph, 73.43.−f

I. INTRODUCTION

The measurement of the Hall effect is an indispensable
method in solid-state physics to find the carrier concentrations
n, the sign of charge carriers q, and carrier mobilities μ of
materials [1]. In fact, the Hall-effect measurements have been
utilized for the characterizations of covalent-bond crystals,
such as silicon semiconductors, and so on [2–4].

Recently, the understanding of charge transport properties
of materials strongly modified by time-dependent structural
changes, such as DNA and organic materials, has become a
great scientific challenge. In the past, it was difficult to detect
the Hall voltage of strongly disordered organic materials where
the hopping transport is dominant because such uncorrelated
hopping processes do not contribute to the Hall effect. A
carrier produces the Hall voltage in a magnetic field and
can be detected only when it holds in a coherent phase-
correlated manner. Recently the fabrication of pure organic
semiconductor single crystals with high mobility has become
possible by the progress of synthesis technologies; as a result,
experimental observations of Hall effects have been reported
for the pentacene and rubrene single crystals [5–9]. The
observed power-law temperature dependence of mobilities im-
plies the bandlike transport, not the hopping transport [10–13].
It is expected that further advances of techniques on the pure
crystallization will reveal the intrinsic transport properties of
organic materials by eliminating the extrinsic static disorder.

As for the analysis of Hall effects, the simple semiclassical
expression of the Hall coefficient RH = 1/qn is not sufficient
at all due to the complicated shape of the electronic band
structure and carrier scatterings in realistic materials. We must
definitely go beyond the conventional free-electron treatment
with energy-independent relaxation time to an alternative
theoretical procedure of analysis with efficient computational
approaches for the interpretations of Hall-effect measure-
ments. In recent theoretical approaches to clarify the transport
mechanism of materials strongly affected by time-dependent
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structural changes, the numerical simulation of wave-packet
dynamics in dynamical structural disorder has been considered
one of the most effective methods [14–18]. In our previous
papers, we have reported the molecular vibration effects
on the transport properties of organic semiconductors using
the time-dependent wave-packet diffusion method [16,19,20].
However, the efficient theoretical treatment of Hall effects of
organic materials has been missing.

In this paper, we present a methodology to evaluate the Hall
effects of “large-scale” systems with the use of the quantum
wave-packet dynamics. As demonstrations, we first apply the
present method to the two-dimensional (2D) square lattice
with the Anderson-type static disorder and confirm appropriate
magnetic-field dependence of conductivities from the classical
(weak magnetic field) to quantum (strong magnetic field) Hall-
effect regimes. Furthermore, we extend the method to take
the microscopic molecular vibration effects into account and
evaluate the influence of dynamical disorder on the Hall effects
of organic semiconductors.

II. METHODOLOGY

The electronic conductivities of metals and covalent semi-
conductors have frequently been treated by the semiclassical
Boltzmann equation [21,22], whereas here we employ a purely
quantum theory based on the Kubo formula on the real-space
representation. We note that this method can also treat strongly
disordered materials where the wave number is not a good
quantum number. In our previous paper [23], we discussed the
Hall effects using wave-packet dynamics in applied magnetic
fields. However, since the evaluation of Hall conductivities
requires time-consuming calculations of velocity-correlation
functions 〈v̂x(0)v̂y(t)〉, the maximum system size was, in fact,
restricted to ∼103 sites and thus it was difficult to understand
the Hall effects of materials by taking their microscopic
crystal structures into account. Furthermore, the lower limit
of magnetic-field strength is determined by the maximum
system size because the cyclotron radius cannot become
larger than the system size. This condition prevents us from
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performing thorough quantitative evaluations of Hall effects
from weak to strong magnetic-field regimes. To overcome
these difficulties, we develop a computational approach to
evaluate the conductivity tensor of large-scale systems.

