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Electromagnetic normal modes and Casimir effects in layered structures
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We derive a general procedure for finding the electromagnetic normal modes in layered structures. We apply
this procedure to planar, spherical, and cylindrical structures. These normal modes are important in a variety
of applications. They are the only input needed in calculations of Casimir interactions. We present an explicit
expression for the condition for modes and Casimir energy for a large number of specific geometries. The layers
are allowed to be two-dimensional so graphene and graphenelike sheets as well as two-dimensional electron
gases can be handled within the formalism. Also, forces on atoms in layered structures are obtained. One side
result is the van der Waals and Casimir-Polder interaction between two atoms.
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I. INTRODUCTION

An electromagnetic normal mode is a solution to Maxwell’s
equations in absence of external sources; the mode feeds itself;
the electromagnetic fields are self-sustained. Electromagnetic
fields contain energy. In systems with macroscopic objects
the modes can be divided into three groups: bulk modes,
surface modes, and vacuum modes. All these modes can be
utilized in various applications. They can also be used to find
the interaction energy in the system as caused by correlation
effects. This interaction is traditionally obtained using many-
body theory, often in the form of diagrammatic perturbation
theory based on Feynman diagrams [1,2]. In many systems,
it is easier to obtain the same result using the normal-mode
formulation instead. One can, e.g., show [3] that the exchange
and correlation energy in a metal is nothing but the change
in the zero-point energy of the longitudinal electromagnetic
normal modes in the system when the interaction is turned on.

The bulk modes, modes confined to the interior of the
objects, give rise to interaction energies, like the exchange
and correlation energies, that are important for the stability
and binding of a piece of material. The surface modes [3–5],
modes localized to the surface of objects or to interfaces within
or between objects, are responsible for the surface energy and
surface tension, quantities that determine, e.g., wetting, the
shape of flexible objects, the energy of adhesion, the energy
of cohesion, and the mechanical strength of composites. The
field strengths and gradients can be very high near a surface.
This may lead to catalytic effects, utilized in, e.g., catalytic
converters. The surface modes are responsible for the van
der Waals interaction between mesoscopic and macroscopic
objects. The vacuum modes, modes in empty space, are
responsible for the Lamb shift [6,7]. They are also responsible
for the Casimir interaction [8]. There are speculations that they
might even be behind the dark energy.

Electromagnetic normal modes are very important in many
scientific areas. We briefly touch upon a small selection of
examples. We have mentioned that the field strength from
a normal mode at the surface of an object can be very
high, leading to catalytic effects since this implies a potential
possibility to reduce the energy. The field strength is extra
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high at edges and corners not to mention at small objects like
nanoparticles. The field strength can be strongly enhanced
by letting the modes become populated either by raising the
temperature or by using external electromagnetic fields of
the right frequency. One may stimulate the growth of noble
metal colloidal particles, such as silver and gold by using a
light source to populate the modes. Using monochromatic
light of different laser wavelengths to irradiate an initial
solution of seed crystals, the size and shape of the products
can be controlled. The final size and shape is found to
depend on laser wavelength and power. Nanoparticles of many
different shapes may be produced. A mechanism based on
a wavelength-dependent self-limiting process governed by
the surface plasmon resonance controlling the photochemical
reduction of particles was suggested in Ref. [9]. A coalescence
phase occurs due to strong induced optical forces [10,11].
These forces show resonances at dipolar plasmon wavelengths.

For similar reasons, adding nanoparticles into a chemical
brew can stimulate and speed up chemical reactions. This same
effect makes the normal modes useful in sensor applications.

Due to the normal modes, nanoparticles can be used in
medical applications. Multilayered, multifunctional nanopar-
ticles that were assembled via a layer-by-layer technique were
explored as important new systems for systemic drug and gene
delivery for tumor targeting in a study by Poon et al. [12].

A whole research field has been formed around the
electromagnetic normal mode plasmon or surface plasmon
viz. plasmonics [13] and one device developed in the field
is the plasmonic solar cell. Plasmonic solar cells are a class
of photovoltaic devices that convert light into electricity by
using plasmons [14]. Another competing device with the same
purpose is the nanoantenna or nantenna. A nantenna is a
nanoscopic rectifying antenna, an experimental technology
being developed to convert light to electric power. The idea
was first proposed by Robert L. Bailey in 1972 [15].

The normal modes can also cause a problem. In nanoscience
the van der Waals and Casimir forces are often the dom-
inating forces and can become large. If two parts of a
nano- or micromachine come too close together they may
stick and it can be very difficult or impossible to move
them apart again. This is called stiction. This ends the
very short list of examples showing a small fraction of all
situations where the electromagnetic normal modes are of
importance.
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The original formulation of the Casimir effect was for
planar structures. Of interest here is a work on the van
der Waals interaction in multilayer systems from 1970 [16].
Progress on Casimir force calculations for other geometries
has been slower in coming since these calculations are
more demanding. Spherical and cylindrical geometries have
naturally been objects of focus. Only in 1981 was the Casimir
energy of an infinitely long perfectly conducting cylindrical
shell calculated [17] and the more physical but also much
more involved case of a dielectric cylinder was considered
only in recent years [18–24].

The motivation for the present work is twofold. The first
motivation is to give a general prescription for finding the
normal modes in layered structures. This result will benefit
many different scientific areas. The second is more specific,
viz., to find the mode condition function, which then may
be inserted into the integrals giving the Casimir interaction.
For small enough number of layers, one may find analytical
results for the mode condition function. When the number of
layers increases, the result quickly becomes too complicated
to handle analytically. The expressions will be huge. Then the
result is intended to be found numerically by using a computer.

The material is organized in the following way. Section II is
devoted to how the Casimir and van der Waals interactions are
related to the electromagnetic normal modes of the system.
Section III presents the basic formalism used to find the
normal modes of layered structures. Sections IV–VI treat the
three specific geometries included in this work, viz., planar,
spherical, and cylindrical, respectively. Each of these three
sections have four subsections, A, B, C, and D. The subsections
A and C contain the general nonretarded and retarded,
respectively, results for the geometry at hand. Subsections B
and D each contains a handful of illustrating examples. Finally,
Sec. VII is a summary and conclusion section. The examples
in subsections B and D are illustrated by figures where the
schematic geometry used as input to the formalism is shown.
In some figures, there is a cartoon to the right showing the
actual problem. In some figures, there are two cartoons to the
right. Then the lower cartoon shows the actual problem we
address, while the upper shows the layered structure we use in
the derivation.

II. CASIMIR AND VAN DER WAALS INTERACTIONS IN
TERMS OF ELECTROMAGNETIC NORMAL MODES

At zero temperature, the interaction energy, or Casimir
energy, of a system can be expressed as the sum of the
zero-point energies of all electromagnetic normal modes of
the system

E =
∑

i

1

2
�ωi. (2.1)

(A remark is in place here. It is rather the shift of the zero-point
energies when the interactions, one is concerned with, are
“turned on” that should appear in the equation. See Ch. 3 of
Ref. [3].) In a simple system with a small number of well-
defined modes, this summation may be performed directly. In
most cases, it is more complicated. The complications can,
e.g., be that the modes form continua or that it is difficult
to find the zero-point energies explicitly. An extension of the

FIG. 1. Integration contour in the complex z plane suited for zero-
temperature calculations. Crosses and circles are poles and zeros,
respectively, of the function f (z). The radius of the circle is let to go
to infinity.

so-called argument principle [3,25,26] can then be used to find
the results.

In what follows, we let z denote a general point in the
complex frequency plane, ω a point along the real axis, and
iξ a point along the imaginary axis, respectively. Let us study
a region in the complex frequency plane where two functions
are defined; one, ϕ(z), is analytic in the whole region and
the other, f (z), has poles and zeros inside the region. The
following relation holds for an integration path around the
region:

1

2πi

∮
dzϕ(z)

d

dz
ln f (z) =

∑
ϕ(zo) −

∑
ϕ(z∞), (2.2)

where z0 and z∞ are the zeros and poles, respectively, of
function f (z). If we choose the function f (z) to be the function
in the defining equation for the normal modes of the system,
f (ωi) = 0, the function ϕ(z) as �z/2, and let the contour
enclose all the zeros and poles of the function f (z) then
Eq. (2.2) produces the energy in Eq. (2.1). The second term
on the right-hand side is just the subtraction of the zero-point
energies in absence of the interactions as discussed in the
remark below Eq. (2.1). In the original argument principle,
the function ϕ(z) is replaced by unity and the right-hand side
then equals to the number of zeros minus the number of poles
of the function f (z) inside the integration path. By using this
theorem, we end up with integrating along a closed contour
in the complex frequency plane. In most cases, it is fruitful to
choose the contour shown in Fig. 1. We have the freedom to
multiply the function f (z) with an arbitrary constant without
changing the result on the right-hand side of Eq. (2.2). If we
choose the constant carefully we can make the contribution
from the curved part of the contour vanish and we are only left
with an integration along the imaginary frequency axis:

E = �

4π

∫ ∞

−∞
dξ ln f (iξ ), (2.3)
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where the result was obtained from an integration by parts. At
finite temperatures, it is Helmholtz’ free energy,

F =
∑

i

1

2
�ωi(r) + 1

β
ln(1 − e−β�ωi (r))

=
∑

i

1

β
ln

(
2 sinh

1

2
β�ωi

)
, (2.4)

that is of interest. Also here, we may use the generalized
argument principle but now with ln[2 sinh(β�z/2)]/β instead
of �z/2 for ϕ(z) in the integrand [3,27]. There is one
complication. This new function has poles of its own in the
complex frequency plane. We have to choose our contour so
that it includes all poles and zeros of the function f (z) but
excludes the poles of ϕ(z). The poles of function ϕ(z) all fall
on the imaginary frequency axis. The same contour as in Fig. 1,
is used but now we let the straight part of the contour lie just
to the right of, and infinitesimally close to, the imaginary axis.
We have

F = 1

2πi

∫ −∞

∞
d(iξ )

1

β
ln

(
2 sinh

1

2
β�iξ

)
d

d(iξ )
ln f (iξ )

= �

4π

∫ +∞

−∞
dξ coth

(
1

2
β�iξ

)
ln f (iξ ). (2.5)

The coth function has poles on the imaginary z axis and they
should not be inside the contour. The poles are at

zn = iξn = i
2πn

�β
; n = 0,±1,±2, . . . , (2.6)

and all residues are the same, equal to 2/�β. The integration is
performed along the imaginary axis and the path is deformed
along small semicircles around each pole. The integration path
is illustrated in Fig. 2. The integration along the axis results
in zero since the integrand is odd with respect to ξ . The only

FIG. 2. Integration contour in the complex z plane suited for finite
temperature calculations. Crosses and circles are poles and zeros,
respectively, of the function f (z). The small semicircles are centered
at the poles of the coth function in the integrand. The radius of the
large semicircle is let to go to infinity.

surviving contributions are the ones from the small semicircles.
The result is

F = �

4πi

∑
ξn

2πi

2

2

�β
ln f (iξn) = 1

2β

∑
ξn

ln f (iξn)

(2.7)

ξn = 2πn

�β
; n = 0,±1,±2, . . .

Since the summand is even in n, we can write this as

F = 1

β

∑
ξn

′
ln f (iξn); ξn = 2πn

�β
; n = 0,1,2, . . . ,

(2.8)

where the prime on the summation sign indicates that the
n = 0 term is multiplied by a factor of one half. This factor
of one-half is because there is only one term with |n| = 0 in
the original summation but two for all other integers. When
the temperature goes to zero, the spacing between the discrete
frequencies goes to zero and the summation may be replaced
by an integration:

F = 1

β

∑
ξn

′
ln f (iξn) −−→

T →0

�β

2π

1

β

∫ ∞

0
dξ ln f (iξ )

= �

∫ ∞

0

dξ

2π
ln f (iξ ) = E, (2.9)

and we regain the contribution to the internal energy from the
interactions, the change in zero-point energy of the modes.

To summarize so far, at zero temperature, the internal
interaction energy is obtained from Eq. (2.3), and at finite
temperature, the Helmholtz free interaction energy is obtained
from Eq. (2.8). The only input from the system is the mode
condition function, f (z). Casimir forces, pressures, surface
tensions, works of adhesion and cohesion, and so on are
obtained from how these energies vary when parameters of
the system are changed.

All derivations of the mode conditions are simplified if
retardation effects are neglected. The forces obtained if this
is done are van der Waals forces. If retardation is included in
all steps, the result span the whole separation region covering
both Casimir and van der Waals forces. Since the nonretarded
derivations are so much simpler to perform, the results so
much simpler to handle, and since the distances in the system
often are small enough for retardation effects to be negligible,
we derive the results both without and with retardation effects
included. The treatment in this work is limited to objects of
a certain class of geometrical shape. One of the coordinates
of a proper chosen coordinate system should be constant at
the interface between two media. There are eleven coordinate
systems in which the Helmholtz equation is separable so there
are quite a few shapes where the treatment is applicable. One
should note that the thickness of the layers are not constant in
all geometries. They are in the three specific geometries that
we apply the theory to here.

III. GENERAL LAYERED STRUCTURES

Let the object we study have N layers. A layer is a region
bounded by two interfaces. In the system there are two more
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0 1 2 3 n N N+1....... .......

1 2 30 n-1 n N-1 N

FIG. 3. Schematic illustration of the layered structure. The
numbering of the N + 2 media are indicated at the bottom
of the figure and the numbering of the N + 1 interfaces at the top.
In the general solution of Maxwell’s equations, there are one wave
moving towards the right and one towards the left inside each medium.
If a normal mode is excited, there is no wave moving to the right
in medium 0, which is the ambient medium; if the medium number
N + 1 is unlimited there is no wave moving to the left in that medium.
See the text for more details.

regions, each with just one boundary, a boundary in common
with one of the layers. Of these two we choose the ambient to be
the neighbor to layer number 1. Thus there are N layers, N + 1
interfaces, and N + 2 media. This is illustrated in Fig. 3. The
layers are numbered from 1 to N , the media from 0 to N + 1
and the interfaces from 0 to N . This means that layer number
n is filled with medium number n and interface number n is
the interface to the right of layer number n. In the general
solution of Maxwell’s equations, there are one wave moving
towards the right and one towards the left inside each medium.
If a normal mode is excited, there is no wave moving to the
right in medium 0 which is the ambient medium; if the medium
number N + 1 is unlimited, there is no wave moving to the left
in that medium. We have here somewhat extended the concept
of moving. When we say that a wave moves in a direction, it
either really moves or its amplitude decreases in that direction.
In the retarded treatment, there are transverse electric (TE) and
transverse magnetic (TM) modes. In the planar and spherical
geometries, these are not mixed when crossing an interface.
Then we may solve for these mode types separately. In other
geometries, like the circular cylindrical, they do mix. Then we
will have two modes, one TE and one TM, moving towards
the right and two moving towards the left in each medium.

Let us start with the general procedure when the TE and
TM modes do not mix. We denote the variable that is constant
on each interface by x. Then in a general medium n we have
the wave anR (x) + bnL (x). The boundary conditions at each
interface are the standard ones that the tangential components
of E and H and the normal components of D and B are
continuous across the interface. Only two are needed; the other
two lead to redundant results. Making use of the boundary
conditions at interface n gives rise to two equations, one for
each boundary condition. The left-hand side of each equation
is a linear combination of an and bn, where the coefficients
depend on the dielectric function of medium n. The right-hand
side of the same equation is a linear combination of an+1 and
bn+1, where the coefficients are the same as on the left-hand
side but now depend on the dielectric function of medium
n + 1. These two equations can be expressed in matrix form

as

Ãn(xn) ·
(

an

bn

)
= Ãn+1(xn) ·

(
an+1

bn+1

)
, (3.1)

where Ãn is a 2 × 2 matrix that depends on the dielectric
function in medium n. Operating from the left with the inverse
of this matrix gives(

an

bn

)
= M̃n ·

(
an+1

bn+1

)
, (3.2)

where

M̃n = Ã−1
n (xn) · Ãn+1(xn). (3.3)

We may now find a relation between the coefficients in the
left-most and right-most media:(

a0

b0

)
= M̃ ·

(
aN+1

bN+1

)
, (3.4)

where

M̃ = M̃0 · M̃1 · · · M̃N =
(

M11 M12

M21 M22

)
. (3.5)

Now, we want to find the relation between a0 and b0. This
relation depends on the boundary conditions at the outermost
interfaces in Fig. 3. In order to have self-sustained fields or
normal modes, we must not have any incoming fields from
outside the object. In all cases, this means that a0 = 0. In
the planar case, also the rightmost interface is the boundary
to the outside, which means that bN+1 = 0. In the spherical
and cylindrical cases, the rightmost region is the core and the
boundary condition is that the waves are finite. What effect this
has on the amplitudes of the waves depends on the choice of
functions we make. In our nonretarded treatment, it turns out
that also for spherical and cylindrical objects bN+1 = 0. This
leads to a0 = b0 (M11/M21). In our retarded treatment, on the
other hand, bN+1 = aN+1 follows from the condition of finite
fields. This leads to a0 = b0 [(M11 + M12) / (M21 + M22)].
The only way we can have a nonzero b0 at the same time
as a0 vanishes is that the factor multiplying b0 vanishes. Thus
the function f (ω) in the mode condition is

f (ω) = M11, bN+1 = 0;
(3.6)

f (ω) = M11 + M12, bN+1 = aN+1.

Let us now continue with the general procedure when the TE
and TM modes do mix. Then in a general medium n we have
the wave an

1R1 (x) + bn
1L1 (x) + an

2R2 (x) + bn
2L2 (x), where

the subscript 1 and 2 refers to TM and TE waves, respectively.
Making use of the boundary conditions at interface n gives

Ãn(xn) ·

⎛
⎜⎜⎜⎝

an
1

bn
1

an
2

bn
2

⎞
⎟⎟⎟⎠ = Ãn+1(xn) ·

⎛
⎜⎜⎜⎝

an+1
1

bn+1
1

an+1
2

bn+1
2

⎞
⎟⎟⎟⎠ , (3.7)

where Ãn is now a 4 × 4 matrix, that depends on the dielectric
function in medium n. Operating from the left with the inverse
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of this matrix gives⎛
⎜⎜⎜⎝

an
1

bn
1

an
2

bn
2

⎞
⎟⎟⎟⎠ = M̃n ·

⎛
⎜⎜⎜⎝

an+1
1

bn+1
1

an+1
2

bn+1
2

⎞
⎟⎟⎟⎠ , (3.8)

where

M̃n = Ã−1
n (xn) · Ãn+1(xn). (3.9)

We may now find a relation between the coefficients in left-
most and right-most media:⎛

⎜⎜⎜⎝
a0

1

b0
1

a0
2

b0
2

⎞
⎟⎟⎟⎠ = M̃ ·

⎛
⎜⎜⎜⎝

aN+1
1

bN+1
1

aN+1
2

bN+1
2

⎞
⎟⎟⎟⎠ , (3.10)

where

M̃ = M̃0 · M̃1 · · · M̃N

=

⎛
⎜⎜⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎟⎟⎠ . (3.11)

Now we want to find the relation between (a
0
1

a0
2
) and (b

0
1

b0
2
). This

relation depends on if bN+1
i = 0 or not. If it is, like in the

planar case and in the nonretarded spherical and cylindrical
cases, then(

a0
1

a0
2

)
=

(
M11 M13

M31 M33

)
·
(

M21 M23

M41 M43

)−1

·
(

b0
1

b0
2

)
. (3.12)

If bN+1
i = aN+1

i , like in the retarded spherical and cylindrical
cases, then(

a0
1

a0
2

)
=

(
(M11 + M12) (M13 + M14)

(M31 + M32) (M33 + M34)

)

×
(

(M21 + M22) (M23 + M24)

(M41 + M42) (M43 + M44)

)−1

·
(

b0
1

b0
2

)
.