Let us start to formulate the conductivity tensor of materials
with the volume � based on the time-dependent form of the
Kubo formula,

σζξ ≡ e2

�

∫ β

0
dλ

∫ +∞

0
ds Tr[ρ̂(EF )v̂ξ (0)v̂ζ (s + i�λ)], (1)

where β is the inverse temperature 1/kBT , the density
operator is defined as ρ̂(EF ) ≡ exp{(−β(Ĥ − EF )}, v̂ξ (t) ≡
Û †(t)v̂ξ Û (t) is an electron velocity operator in the Heisen-
berg representation along the ξ direction, i�v̂ξ ≡ [Ĥ ,ξ̂ ],
and Û (t = Nt	t) ≡ 


Nt−1
n=0 exp{iĤ (n	t)	t/�} is the time-

evolution operator. By introducing the modified density opera-
tor ρ̃(EF ,uξ ) ≡ exp{−β(Ĥ − EF − uξ v̂ξ )}, the Kubo formula
can be transformed into the following representation [24,25]:

σζξ = lim
t→+∞ σζξ (t), (2)

σζξ (t) = e2

�
lim

uξ →0

∫ t

0
ds

∂

∂uξ

Tr[ρ̃(EF ,uξ )v̂ζ (s)]. (3)

This form has a great advantage for large-scale calculations,
since we evaluate the average velocity using the modified
density operator ρ̃, instead of time-consuming calculations
of the velocity-correlation function in Eq. (1). Furthermore,
to reduce the calculation cost, we compute the time-evolution
operator numerically using the Chebyshev polynomials Tn and
the Bessel functions Jn [14,16],

ei
Ĥ (t)
�

	t =
+∞∑
n=0

e−i a	t
� hni

nJn

(
−b	t

�

)
Tn

[
Ĥ (t) − a

b

]
, (4)

where the energy spectrum of Ĥ is included within the
interval [a − b,a + b], h0 = 1 and hn = 2 (n � 1). The
Chebyshev polynomials obey the following recursive relation:
Tn+1(x) = 2xTn(x) − Tn−1(x) with T0(x) = 1 and T1(x) = x.
When random-phase wave packets |�n〉 are employed as initial
wave packets [26], Tr[·] of Eq. (3) can be evaluated effectively
as follows:

Tr[ρ̃(EF ,uξ )v̂ζ (s)] = N

Nw

Nw∑
n=1

eβEF 〈
n(s)|v̂ζ |
n(s)〉, (5)

where the Boltzmann-weighted random-phase wave pack-
ets at time s are defined by |
n(s)〉 ≡ Û (s) exp{− β

2 (Ĥ −
uξ v̂ξ )}|�n〉. The number of total sites and initial wave packets
are represented by N and Nw, respectively. The use of
random-phase wave packets, instead of the eigenvectors of
the Hamiltonian, enables us to perform the order-N compu-
tation of conductivity tensor, suitable for the use of parallel
computing.

Figure 1 shows the computing time and memory usage as
a function of the number of sites N . The total number of time
step is fixed at 103. We confirm that the order-N calculations
with respect to both the computing time and the memory usage
are realized for the system of up to 108 sites. The maximum
system size corresponds to the 2D (one-layer) organic thin film
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FIG. 1. (Color online) Computing time (red circles) and memory
usage (blue triangles) per one initial wave packet as a function of site
number of the 2D square lattice. The number of time step is set to
1000.

with each side length of a few micrometers. This shows that we
can directly compute the transport properties of macroscopic
materials with the realistic band dispersions from atomistic
treatments. Furthermore, we can evaluate the Hall effects in
realistic magnetic-field strengths from ∼1 T (tesla).