(3.13)

In order to have self-sustained fields or normal modes, we must
not have any incoming fields from outside the object, i.e., a0

1
and a0

2 must be zero. The only way we can have a nonzero
b0

1 and/or b0
2 at the same time as a0

1 and a0
2 vanish is that the

determinant of the matrix in front of (b
0
1

b0
2
) vanishes. Thus the

condition for modes is∣∣∣∣M11 M13

M31 M33

∣∣∣∣ = 0 (3.14)

if bN+1
i = 0, and∣∣∣∣(M11 + M12) (M13 + M14)

(M31 + M32) (M33 + M34)

∣∣∣∣ = 0 (3.15)

if bN+1
i = aN+1

i .
Now we will describe how the waves we have discussed are

obtained. We treat metals and dielectrics on the same footing,
i.e., induced current and charge densities have contributions

from both bound electrons and conduction electrons. The
dielectric function for a metallic system is

ε̃(ω) = ε(ω) + 4πiσ (ω)/ω, (3.16)

where ε(ω) would be the dielectric function if it were not
for the conduction carriers. These contribute to the screening
through the dynamical conductivity σ (ω). With this choice the
Maxwell’s equations (ME) read

∇ · D = 4πρext,

∇ · B = 0,
(3.17)

∇ × E = −1

c

∂B
∂t

,

∇ × H = 4π

c
Jext + 1

c

∂D
∂t

.

The external charge and current densities are absent in our
system. Furthermore, since we are concerned with normal
modes the time dependence of each field is given by a factor
exp (−iωt), and we have

∇ · D = 0,

∇ · B = 0,
(3.18)

∇ × E = i(ω/c)B,

∇ × H = −i(ω/c)D.

We assume nonmagnetic materials and let μ = 1, where μ is
the magnetic permeability; we are not interested in longitudinal
bulk modes and assume that ε̃(ω) �= 0. We want to keep one
electric and one magnetic field. Since the E and H fields have
the same boundary conditions at an interface we keep these.
Thus we have

∇ · E = 0,

∇ · H = 0,
(3.19)

∇ × E = i(ω/c)H,

∇ × H = −iε̃(ω)(ω/c)E.

Neglecting retardation means letting the speed of light go to
infinity. Then the MEs reduce to

∇ · E = 0, ∇ · H = 0,
(3.20)

∇ × E = 0, ∇ × H = 0.

Equations (3.19) and (3.20) are the basic equations we are
starting from in all structures, Eq. (3.19) in the fully retarded
calculations and Eq. (3.20) when retardation is neglected.

In the nonretarded treatment, since ∇ × E = 0, the E field
is conservative and we may define a scalar potential � such
that E = −∇�. Using the first line of Eq. (3.20) then leads to
Laplace’s equation,

∇2� = 0. (3.21)

So, when we neglect retardation effects, we just solve
Laplace’s equation in each medium and use the proper
boundary conditions at each interface to find the normal modes.

In the fully retarded treatment, we take the curl of the last
two lines of Eq. (3.19) and make use of the other relations to
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find

∇2E + ε̃(ω)(ω/c)2E = 0,
(3.22)

∇2H + ε̃(ω)(ω/c)2H = 0.

Thus both the E and H fields obey the vector-wave equation,
the vector Helmholtz equation. In the planar case, it is
straightforward to solve these in each region but in other
geometries it is not a trivial task. One can solve the problem
by introducing Hertz-Debye potentials π1 and π2. They are
solutions to the scalar wave equation,

∇2π ′ + q2π ′ = 0; π = π ′e−iωt ; q2 = ε̃(ω)(ω/c)2.

(3.23)

We let π1 be the potential that generates TM modes and π2 be
the potential that generates TE modes.

Now we are done with the general formalism and turn to the
three geometries we have chosen to concentrate on. We treat
planar, spherical, and cylindrical geometries in that order.

IV. PLANAR STRUCTURES

We assume that the spatial extension of the interfaces is very
large compared to the thickness of the layers so that we may
treat the interfaces as infinite in two directions. If the thickness
of the object is finite the rightmost medium, n = N + 1, in
Fig. 3, is the ambient as well as the leftmost, n = 0. If not
we have a multiple coated half-space. In both situations, the
modes are solutions with the boundary conditions that there
are no incoming waves in the two outer regions, i.e., there is no
wave moving towards the right in medium n = 0 and no wave
moving towards the left in medium n = N + 1. The fields are
self-sustained; no fields are coming in from outside. We first
treat the simplest case, the nonretarded.

A. Nonretarded main results

In the nonretarded treatment of a planar structure, we let
the waves represent solutions to Laplace’s equation (3.21), in
cartesian coordinates, for the scalar potential �. The interfaces
are parallel to the xy plane and the z coordinate is the
coordinate that is constant on each interface. The solutions
are of the form

�k(r,z) = eik·re±kz, (4.1)

where k is the two-dimensional wave vector in the plane of
the interfaces. We let z increase towards the right in Fig. 3.
We want to find the normal modes for a specific wave vector
k. Then all waves have the common factor exp (ik · r). We
suppress this factor here. Then

R(z) = e−kz; L(z) = e+kz. (4.2)

Using the boundary conditions that the potential and the
normal component of the D field are continuous across
interface n gives

ane−kzn + bnekzn = an+1e−kzn + bn+1ekzn ,
(4.3)

anε̃ne
−kzn − bnε̃ne

kzn = an+1ε̃n+1e
−kzn − bn+1ε̃n+1e

kzn ,

0 1

0

z = 0

ε0 ε1

FIG. 4. The geometry of a single planar interface.

and we may identify the matrix Ãn(zn) as

Ãn(zn) =
(

e−kzn ekzn

ε̃ne
−kzn −ε̃ne

kzn

)
(4.4)

and the matrix M̃n as

M̃n = 1

2ε̃n

(
ε̃n + ε̃n+1 e2kzn (ε̃n − ε̃n+1)

e−2kzn (ε̃n − ε̃n+1) ε̃n + ε̃n+1

)
. (4.5)

Now we have all we need to determine the nonretarded normal
modes in a layered planar structure. We give some examples
in the following section.

B. Nonretarded special results

1. Single planar interface (no layer)

For a single interface, as illustrated in Fig. 4, at z = 0
between two media with dielectric functions ε̃0 and ε̃1, we
have

M̃ = M̃0 = 1

2ε̃0

(
ε̃0 + ε̃1 ε̃0 − ε̃1

ε̃0 − ε̃1 ε̃0 + ε̃1

)
, (4.6)

and the mode condition is

ε̃0(ω) + ε̃1(ω) = 0. (4.7)

Here and in several more places, we give the condition for
modes of a single interface. If we use the corresponding mode
condition function to calculate the energy, in principle, we
obtain the surface energy or interface energy. However, to
get a realistic result, we need to include spatial dispersion
[28], i.e., we need a momentum dependence of the dielectric
function, otherwise the energy diverges. Furthermore this is
not the full story. The surface energy is the energy per unit
area of a newly created surface. To be more specific, it is half
the energy needed to split the solid in two along a plane and to
separate the two halves to infinite distance. The “1/2” comes
from the fact that we create two new surfaces. When we split
the solid, we create surface modes at the surface or rather bulk
modes are pealed off and form surface modes. This change
in collective modes costs energy. This energy constitutes, an
important part of the surface energy. We refer the reader to
an illustrative derivation by Schmit and Lucas [29], which
attracted much attention when it was published. A very similar
calculation was performed independently by Craig [30]. The
derivation is valid for both polar semiconductors or insulators
and metals. In the present work, we do not need to bother about
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0 1

0

z = 0

ε0 ε1 ε0

2

z = d

1

FIG. 5. The one planar layer geometry.

these complications. We do not create interfaces. We just move
them around.

2. Slab or planar gap (one layer)

For a slab, Fig. 5, with interfaces at z = 0 and z = d made
of a medium with dielectric function ε̃1 in an ambient medium
with dielectric function ε̃0, we have

M̃ = M̃0 · M̃1

= 1

2ε̃0

(
ε̃0 + ε̃1 ε̃0 − ε̃1

ε̃0 − ε̃1 ε̃0 + ε̃1

)

× 1

2ε̃1

(
ε̃1 + ε̃0 e2kd (ε̃1 − ε̃0)

e−2kd (ε̃1 − ε̃0) ε̃1 + ε̃0

)
, (4.8)

and the mode condition becomes

[ε̃0(ω) + ε̃1(ω)]2 − e−2kd [ε̃0(ω) − ε̃1(ω)]2 = 0. (4.9)

For a gap, of size d, filled with a medium with dielectric
function ε̃0 between two half-spaces of material with dielectric
function ε̃1, we may reuse the above result with the interchange
of the two dielectric functions. We note that the result will
not change. If the half-spaces are made up by two different
materials with ε̃1 and ε̃2, we find

[ε̃1 + ε̃0][ε̃2 + ε̃0] − e−2kd [ε̃1 − ε̃0][ε̃2 − ε̃0] = 0, (4.10)

where all dielectric function arguments, (ω), have been
suppressed. Equation (4.10) can then be used to find the zero
temperature van der Waals energy per unit area as

E = �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
[ln fk(iξ ) − ln f ∞

k (iξ )]

= �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln f̃k(iξ ), (4.11)

and the finite temperature result as

F = 1

β

∫
d2k

(2π )2

∑
ξn

′
[ln fk(iξn) − ln f ∞

k (iξn)]

= 1

β

∫
d2k

(2π )2

∑
ξn

′ln f̃k(iξn); (4.12)

ξn = 2πn

�β
; n = 0,1,2, . . . ,

respectively, where f ∞
k (ω) is the mode condition function at

infinite separation and

f̃k(ω) = 1 − e−2kd [ε̃1(ω) − ε̃0(ω)][ε̃2(ω) − ε̃0(ω)]

[ε̃1(ω) + ε̃0(ω)][ε̃2(ω) + ε̃0(ω)]
(4.13)

is the mode condition function divided by the function at
infinite separation. The expressions in Eqs. (4.11) and (4.12)
mean that we have chosen the reference system to be the
system when the gap is infinitely wide. This result agrees with
the result in, e.g., Ref. [26]. The van der Waals force per unit
area is obtained as minus the derivative of these energies with
respect to the separation d.

3. Thin planar diluted gas film (one layer)

It is of interest to find the van der Waals force on an atom in
a layered structure. We can obtain this by studying the force on
a thin layer of a diluted gas with dielectric function εg(ω) =
1 + 4πnαat(ω), where αat is the polarizability of one atom
and n the density of atoms (we have assumed that the atom
is surrounded by vacuum; if not the 1 should be replaced by
the dielectric function of the ambient medium and the atomic
polarizability should be replaced by the excess polarizability).
For a diluted gas layer, the atoms do not interact with each
other and the force on the layer is just the sum of the forces
on the individual atoms. So by dividing with the number of
atoms in the film, we get the force on one atom. The layer has
to be thin in order to have a well defined z value of the atom.
Since we will derive the force on an atom in different planar
geometries it is fruitful to derive the matrix for a thin diluted
gas film. This result can be directly used in the derivation of the
van der Waals force on an atom in different planar geometries.

We let the film have the thickness δ and be placed in the
general position z. We only keep terms up to linear order in δ

and linear order in n. We find the result is

M̃gaslayer = M̃0 · M̃1

=
(

1 0
0 1

)
+ (δn)αat4πk

(
0 e2kz

−e−2kz 0

)
.

(4.14)

Now we are done with the gas layer. We will use these
results later in calculating the van der Waals force on an atom
in planar layered structures.

4. 2D planar film (one layer)

In many situations one is dealing with very thin films. These
may be considered 2D. Important examples are a graphene
sheet and a 2D electron gas. In the derivation, we let the film
have finite thickness δ and be characterized by a 3D dielectric
function ε̃3D . We then let the thickness go towards zero. The
3D dielectric function depends on δ as ε̃3D ∼ 1/δ for small δ

and δε̃3D → 2α̃2D/k as δ goes towards zero [31,32]. α̃2D (k,ω)
is the 2D polarizability of the film. We obtain

M̃2D = M̃0 · M̃1

=
(

1 0
0 1

)
+ k(δε̃3D)

2

(
1 e2kz

−e−2kz −1

)
; (4.15)

=
(

1 0
0 1

)
+ α̃2D

(
1 e2kz

−e−2kz −1

)
.
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0

ε = 1

0 1

1

ε = 1 εs

z = δz = 0

εg

2

2 3

z = d

FIG. 6. (Color online) The two planar layer geometry. This ge-
ometry is used to find the atom substrate interaction as illustrated
by the cartoon in the lower right corner. We start from the gas layer
substrate geometry in the upper right corner.

5. Force on an atom next to a substrate (two layers)

The multiple layer results can be used to solve other
problems like in this case the atom substrate force. We start
from the two layer structure in Fig. 6. We let the ambient
be vacuum. The first layer is a thin layer, of thickness
δ, of a diluted gas of atoms of the kind we consider. Its
dielectric function is εg(ω) = 1 + 4πnαat(ω), where αat is the
polarizability of one atom. The density of gas atoms, n, is very
low. We let the first interface be at z = 0 and hence the second
at z = δ. The second layer is a vacuum layer of thickness
d. The remaining medium is the substrate which we let be
infinitely thick and have the dielectric function ε̃s(ω). In what
follows we only keep the lowest-order terms in δ and in n.

The matrix becomes M̃ = M̃0 · M̃1 · M̃2 = M̃gaslayer · M̃2,
where M̃gaslayer is given in Eq. (4.14) with z = 0 and

M̃2 = 1

2

(
(ε̃s + 1) −e2kd (ε̃s − 1)

−e−2kd (ε̃s − 1) (ε̃s + 1)

)
. (4.16)

Now, the matrix element of interest is

M11 = 1
2 [(ε̃s + 1) − 4πkαatδne−2kd (ε̃s − 1)], (4.17)

and the condition for modes is

(ε̃s + 1) − 4πkαatδne−2kd (ε̃s − 1) = 0. (4.18)

The first part of the mode condition function is what one would
have in absence of the atom. It gives the surface modes of the
substrate. We find

f̃k(ω) = 1 − 4πkαat(ω)δne−2kd [ε̃s(ω) − 1]

[ε̃s(ω) + 1]
, (4.19)

where we have chosen the reference system as the system
when the atom is at infinite distance from the substrate. The
interaction energy per atom is

E

nδ
= �

2nδ

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π

× ln

[
1 − 4πkαat(iξ )δne−2kd [ε̃s(iξ ) − 1]

[ε̃s(iξ ) + 1]

]

≈ −�

2

∫
d2k

(2π )2 4πke−2kd

∫ ∞

−∞

dξ

2π
αat(iξ )

[ε̃s(iξ ) − 1]

[ε̃s(iξ ) + 1]

0 1

0

z = 0

ε  = 1ε1

1 2

2

ε  = 1 ε2

z = d+δz = d

εg

3

3 4

z = D

FIG. 7. (Color online) The three planar layer geometry.

= −
∫ ∞

0
dkk22e−2kd

︸ ︷︷ ︸
1

2d3

�

2

∫ ∞

−∞

dξ

2π
αat(iξ )

[ε̃s(iξ ) − 1]

[ε̃s(iξ ) + 1]

= − �

4d3

∫ ∞

−∞

dξ

2π
αat(iξ )

[ε̃s(iξ ) − 1]

[ε̃s(iξ ) + 1]
, (4.20)

where we have divided the energy per unit area with the number
of gas atoms per unit area resulting in the energy per atom.
We have furthermore let the number of atoms per unit area go
towards zero and expanded the logarithm [ln(1 + x) → x].

Thus the force between an atom a distance d from a
substrate is at zero temperature

F (d) = − 3�

2d4

∫ ∞

0

dξ

2π
αat(iξ )

[ε̃s(iξ ) − 1]

[ε̃s(iξ ) + 1]
, (4.21)

and at finite temperature, it is

F (d) = − 3

2d4

1

β

∑
ξn

′
αat(iξn)

[ε̃s(iξn) − 1]

[ε̃s(iξn) + 1]
. (4.22)

6. Force on an atom in between two planar surfaces (three layers)

We refer to Fig. 7 and let the first interface be located at
z = 0 separating one plate with dielectric function ε̃1 from
the ambient medium, which we let be vacuum. Next interface,
at z = d, is the left interface of the gas layer with dielectric
function εg and thickness δ. Thus the third interface is at z =
d + δ. The forth interface is located at z = D and separates
vacuum from the second plate with dielectric function ε̃2. Just
as in the previous section, we only keep the lowest-order terms
in δ and in n. The matrix becomes M̃ = M̃0 · M̃1 · M̃2 · M̃3 =
M̃0 · M̃gaslayer · M̃3, where M̃gaslayer is given in Eq. (4.14) with
z = d and

M̃0 = 1

2ε̃1

(
(ε̃1 + 1) (ε̃1 − 1)

(ε̃1 − 1) (ε̃1 + 1)

)
,

(4.23)

M̃3 = 1

2

(
(ε̃2 + 1) −e2kD(ε̃2 − 1)

−e−2kD(ε̃2 − 1) (ε̃2 + 1)

)
.

Now,

M11 = (
M0

11 M0
12

) · M̃gaslayer ·
(

M3
11

M3
21

)
, (4.24)
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where we have moved the matrix subscript to the superscript
position to make room for the element subscripts. The matrix
element of interest is

M11 = 1

4ε̃1
{[(ε̃1 + 1)(ε̃2 + 1) − e−2kD(ε̃1 − 1)(ε̃2 − 1)]

− 4πkαatδn[e−2kd (ε̃1 − 1)(ε̃2 + 1)

+ e−2k(D−d)(ε̃1+1)(ε̃2−1)]}. (4.25)

The mode condition function after division with the function
in absence of the gas layer is

f̃k = 1 − 4πkαatδn

[
e−2kd (ε̃1−1)

(ε̃1+1) + e−2k(D−d) (ε̃2−1)
(ε̃2+1)

]
[
1 − e−2kD (ε̃1−1)(ε̃2−1)

(ε̃1+1)(ε̃2+1)

] , (4.26)

and the interaction energy per atom becomes

E

nδ
= �

2nδ

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln[f̃k(iξ )]

≈ −�

2

∫
d2k

(2π )2 4πk

∫ ∞

−∞

dξ

2π

×αat

[
e−2kd (ε̃1−1)

(ε̃1+1) + e−2k(D−d) (ε̃2−1)
(ε̃2+1)

]
[
1 − e−2kD (ε̃1−1)(ε̃2−1)

(ε̃1+1)(ε̃2+1)

]
= −�

∫ ∞

0
dkk2

∫ ∞

−∞

dξ

2π

×αat

[
e−2kd (ε̃1−1)

(ε̃1+1) + e−2k(D−d) (ε̃2−1)
(ε̃2+1)

]
[
1 − e−2kD (ε̃1−1)(ε̃2−1)

(ε̃1+1)(ε̃2+1)

] . (4.27)

Thus the force on the atom is

F (d) = −4�

∫ ∞

0
dkk3

∫ ∞

0

dξ

2π
αat(iξ )

×
[ε̃1(iξ )−1]
[ε̃1(iξ )+1]e

−2kd − [ε̃2(iξ )−1]
[ε̃2(iξ )+1]e

−2k(D−d)

1 − [ε̃1(iξ )−1][ε̃2(iξ )−1]
[ε̃1(iξ )+1][ε̃2(iξ )+1]e

−2kD
, (4.28)

and at finite temperature, it is

F (d) = − 4

β

∫ ∞

0
dkk3

∑
ξn

′αat(iξn)

×
[ε̃1(iξn)−1]
[ε̃1(iξn)+1]e

−2kd − [ε̃2(iξn)−1]
[ε̃2(iξn)+1]e

−2k(D−d)

1 − [ε̃1(iξn)−1][ε̃2(iξn)−1]
[ε̃1(iξn)+1][ε̃2(iξn)+1]e

−2kD
. (4.29)

7. Force on an atom next to a 2D planar film (three layers)

In this section, we derive the van der Waals interaction of
an atom near a very thin film. We start from the three layer
structure in Fig. 8. We take the limit when the thickness of
the film goes to zero. The matrix becomes M̃ = M̃0 · M̃1 ·
M̃2 · M̃3, where M̃0 · M̃1 is the matrix for the thin film, and
M̃2 · M̃3 is the matrix for the gas film. These matrices are given
in Eqs. (4.15) and (4.14), respectively.