We consider that a magnetic field B is applied perpendicular
to the 2D system on the xy plane and an electric current Ix flows
along the x axis in an external electric field Ex . In this case,
the Hall field Ey appears due to the transverse electromotive
force. The Hall coefficient and Hall mobility are defined as
follows:

RH ≡ Ey

IxB
= σxy(

σxxσyy + σ 2
xy

)
B

, (6)

μH ≡ −RHσ, (7)

where the conductivity σ ≡ Ix/Ex in a magnetic field is
given by σ = (σxxσyy + σ 2

xy)/σyy . The Hall factor γH is
a dimensionless quantity defined by the ratio of the Hall
mobility to the drift mobility,

γH ≡ μH

μ
, (8)

where the drift mobility is obtained from μ = σ/nq. The drift
mobility characterizes the transport along the direction of
applied electric field Ex , while the Hall mobility characterizes
the transport along the Hall field Ey .

Previous experimental researchers consider the Hall factor
to be an indicator of whether or not the charge carrier shows the
band transport properties [5–9]. Therefore, as demonstrations,
we apply our alternative calculation method to two examples
and evaluate the Hall factors.

III. RESULTS AND DISCUSSION

First, let us demonstrate how the present methodology
is effective for the large-scale Hall-effect calculations. We
consider the 2D square lattice of 1500 × 300 sites with a lattice
constant a = 5.0 Å, where the periodic boundary condition is
employed. The Hamiltonian is written by Ĥ = ∑

ij γij ĉ
†
i ĉj +∑

i Wi ĉ
†
i ĉi . The magnetic-field effect is introduced into the
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FIG. 2. (a) DoS of 2D square lattice with static disorder of W =
0.05 eV. (b) Time dependence of diagonal and Hall conductivities
defined in Eq. (3) for the 2D square lattice with static disorder of
W = 0.05 eV at 300 K. Magnitude of applied magnetic field is set at
B = 11 T.

Hamiltonian by multiplying the transfer energy γ 0
ij by the

phase factor γij = γ 0
ij exp{i e

�

∫ Rj

Ri
A(r)dr}, where Ri is the

position vectors of the ith site [27] and A(r) = (0,Bx,0) is the
vector potential for a magnetic field B. The transfer energy
between nearest neighbors γ 0 is set to 0.05 eV, and thus
the bandwidth is equal to 0.4 eV. The Anderson-type static
disorder potential at the ith site is represented by Wi , which
is selected randomly in the energy width [−W/2, +W/2].
Here, we introduce disorder potentials with a distribution of
W = 0.05 eV. The charge concentration is fixed to 1012 cm−2.
The effective mass of square lattice is obtained as m∗ =
�

2/(2γ 0a2) = 2.78 × 10−30 kg. When a magnetic field of 11
T is applied perpendicular to the square lattice, the energy
distance between the nearest-neighbor Landau levels becomes
�ωc = 0.42 meV, where the cyclotron frequency is defined by
ωc = eB/m∗. Since we introduce static disorder potentials,
the Landau peaks in the density of states (DoS) are completely
smeared by the disorder, as shown in Fig. 2(a). Here, the DoS is
defined by ν(E) ≡ Tr[δ(E − Ĥ )]/�, where δ(x) is the Dirac’s
delta function.

Figure 2(b) shows the time-dependent conductivities
obtained from Eq. (3) up to t = 2.5 ps at B = 11 T. We evaluate
the conductivities using Nw = 64 different initial conditions
with a time-step width of 	1 fs. We can confirm that the
calculated time-dependent conductivities converge within the
simulation time. The momentum relaxation time of charge
carrier is evaluated as τx = 265 fs from the intersection
of two tangential lines with respect to σxx(t) at t = 0 and
t → +∞, as shown by two broken lines in Fig. 2(b). Since
ωcτ = 0.17 
 1 is satisfied in the present case, the classical
Hall effect is obtained.