The matrices are

M̃0 · M̃1 =
(

1 0
0 1

)
+ α̃2D

(
1 1

−1 −1

)
,

(4.30)

M̃2 · M̃3 =
(

1 0
0 1

)
+ (δn)αat4πk

(
0 e2kd

−e−2kd 0

)
,

0 1

0

z=0

1 3

2

z = d+δz=δ

εg

4

2

3

z= d

ε = 1 ε = 1ε3D ε = 1

FIG. 8. (Color online) The geometry of a thin gas layer at a
distance d from a thin film. This geometry is used to find the
interaction between an atom and a thin film.

and the element of interest to us is

M11 = 1 + α̃2D − (δn)αat4πkα̃2De−2kd . (4.31)

The first two terms produce the modes in the thin film alone
and are not affected by the atom. We choose as our reference
system the system when the atom is at infinite distance from
the film. To get the mode condition function, we divide M11

with the first two terms. The mode condition function becomes

f̃k = 1 − (δn)4πkαat α̃2D

1 + α̃2D
e−2kd . (4.32)

From this we find the energy per atom is

E

nδ
= �

2nδ

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln[f̃k(iξ )]

≈ −�

∫ ∞

0
dkk2e−2kd

∫ ∞

−∞

dξ

2π
αat(iξ )

α̃2D(k,iξ )

1 + α̃2D(k,iξ )
,

(4.33)

and the force on the atom is

F (d) = −2�

∫ ∞

0
dkk3e−2kd

∫ ∞

−∞

dξ

2π
αat(iξ )

α̃2D(k,iξ )

1 + α̃2D(k,iξ )
.

(4.34)

8. Interaction between two 2D planar films (three layers)

We start from the three layer structure in Fig. 8. We take
the limit when the thickness of the films goes to zero. The
matrix becomes M̃ = M̃0 · M̃1 · M̃2 · M̃3, where M̃0 · M̃1 is
the matrix for one of the two thin films and M̃2 · M̃3 is the
matrix for the other. These matrices are given in Eq. (4.15) the
first for z = 0 and the second for z = d.

The matrices are

M̃0 · M̃1 =
(

1 0
0 1

)
+ α̃2D

(
1 1

−1 −1

)
,

(4.35)

M̃2 · M̃3 =
(

1 0
0 1

)
+ α̃2D

(
1 e2kd

−e−2kd −1

)
,

and the element of interest to us is

M11 = 1 + 2α̃2D + (1 − e−2kd )(α̃2D)2

= (1 + α̃2D)2 − e−2kd (α̃2D)2. (4.36)

155457-9



BO E. SERNELIUS PHYSICAL REVIEW B 90, 155457 (2014)

The first term produces the modes in the two thin films if
they are so far apart that they are not affecting each other.
We choose as our reference system the system when the two
films are at infinite distance from each other. To get the mode
condition function, we divide M11 with the first term. The
mode condition function becomes

f̃k = 1 − e−2kd

(
α̃2D

1 + α̃2D

)2

. (4.37)

From this we find the energy per unit area

E = �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln[f̃k(iξ )]

= �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln

[
1 − e−2kd

(
α̃2D(k,iξ )

1 + α̃2D(k,iξ )

)2]
.

(4.38)

This agrees completely with the results of Ref. [33].

9. Force on an atom in between two 2D planar films (five layers)

Here we let the first 2D film be located at z = 0, the thin
diluted gas film at z = d, and the second 2D film at D. There
is vacuum between the three films. Thus the matrix becomes
M̃ = M̃0 · M̃1 · M̃2, where

M̃0 =
(

1 0
0 1

)
+ α̃2D

(
1 1

−1 −1

)
,

M̃1 =
(

1 0
0 1

)
+ δnαat4πk

(
0 e2kd

−e−2kd 0

)
, (4.39)

M̃2 =
(

1 0
0 1

)
+ α̃2D

(
1 e2kD

−e−2kD −1

)
.

The matrix element of interest is

M11 = (1 + α̃2D)2 − e−2kD(α̃2D)2

− δnαat4πkα̃2D(1 + α̃2D)(e−2kd + e−2k(D−d)). (4.40)

The first term is the mode condition for the two films at infinite
separation in absence of the gas layer. The first two terms is
the mode condition in absence of the gas layer [see Eq. (4.36)].
The mode condition function after division with the function
in absence of the gas layer is

f̃k = 1 − 4πkαatδn

α̃2D

1+α̃2D [e−2kd + e−2k(D−d)][
1 − e−2kD

(
α̃2D

1+α̃2D

)2] , (4.41)

and the interaction energy per atom becomes

E

nδ
= �

2nδ

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln[f̃k(iξ )]

≈ −�

2

∫
d2k

(2π )2 4πk

∫ ∞

−∞

dξ

2π
αat

α̃2D

1+α̃2D [e−2kd+e−2k(D−d)][
1 − e−2kD

(
α̃2D

1+α̃2D

)2]
= −�

∫ ∞

0
dkk2

∫ ∞

−∞

dξ

2π
αat(iξ )

×
α̃2D (k,iξ )

1+α̃2D (k,iξ ) [e
−2kd + e−2k(D−d)][

1 − e−2kD
(

α̃2D(k,iξ )
1+α̃2D (k,iξ )

)2] . (4.42)

Thus the force on the atom is

F (d) = −4�

∫ ∞

0
dkk3

∫ ∞

0

dξ

2π
αat(iξ )

×
α̃2D(k,iξ )

1+α̃2D (k,iξ ) [e
−2kd − e−2k(D−d)][

1 − e−2kD
(

α̃2D(k,iξ )
1+α̃2D (k,iξ )

)2] , (4.43)

and at finite temperature, it is

F (d) = − 4

β

∫ ∞

0
dkk3

∑
ξn

′αat(iξn)

×
α̃2D(k,iξn)

1+α̃2D (k,iξn) [e
−2kd − e−2k(D−d)][

1 − e−2kD
(

α̃2D(k,iξn)
1+α̃2D (k,iξn)

)2] . (4.44)

Now, we are done with the nonretarded results for planar
structures and turn to the more complicated fully retarded
treatment.

C. Retarded main results

In the planar geometry, nothing is gained by introducing
the two Hertz-Debye potentials, π1 and π2. We study the fields
themselves. The solution to the vector Helmholtz equation is a
field with the spatial variation exp(ik · r) exp(±γikz), where k
is a two-dimensional wave vector in the plane of the interfaces,
r is the two dimensional component of the position vector in
the xy plane, and

γi =
√

1 − ε̃i(ω/ck)2, γ (0) =
√

1 − (ω/ck)2. (4.45)

We will make use of the Fresnel coefficients. The amplitude
transmission and reflection coefficients for waves impinging
on an interface between medium i and j from the i side are

t si,j = 2ni cos θi

ni cos θi + nj cos θj

= 2γi

γi + γj

,

rs
i,j = ni cos θi − nj cos θj

ni cos θi + nj cos θj

= γi − γj

γi + γj

,

(4.46)

t
p

i,j = 2ni cos θi

nj cos θi + ni cos θj

= 2
√

ε̃i ε̃j γi

ε̃j γi + ε̃iγj

,

r
p

i,j = nj cos θi − ni cos θj

nj cos θi + ni cos θj

= ε̃j γi − ε̃iγj

ε̃j γi + ε̃iγj

,

where s and p stands for s and p polarizations, respectively,
or TE and TM, respectively. Now the wave in Fig. 9 with
amplitude an+1 gets contribution from a transmitted part of
the wave with amplitude an and a reflected part from the wave
with amplitude bn+1. Similarly, the wave with amplitude bn

gets contribution from a transmitted part of the wave with
amplitude bn+1 and a reflected part of the wave with amplitude
an. The fresnel coefficients are valid in our formalism if the
interface is at z = 0. Then we have

an+1 = antn,n+1 + bn+1rn+1,n,
(4.47)

bn = an+1rn,n+1 + bn+1tn+1,n,
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FIG. 9. The amplitudes of the waves at the interface number n.

and after rearrangement and making use of the general relation
tn,n+1tn+1,n − rn,n+1rn+1,n = 1, we find(

an

bn

)
= 1

tn,n+1

(
1 rn,n+1

rn,n+1 1

)
·
(

an+1

bn+1

)
. (4.48)

Now, with the position of the interface at z = zn, we have(
ane−γnkzn

bneγnkzn

)
= 1

tn,n+1

(
1 rn,n+1

rn,n+1 1

)
·
(

an+1e−γn+1kzn

bn+1eγn+1kzn

)
,

(4.49)

or(
an

bn

)
= M̃n

(
an+1

bn+1

)
;

M̃n = 1

tn,n+1

(
e−(γn+1−γn)kzn e(γn+1+γn)kznrn,n+1

e−(γn+1+γn)kznrn,n+1 e(γn+1−γn)kzn

)
.

(4.50)

Now we have all we need to determine the fully retarded
normal modes in a layered planar structure. We give some
examples in the following section.

D. Retarded special results

1. Single planar interface (no layer)

For a single interface at z = 0 between two media with
dielectric functions ε̃0 and ε̃1, as illustrated in Fig. 4, we have

M̃ = M̃0 = 1

t0,1

(
1 r0,1

r0,1 1

)
. (4.51)

For TE modes, the condition for modes is

γ0(k,ω) + γ1(k,ω) = 0. (4.52)

This equation has no solution so there are no TE modes at a
single interface. For the TM modes, the condition for modes
is

ε̃1(ω)γ0(k,ω) + ε̃0(ω)γ1(k,ω) = 0. (4.53)

This equation has solutions, so there are TM modes at a single
interface.

2. Slab or a planar gap (one layer)

For a slab (see Fig. 5) with interfaces at z = 0 and z = d

made of a medium with dielectric function ε̃1 in an ambient
medium with dielectric function ε̃0, we have

M̃ = M̃0 · M̃1

= 1

t0,1

(
1 r0,1

r0,1 1

)

× 1

t1,0

(
e−(γ0−γ1)kd e(γ0+γ1)kdr1,0

e−(γ0+γ1)kdr1,0 e(γ0−γ1)kd

)
, (4.54)

and the matrix elements are

M11 = 1

t0,1t1,0
[e−(γ0−γ1)kd + e−(γ0+γ1)kdr0,1r1,0],

M12 = 1

t0,1t1,0
[e(γ0+γ1)kdr1,0 + e(γ0−γ1)kdr0,1],

(4.55)

M21 = 1

t0,1t1,0
[e−(γ0−γ1)kdr0,1 + e−(γ0+γ1)kdr1,0],

M22 = 1

t0,1t1,0
[e(γ0+γ1)kdr0,1r1,0 + e(γ0−γ1)kd ].