Then we change magnetic-field strengths from 1 to 500 T.
Figure 3 shows the gradual transition from the weak magnetic-
field (classical Hall-effect) regime to the strong magnetic-field
(quantum Hall-effect) regime. We can confirm the typical B

dependence of conductivities, i.e., σxx ∼ const and σxy ∝ B in
the classical Hall-effect regime, while σxx ∝ 1/B2 → 0 and
σxy ∝ 1/B in the quantum Hall-effect regime. It appears that
the boundary between the two regimes is located around B =
70 T. In fact, the boundary condition between the two regimes
is defined by ωcτ = 1, which is satisfied with B = 65.4 T in
the present case. The calculated Hall factor is γH = 1.041,
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FIG. 3. Logarithmic plot of calculated diagonal and Hall con-
ductivities of 2D square lattice with static disorder W = 0.05 eV at
300 K from weak to strong magnetic-field regime. Inset: Normal plot
of conductivities as a function of magnetic-field strength.

which indicates μ 	 μH , similar to the Hall factor of free-
electron model. However, the obtained Hall factor reveals that
the transport mechanism can not be completely understood
by the ideal free-electron model. We confirm that the
Anderson-type disorder creates localized states at the band
edge due to the quantum interference. The diagonal con-
ductivity slightly increases from 21.826 to 21.851 μS with
increasing a magnetic field from 0 to 5.5 T because a
magnetic field disturbs the quantum interference. Since the
majority of states obeying the Fermi distribution at 300 K
are extended (band) states, we can see subtle localization
effects in the calculated conductivities. This result seems to be
consistent with the calculated result of the free-electron-like
Hall effect.

Next, we apply the present method to the transport
properties of rubrene organic semiconductor single crystals
and investigate the Hall effects. Recently, the Hall effects
of rubrene single crystals have been observed in experi-
ments [5,6]. The measured Hall effects show that the Hall
mobility is nearly equal to the field-effect-transistor mobility
around room temperature. This result is considered as evidence
that the bandlike transport is realized in organic semiconductor
single crystals [5–9]. We note that there are theoretical studies
to show that transient localized states are produced by the
strong thermal structural disorder and affect the transport
properties [15,28,29]. Therefore, here we investigate the
influence of intermolecular vibrations on the Hall effects of
rubrene single crystals.

Figure 4(a) shows the herringbone packing structure of
the rubrene single crystal. The material parameters, such
as transfer energies, elastic constants, and electron-phonon
(e-ph) coupling constants, are listed in Table I of Ref. [20].
We employ 1500 × 300 unit cells (900 000 molecules) to
evaluate the transport properties. The calculated DoS of the
highest occupied molecular orbital (HOMO) band is shown in
Fig. 4(b), which is in good agreement with another theoretical
study [30]. To describe the intermolecular vibration effects on
charge transport properties, we compute the time evolution of
electron wave packets combined with the molecular dynam-
ics [20]. We introduce the time-dependent Hamiltonian for the
charge carrier coupled with intermolecular vibrations, which is
defined by Ĥ (t) = ∑

ij γij (t)ĉ†i ĉj , where the time-dependent
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FIG. 4. (Color online) (a) Molecular packing structure of rubrene
organic semiconductor single crystal. The rectangle represents the
unit cell, whose size is 7.18 × 14.40 Å2. (b) DoS of HOMO band of
rubrene single crystal.

transfer energy is given by γij (t) = [γ 0
ij + αxy	Rij (t) +

αz	Z2
ij (t)] exp{i e

�

∫ Rj (t)
Ri (t)

A(r)dr}. The bond-length modula-
tions projected to the xy plane and to the z axis are represented
by 	Rij (t) and 	Zij (t), respectively. The transfer energy is
well described by a linear function of bond-length change 	R,
while the change in transfer energy is given as a parabolic form
with respect to 	Z [20]. We evaluate the conductivities using
Nw = 448 different initial conditions with a time-step width
of 	1 fs. We confirm that the numerical error of time-step
discretization is negligible. The classical Hamiltonian of the
intermolecular vibrations is defined by H = ∑

i(1/2)MṘ2
i +∑

i,j (1/2)Kij	R2
ij + ∑

i(1/2)Kz	Z2
i , where M is the mass

of a single molecule and Kij represents the elastic constant.
For simplicity, we assume the electrons (holes) do not affect
the intermolecular vibrations. The motion of the nth molecule
is given by the following equation: MR̈n = −∑

ij Kij	Rij −∑
i Kz	Zi . We fix the temperature by normalizing the kinetic

energy of intermolecular vibrations at each time step.
We investigate the influence of intermolecular vibrations to

the Hall effect of rubrene single crystals. To clarify the intrinsic
charge transport properties, we introduce only the dynamical
disorder induced by the intermolecular vibrations and exclude
static disorder W . Figure 5(a) shows the time-dependent
behavior of {σζξ (t)} in a magnetic field B = 5.3 T at 300 K.
Here, the charge concentration is fixed at 1012 cm−2. The Hall
conductivities σxy(t) and σyx(t) exhibit the same magnitude
with opposite sign. We find the signature of transient localiza-
tion of charge carriers in σxx(t), which increases at short times
in the ballistic transport regime and then shows a negative
slope after taking the maximum value. The negative slope is
a signal of the occurrence of backscattering underlying the
phenomenon of localization [16,29]. On the other hand, the
localization effect is not clearly seen in σyy(t). In general,
the strength of localization depends on the scattering rate
(1/τ ) because the frequent scatterings enhance the localization
character. The calculated relaxation time τx is ∼100 fs, which
is smaller than τy ∼ 170 fs and those of 2D square lattice
discussed above. This is one of the reasons why the transient
localization effect is only seen in σxx(t) of rubrene crystal.

Figure 5(b) shows the conductivities as a function of
temperature when we apply a magnetic field of 5.3 T. The
obtained conductivities are monotonically decreasing with
increasing temperature. The exponent n of T −n dependence
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FIG. 5. (a) Time-dependent behaviors of conductivities of
rubrene single crystal at 300 K. (b) Temperature dependence of
conductivities σxx , σyy , and σxy . Magnitude of applied magnetic field
is B = 5.3 T. (c) Hall factor γH ≡ μH /μ as a function of temperature.

on σxx and σyy takes values from n = 1 to n = 2. There
is a similarity between the present results and those by
Troisi [15] and by Fratini and Ciuchi [28], who suggest that
the exponent n of the temperature-dependent mobility lies
between n = 1 and n = 2 due to the simultaneous presence of
band states and transient localized states. The Hall conductivity
σxy decreases more rapidly than the diagonal conductivities
as the temperature increases. The exponent n of power-law
temperature dependence lies between n 	 2.5 and 3.

From the calculated conductivities, we obtain the Hall
factor as a function of temperature, as shown in Fig. 5(c).
The obtained Hall factor becomes almost one with very weak
temperature dependence. This shows that the intrinsic carrier
mobility of rubrene single crystals is nearly equal to the Hall
mobility, which is in good agreement with the recent Hall-
effect measurements of rubrene single crystals [5,6], although
the effects of transient localization on the Hall effects require
further detailed investigations. From these calculations, we
can say that the present simulation methodology provides
an effective approach to clarify the unclear Hall effects
of various soft and flexible materials strongly modified by
time-dependent structural changes.

IV. SUMMARY

In summary, we present a computational methodology to
evaluate the conductivity tensors of large-scale systems in
a magnetic field based on the time-dependent wave-packet
diffusion method. We first apply the method to the 2D square
lattice model with static disorders and show appropriate
magnetic-field dependence of conductivities in both weak and
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strong magnetic-field regimes. We then extend the method to
apply to the realistic systems of organic semiconductors. We
study the influence of dynamical disorders on the Hall effects
by taking microscopic molecular vibrations into account and
find that the intrinsic carrier mobility of rubrene single crystals
is nearly equal to the Hall mobility, in good agreement with
recent experimental observations.
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