For TE modes, we have

(γ0 + γ1)2 − e−2γ1kd (γ0 − γ1)2 = 0, (4.56)

and the mode condition function is

f TE
k (ω) = [γ0(ω) + γ1(ω)]2 − e−2γ1(ω)kd [γ1(ω) − γ0(ω)]2.

(4.57)

Note that we, as before, have identified the mode condition
function as the numerator of the expression in the condition
for modes.

For TM modes, we have

(ε̃1γ0 + ε̃0γ1)2 − e−2γ1kd (ε̃1γ0 − ε̃0γ1)2 = 0, (4.58)

and the mode condition function is

f TM
k (ω) = [ε̃1(ω)γ0(ω) + ε̃0(ω)γ1(ω)]2

− e−2γ1(ω)kd [ε̃0(ω)γ1(ω) − ε̃1(ω)γ0(ω)]2. (4.59)

For a gap, of size d, filled with a medium with dielectric
function ε̃0 between two half-spaces of material with dielectric
function ε̃1 we may reuse the above result with the interchange
of the two dielectric functions. We note that in this case,
when retardation is included, the result will change—it did
not change in the nonretarded treatment. We have

f TE
k (ω) = [γ0(ω) + γ1(ω)]2 − e−2γ0(ω)kd [γ1(ω) − γ0(ω)]2,

f TM
k (ω) = [ε̃1(ω)γ0(ω) + ε̃0(ω)γ1(ω)]2 (4.60)

− e−2γ0(ω)kd [ε̃0(ω)γ1(ω) − ε̃1(ω)γ0(ω)]2.
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If the half-spaces are made up from two different materials with ε̃1 and ε̃2, we find

f TE
k (ω) = [γ0(ω) + γ1(ω)][γ0(ω) + γ2(ω)] − e−2γ0(ω)kd [γ1(ω) − γ0(ω)][γ2(ω) − γ0(ω)],

f TM
k (ω) = [ε̃1(ω)γ0(ω) + ε̃0(ω)γ1(ω)][ε̃2(ω)γ0(ω) + ε̃0(ω)γ2(ω)] (4.61)

− e−2γ0(ω)kd [ε̃0(ω)γ1(ω) − ε̃1(ω)γ0(ω)][ε̃0(ω)γ2(ω) − ε̃2(ω)γ0(ω)].

When we want to calculate the Casimir energy between two half-spaces we choose the reference system to be the system when
the separation is infinite. Then the mode condition functions are

f̃ TE
k (ω) = 1 − e−2γ0kd [γ1 − γ0][γ2 − γ0]

[γ0 + γ1][γ0 + γ2]
= 1 − e−2γ0kdrs

1,2r
s
3,2 = 1 − e−2γ0kdrs

2,1r
s
2,3;

(4.62)

f̃ TM
k (ω) = 1 − e−2γ0kd [ε̃0γ1 − ε̃1γ0][ε̃0γ2 − ε̃2γ0]

[ε̃1γ0 + ε̃0γ1][ε̃2γ0 + ε̃0γ2]
= 1 − e−2γ0kdr

p

1,2r
p

3,2 = 1 − e−2γ0kdr
p

2,1r
p

2,3,

where we have used the amplitude reflection coefficients from Eq. (4.46). We have suppressed the argument ω from all functions.
These results agree with the standard Lifshitz formulation [3,34,35]. Now, let the two half-spaces be ideal metals. We let the
dielectric functions of the half-spaces go to infinity. The amplitude reflection coefficient for a vacuum ideal-metal interface is
−1 for s-polarized waves and +1 for p-polarized waves, respectively. Then

E = �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π

[
ln f̃ TM

k (iξ ) + ln f̃ TE
k (iξ )

] = �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
[ln(1 − e−2γ0kd ) + ln(1 − e−2γ0kd )]

= �

2π2

∫ ∞

0
dkk

∫ ∞

0
dξ ln[1− exp(−2

√
1+(ξ/ck)2kd)] =

∣∣∣∣let k → k/2d
let ξ → ξ/2d

∣∣∣∣
= �

16π2d3

∫ ∞

0
dkk

∫ ∞

0
dξ ln[1− exp(−

√
k2 + (ξ/c)2)] = − �cπ2

720d3
, (4.63)

which is the Casimir classical result for the interaction energy between two ideal metal half-spaces [8].

3. Thin planar diluted gas film (one layer)

It is of interest to find the force on an atom in a layered
structure. We can obtain this by studying the force on a thin
layer of a diluted gas with dielectric function εg(ω) = 1 +
4πnαat(ω), where αat is the polarizability of one atom and
n the density of atoms (we have assumed that the atom is
surrounded by vacuum; if not the 1 should be replaced by
the dielectric function of the ambient medium and the atomic
polarizability should be replaced by the excess polarizability).
For a diluted gas layer, the atoms do not interact with each
other and the force on the layer is just the sum of the forces

on the individual atoms. So by dividing with the number of
atoms in the film, we get the force on one atom. The layer has
to be thin in order to have a well defined z value of the atom.
Since we will derive the force on an atom in different planar
geometries, it is fruitful to derive the matrix for a thin diluted
gas. This result can be directly used in the derivation of the
force on an atom in different planar geometries.

We let the film have the thickness δ and be placed in the
general position z. We only keep terms up to linear order in δ

and linear order in n. We find that the result up to linear order
in δ is

M̃0 · M̃1 =
(

1 0
0 1

)
+ δk

⎛
⎝−γ0 + γ1

[ 1+(r0,1)2

t0,1t1,0

] − 2γ1r0,1

t0,1t1,0
e2γ0kz

2γ1r0,1

t0,1t1,0
e−2γ0kz γ0 − γ1

[ 1+(r0,1)2

t0,1t1,0

]
⎞
⎠ . (4.64)

To go further and find the result to lowest order in n, we have to specify the mode type.
For TM modes, we get

M̃TM
gaslayer =

(
1 0
0 1

)
+ (δn)2πkαat

γ (0)

(
−(

ω
ck

)2 −[
2 − (

ω
ck

)2]
e2γ (0)kz[

2 − (
ω
ck

)2]
e−2γ (0)kz

(
ω
ck

)2

)
, (4.65)

and for TE modes,

M̃TE
gaslayer =

(
1 0
0 1

)
+ (δn)2πkαat(ω/ck)2

γ (0)

( −1 −e2γ (0)kz

e−2γ (0)kz 1

)
. (4.66)

Now we are done with the gas layer. We will use these results later in calculating the force on an atom in planar layered
structures.
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4. 2D planar film (one layer)

In many situations, one is dealing with very thin films.
These may be considered 2D (two dimensional). Important
examples are a graphene sheet and a 2D electron gas. In
the derivation, we let the film have finite thickness δ and be
characterized by a 3D dielectric function ε3D . We then let the
thickness go towards zero. The 3D dielectric function depends
on δ as ε3D ∼ 1/δ for small δ and δε3D → 2α2D/k as δ goes
towards zero [31,32]. We may now start from Eq. (4.64) use
the proper reflection and transmission coefficients for the mode
type under consideration and let δ go towards zero.

For the TM modes, we obtain

M̃TM
2D =

(
1 0

0 1

)
+ γ (0)k(δε̃3D)

2

(
1 −e2γ (0)kz

e−2γ (0)kz −1

)

=
(

1 0

0 1

)
+ α̃2Dγ (0)

(
1 −e2γ (0)kz

e−2γ (0)kz −1

)
, (4.67)

and for the TE modes, we find

M̃TE
2D =

(
1 0

0 1

)
− (δε̃3D)k(ω/ck)2

2γ (0)

(
1 e2γ (0)kz

−e−2γ (0)kz −1

)

=
(

1 0

0 1

)
− α̃2D (ω/ck)2

γ (0)

(
1 e2γ (0)kz

−e−2γ (0)kz −1

)
.

(4.68)

5. Force on an atom next to a planar substrate (two layers)

We start from the two layer structure in Fig. 6. We let
the ambient be vacuum. The first layer is the thin gas layer
treated in Sec. IV D 3. We place it at z = 0. The second layer
is a vacuum layer of thickness d. The remaining medium is
the substrate which we let be infinitely thick and have the
dielectric function ε̃s(ω). The matrix becomes M̃ = M̃0 · M̃1 ·
M̃2 = M̃gaslayer · M̃2, where we already know the first matrix.
Now,

M̃2 = 1

t2,3

(
e−(γ3−γ2)kd e(γ3+γ2)kdr2,3

e−(γ3+γ2)kdr2,3 e(γ3−γ2)kd

)

= 1

t2,3

(
e−(γs−γ (0))kd e(γs+γ (0))kdr2,3

e−(γs+γ (0))kdr2,3 e(γs−γ (0))kd

)
. (4.69)

For TM modes, it becomes

M̃TM
2 = ε̃sγ

(0) + γs

2
√

ε̃sγ (0)

×
(

e−(γs−γ (0))kd e(γs+γ (0))kd ε̃sγ
(0)−γs

ε̃sγ (0)+γs

e−(γs+γ (0))kd ε̃sγ
(0)−γs

ε̃sγ (0)+γs
e(γs−γ (0))kd

)
,

(4.70)

and for TE modes,

M̃TE
2 = γ (0) + γs

2γ (0)

×
(

e−(γs−γ (0))kd e(γs+γ (0))kd γ (0)−γs

γ (0)+γs

e−(γs+γ (0))kd γ (0)−γs

γ (0)+γs
e(γs−γ (0))kd

)
. (4.71)

So the condition for TM modes is

1 − (δn)2πkαat

γ (0)

×
{(

ω

ck

)2

+ e−2γ (0)kd

[
2 −

(
ω

ck

)2]
ε̃sγ

(0) − γs

ε̃sγ (0) + γs

}
= 0,

(4.72)

and for TE modes,

1− (δn)2πkαat(ω/ck)2

γ (0)

[
1 + e−2γ (0)kd γ (0) − γs

γ (0) + γs

]
= 0. (4.73)

The mode condition function for TM modes is

f TM
k = 1 − (δn)2πkαat

γ (0)

{(
ω

ck

)2

+ e−2γ (0)kd

×
[

2 −
(

ω

ck

)2]
ε̃sγ

(0) − γs

ε̃sγ (0) + γs

}
, (4.74)

and for TE modes,

f TE
k = 1 − (δn)2πkαat(ω/ck)2

γ (0)

[
1 + e−2γ (0)kd γ (0) − γs

γ (0) + γs

]
.

(4.75)

Note the first part in each mode condition function,

f 0
k = 1 − (δn)αat 2πk(ω/ck)2

γ (0)
. (4.76)

It does not depend on the distance of the atom to the substrate.
It is the effect of the contribution from the atom to the screening
and the resulting change of the dispersion curves for the
vacuum modes. This type of interaction was used by Feynman
to derive the Lamb shift of the hydrogen atom [36]. We see that
it contributes the same in both type of modes. We divide with
this function since it leads to a constant energy, independent
of the atom distance to the interface. So the relevant mode
condition functions relative infinite separation are

f̃ TM
k = 1 − (δn)αat 2πk[2 − (ω/ck)2]

γ (0)
e−2γ (0)kd ε̃sγ

(0) − γs

ε̃sγ (0) + γs

,

f̃ TE
k = 1 − (δn)αat 2πk(ω/ck)2

γ (0)
e−2γ (0)kd γ (0) − γs

γ (0) + γs

. (4.77)

The interaction energy per atom becomes

E

nδ
= �

nδ

∫
d2k

(2π)2

∫ ∞

0

dξ

2π

{
ln

[
f̃ TE

k (iξ )
] + ln

[
f̃ TM

k (iξ )
]}

= 2π�

∫
d2k

(2π )2 k

∫ ∞

0

dξ

2π
αat(iξ )e−2γ (0)(iξ )kd

{
(ξ/ck)2

γ (0)(iξ )

γ (0)(iξ ) − γs(iξ )

γ (0)(iξ ) + γs(iξ )
+ [2 + (ξ/ck)2]

γ (0)(iξ )

γs(iξ ) − ε̃s(iξ )γ (0)(iξ )

γs(iξ ) + ε̃s(iξ )γ (0)(iξ )

}
, (4.78)
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where we have taken the limit when (δn) goes towards zero. The force on the atom is

F (d) = 4π�

∫
d2k

(2π )2 k2
∫ ∞

0

dξ

2π
αat(iξ )e−2γ (0)(iξ )kd

{
(ξ/ck)2 γ (0)(iξ ) − γs(iξ )

γ (0)(iξ ) + γs(iξ )
+ [2 + (ξ/ck)2]

γs(iξ ) − ε̃s(iξ )γ (0)(iξ )

γs(iξ ) + ε̃s(iξ )γ (0)(iξ )

}
.

(4.79)

At finite temperature, it is

F (d) = 4π

β

∫
d2k

(2π )2 k2
∑
ξn

′αat(iξn)e−2γ (0)(iξn)d

{
(ξn/ck)2 γ (0)(iξn) − γs(iξn)

γ (0)(iξn) + γs(iξn)
+ [2 + (ξn/ck)2]

γs(iξn) − ε̃s(iξn)γ (0)(iξn)

γs(iξn) + ε̃s(iξn)γ (0)(iξn)

}
.

(4.80)

These results are in complete agreement with the results in Ref. [37].

6. Force on an atom in between two planar surfaces (three layers)

We refer to Fig. 7 and let the first interface be located at z = 0 separating one plate with dielectric function ε̃1 from the
ambient medium which we let be vacuum. Next interface, at z = d, is the left interface of the gas layer with dielectric function
εg and thickness δ. Thus the third interface is at z = d + δ. The forth interface is located at z = D and separates vacuum from
the second plate with dielectric function ε̃2. The matrix becomes M̃ = M̃0 · M̃1 · M̃2 · M̃3 = M̃0 · M̃gaslayer · M̃3, where M̃gaslayer

is taken from Eq. (4.65) or (4.66) for TM modes and TE modes, respectively, and

M̃0 = 1

t0,1

(
1 r0,1

r0,1 1

)
, M̃3 = 1

t3,4

(
e−(γs−γ (0))kD e(γs+γ (0))kDr3,4

e−(γs+γ (0))kDr3,4 e(γs−γ (0))kD

)
. (4.81)

Now,

M11 = (
M0

11 M0
12

) · M̃gaslayer ·
(

M3
11

M3
21

)
. (4.82)

To find a general expression valid for both mode types, we use the expression in Eq. (4.64) for M̃gaslayer. It is the expression to
linear order in δ but before the lowest order in n is taken. Then

M11 = e−(γs−γ (0))kD

t0,1t3,4

{
1 + e−2γ (0)kDr0,1r3,4 + δk

[
(γg − γ (0))

(
1 − e−2γ (0)kDr0,1r3,4

) − 2γ (0)r2,3
(
e−2γ (0)kdr0,1 − e2γ (0)k(d−D)r3,4

)]}
.

(4.83)

The condition for modes is

1 + e−2γ (0)kDr0,1r3,4 + δk
[
(γg − γ (0))

(
1 − e−2γ (0)kDr0,1r3,4

) − 2γ (0)r2,3
(
e−2γ (0)kdr0,1 − e2γ (0)k(d−D)r3,4

)] = 0. (4.84)

The mode condition function is

f̃k = 1 + δk

1 + e−2γ (0)kDr0,1r3,4

[
(γg − γ (0))

(
1 − e−2γ (0)kDr0,1r3,4

) − 2γ (0)r2,3
(
e−2γ (0)kdr0,1 − e2γ (0)k(d−D)r3,4

)]
= 1 + δknαat

γ (0)[1 + e−2γ (0)Dr0,1r3,4]

[
−2π (ω/ck)2

(
1 − e−2γ (0)kDr0,1r3,4

) − 2(γ (0))
2
(

r2,3

nαat

)(
e−2γ (0)kdr0,1 − e2γ (0)k(d−D)r3,4

)]
.

(4.85)

Just as for the atom next to a substrate a part of this function does not depend on the position of the gas layer. The energy change
is due to the screening of the vacuum caused by the polarizable atom. It is interesting to note that this effect is modified by the
presence of the two planar surfaces. We intend to investigate this further in a forthcoming publication. We divide with the function

f 0
k = 1 − δk

(
1 − e−2γ (0)kDr0,1r3,4

)
1 + e−2γ (0)kDr0,1r3,4

(γ (0) − γg) = 1 − δknαat 2π

γ (0)

(
ω

ck

)2 (1 − e−2γ (0)kDr0,1r3,4
)(

1 + e−2γ (0)kDr0,1r3,4
) . (4.86)

For the energy this means that we subtract a term that is independent of the position of the atom and will not effect the force on
the atom. We find

˜̃f k = 1 + δknαat

[−2(γ (0))(r2,3/nαat)
(
e−2γ (0)kdr0,1 − e2γ (0)k(d−D)r3,4

)][
1 + e−2γ (0)kDr0,1r3,4

] , (4.87)

and the interaction energy per atom is

E

nδ
= �

∫
d2k

(2π )2

∫ ∞

0

dξ

2π
[ITM(k,iξ ) + ITE(k,iξ )], (4.88)
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where

ITM(k,ω) = αat 2πk[2 − (ω/ck)2]
[
e−2γ (0)kdrTM

0,1 − e−2γ (0)k(D−d)rTM
3,4

]
γ (0)

[
1 + e−2γ (0)kDrTM

0,1 rTM
3,4

] ,

(4.89)

ITE(k,ω) = αat 2πk(ω/ck)2
[
e−2γ (0)kdrTE

0,1 − e−2γ (0)k(D−d)rTE
3,4

]
γ (0)

[
1 + e−2γ (0)kDrTE

0,1r
TE
3,4

] .

The explicit expressions for the entering reflection coefficients are obtained from Eq. (4.46). They are

rTM
0,1 (k,ω) =

√
1 − ε̃1(ω)(ω/ck)2 − ε̃1(ω)

√
1 − (ω/ck)2√

1 − ε̃1(ω)(ω/ck)2 + ε̃1(ω)
√

1 − (ω/ck)2
, rTM

3,4 (k,ω) = ε̃2(ω)
√

1 − (ω/ck)2 −
√

1 − ε̃2(ω/ck)2

ε̃2(ω)
√

1 − (ω/ck)2 +
√

1 − ε̃2(ω/ck)2
,

(4.90)

rTE
0,1(k,ω) =

√
1 − ε̃1(ω)(ω/ck)2 −

√
1 − (ω/ck)2√

1 − ε̃1(ω)(ω/ck)2 +
√

1 − (ω/ck)2
, rTE

3,4(k,ω) =
√

1 − (ω/ck)2 −
√

1 − ε̃2(ω/ck)2√
1 − (ω/ck)2 +

√
1 − ε̃2(ω/ck)2

.

Thus the force on the atom is

F (d) = �

∫
d2k

(2π )2

∫ ∞

0

dξ

2π
[J TM(k,iξ ) + J TE(k,iξ )], (4.91)

where

J TM(k,ω) = αat 4πk2[2 − (ω/ck)2]
[
e−2γ (0)kdrTM

0,1 + e−2γ (0)k(D−d)rTM
3,4

][
1 + e−2γ (0)kDrTM

0,1 rTM
3,4

] ,

(4.92)

J TE(k,ω) = αat 4πk2(ω/ck)2
[
e−2γ (0)kdrTE

0,1 + e−2γ (0)k(D−d)rTE
3,4

][
1 + e−2γ (0)kDrTE

0,1r
TE
3,4

] ,

and at finite temperature it is

F (d) = 1

β

∫
d2k

(2π )2

∑
ξn

′
[J TM (k,iξn) + J TE (k,iξn)]. (4.93)

7. Force on an atom next to a planar 2D film (three layers)

In this section, we derive the Casimir interaction of an atom near a very thin film. We proceed along he lines of Sec. IV B 7. We
start from the three layer structure in Fig. 8. The matrix becomes M̃ = M̃0 · M̃1 · M̃2 · M̃3, where M̃0 · M̃1 is the matrix for the
thin film, and M̃2 · M̃3 is the matrix for the gas film. These matrices we have derived before. We have two mode types, TM and TE.

We start with the TM modes. The resulting matrices for the two thin layers were given in Eqs. (4.67) and (4.65), respectively.
They are

M̃0 · M̃1 =
(

1 0
0 1

)
+ γ (0)k(δε̃3D)

2

(
1 −1
1 −1

)
,

(4.94)

M̃2 · M̃3 =
(

1 0
0 1

)
+ (δn)2πkαat

γ (0)

(
−(

ω
ck

)2 −e2γ (0)kd
[
2 − (

ω
ck

)2]
e−2γ (0)kd

[
2 − (

ω
ck

)2] (
ω
ck

)2

)
,

and the resulting matrix element that interests us is

M11 = 1 + γ (0)k(δε̃3D)

2
− (δn)2πkαat

γ (0)

(
ω

ck

)2

− (δn)πk2αat(δε̃3D)

{(
ω

ck

)2

+ e−2γ (0)kd

[
2k2 −

(
ω

ck

)2]}
. (4.95)

The TM mode condition function becomes

f̃ TM
k (ω) = 1 − (δn)πk2αat(δε̃3D)

[
2 − (

ω
ck

)2]
e−2γ (0)kd

1 + γ (0)k(δε̃3D)
2 − 2πk(δn)αat

γ (0)

(
ω
ck

)2 − (δn)πk2αat(δε̃3D)
(

ω
ck

)2

≈ 1 − (δn)πk2αat(δε̃3D)
[
2 − (

ω
ck

)2]
e−2γ (0)kd

1 + γ (0)k(δε̃3D)
2

= 1 − (δn)2πkαatα̃2D (k,ω)
[
2 − (

ω
ck

)2]
e−2γ (0)kd

1 + γ (0)α̃2D (k,ω)
. (4.96)
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For the TE modes, the matrices for the two films from Eqs. (4.68) and (4.66), respectively are

M̃0 · M̃1 =
(

1 0
0 1

)
− (δε̃3D)k(ω/ck)2

2γ (0)

(
1 1

−1 −1

)
,

(4.97)

M̃2 · M̃3 =
(

1 0
0 1

)
− (δn)(ω/ck)22πkαat

γ (0)

(
1 e2γ (0)kd

−e−2γ (0)kd −1

)
,

and the resulting matrix element that interests us is

M11 = 1 − (δε̃3D)k(ω/ck)2

2γ (0)
− (ω/ck)22πk(δn)αat

γ (0)
+ (ω/ck)4πk2(δn)αat(δε̃3D)

[γ (0)]2

(
1 − e−2γ (0)kd

)
. (4.98)

The TE mode condition function is

f̃ TE
k (ω) = 1 −

(ω/ck)4πk2(δn)αat(δε̃3D)
[γ (0)]2 e−2γ (0)kd

1 − (δε̃3D )k(ω/ck)2

2γ (0) − (δn)(ω/ck)22πkαat

γ (0) + (δn)(ω/ck)4πk2αat(δε̃3D )
[γ (0)]2

≈ 1 − (δn)(ω/ck)4πk2αat(δε̃3D)

γ (0)
[
γ (0) − (δε̃3D )k(ω/ck)2

2

] e−2γ (0)kd

= 1 − (δn)2πkαatα̃2D(k,ω)(ω/ck)4

(γ (0))[(γ (0)) − α̃2D(k,ω)(ω/ck)2]
e−2γ (0)kd . (4.99)

The interaction energy per atom is

E

nδ
= �

nδ

∫
d2k

(2π )2

∫ ∞

0

dξ

2π

{
ln

[
f̃ TM

k (iξ )
] + ln

[
f̃ TE

k (iξ )
]}

≈ �

∫
d2k

(2π )2

∫ ∞

0

dξ

2π

[
f̃ TM

k (iξ ) − 1
] + [

f̃ TE
k (iξ ) − 1

]
nδ

= − �

2π

∫
dkk2

∫ ∞

0
dξαat(iξ )α̃2D(k,iξ )e−2

√
1+(ξ/ck)2kd

×
{

[2 + (ξ/ck)2]

1 +
√

1 + (ξ/ck)2α̃2D(k,iξ )
+ (ξ/ck)4√

1 + (ξ/ck)2[
√

1 + (ξ/ck)2 + α̃2D(k,iξ )(ξ/ck)2]

}
, (4.100)

and the force on the atom becomes

F (d) = − �

π

∫
dkk3

∫ ∞

0
dξαat(iξ )α̃2D(k,iξ )e−2

√
1+(ξ/ck)2kd

×
{

[2 + (ξ/ck)2]
√

1 + (ξ/ck)2

1 +
√

1 + (ξ/ck)2α̃2D(k,iξ )
+ (ξ/ck)4

[
√

1 + (ξ/ck)2 + α̃2D(k,iξ )(ξ/ck)2]

}
. (4.101)

8. Interaction between two 2D planar films (three layers)

In this section, we derive the Casimir interaction between two thin films. We proceed along he lines of the preceding section.
We start from the three layer structure in Fig. 8. We take the limit when the thickness of the film goes to zero. The matrix becomes
M̃ = M̃0 · M̃1 · M̃2 · M̃3, where M̃0 · M̃1 is the matrix for one of the thin films, and M̃2 · M̃3 is the matrix for the other.

We start with the TM modes. The matrices from Eq. (4.67), one for z = 0 and one for z = d are

M̃TM
0 · M̃TM

1 =
(

1 0
0 1

)
+ α2Dγ (0)

(
1 −1
1 −1

)
,

(4.102)

M̃TM
2 · M̃TM

3 =
(

1 0
0 1

)
+ α2Dγ (0)

(
1 −e2γ (0)kd

e−2γ (0)kd −1

)
.

The matrix element of interest to us is

M11 = (1 + α2Dγ (0))2 − (α2Dγ (0))2e−2γ (0)kd , (4.103)
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and the mode condition function for TM modes is

f̃ TM = 1 − e−2γ (0)d (α2Dγ (0))
2

(1 + α2Dγ (0))2 . (4.104)

Now, we continue with the TE modes. The matrices from Eq. (4.68), one for z = 0 and one for z = d are

M̃TE
0 · M̃TE

1 =
(

1 0
0 1

)
− α2D (ω/ck)2

γ (0)

(
1 1

−1 −1

)
,

(4.105)

M̃TE
2 · M̃TE

3 =
(

1 0
0 1

)
− α2D (ω/ck)2

γ (0)

(
1 e2γ (0)kd

−e−2γ (0)kd −1

)
.

The matrix element of interest to us is

M11 =
(

1 − α2D (ω/ck)2

γ (0)

)2

−
(

α2D (ω/ck)2

γ (0)

)2

e−2γ (0)kd , (4.106)

and the mode condition function for TE modes is

f̃ TE = 1 − e−2γ (0)kd

(
α2D (ω/ck)2

γ (0)

)2

(
1 − α2D (ω/ck)2

γ (0)

)2 . (4.107)

From this we find the energy per unit area

E = �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π

{
ln

[
f̃ TM

k (iξ )
] + ln

[
f̃ TE

k (iξ )
]}

= �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln

[
1 − e−2γ (0)(iξ )kd

(
α̃2D(k,iξ )γ (0)(k,iξ )

1 + α̃2D(k,iξ )γ (0)(k,iξ )

)2]

+ �

2

∫
d2k

(2π )2

∫ ∞

−∞

dξ

2π
ln

[
1 − e−2γ (0)(iξ )kd

( −α̃2D(k,iξ )(ξ/ck)2

γ (0)(k,iξ ) + α̃2D(k,iξ )(ξ/ck)2

)2]
. (4.108)

This agrees completely with the results of Refs. [33,38].

9. Force on an atom in between two 2D films (five layers)

Here we let the first 2D film be located at z = 0, the thin diluted gas film at z = d, and the second 2D film at D. There is
vacuum between the three films. Thus the matrix becomes M̃ = M̃0 · M̃1 · M̃2. These matrices we have derived before. We have
two mode types, TM and TE.

We start with the TM modes. The resulting matrices for the two 2D films were given in Eq. (4.67) and for the gas film in
(4.65), respectively. They are

M̃TM
0 =

(
1 0
0 1

)
+ α̃2Dγ (0)

(
1 −1
1 −1

)
,

M̃TM
1 =

(
1 0
0 1

)
+ (δn)2πkαat

γ (0)

( −(
ω
ck

)2 −[
2 − (

ω
ck

)2]
e2γ (0)kd[

2 − (
ω
ck

)2]
e−2γ (0)kd

(
ω
ck

)2

)
, (4.109)

M̃TM
2 =

(
1 0
0 1

)
+ α̃2Dγ (0)

(
1 −e2γ (0)kD

e−2γ (0)kD −1

)
.

The matrix element of interest is

MTM
11 = (

1 + γ (0)α̃2D
)2
[

1 − 2πkδnαat

γ (0)

(
ω

ck

)2]
− e−2γ (0)kD

(
γ (0)α̃2D

)2
[

1 + 2πkδnαat

γ (0)

(
ω

ck

)2]

+ 2πkδnαat

γ (0)

{
e−2γ (0)k(D−d)(γ (0)α̃2D)[(γ (0)α̃2D) + 1]

[(
ω

ck

)2

− 2

]
+ e−2γ (0)kd (γ (0)α̃2D)[(γ (0)α̃2D) + 1]

[(
ω

ck

)2

− 2

]}
.

(4.110)
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The first term is the mode condition when all three films are at infinite distance from each other. The mode condition function
after division with the part of the function that is independent of the position of the gas layer is

f̃ TM
k = 1 + 2πkδnαat(ω)

γ (0)

[
e−2γ (0)k(D−d) + e−2γ (0)kd

][(
ω
ck

)2 − 2
]

γ (0)α̃2D

1+γ (0)α̃2D

1 − e−2γ (0)kD
(

γ (0)α̃2D

1+γ (0)α̃2D

)2 , (4.111)

where the suppressed function arguments are (k,ω). If we instead had divided by the function in absence of the atom, we would
get one extra energy term that is independent of the position of the atom and does not affect the force. It gives a different
contribution to the energy than the result from Eq. (4.76) due to the presence of the two 2D sheets. It means a modification of the
atom self-energy. The interaction energy per atom from the TM modes becomes

ETM

nδ
= −�

∫ ∞

0
dkk2

∫ ∞

−∞

dξ

2π

1

2γ (0)
αat(iξ )

[(
ξ

ck

)2

+ 2

] γ (0)α̃2D

1+γ (0)α̃2D

[
e−2γ (0)kd + e−2γ (0)k(D−d)

]
[
1 − e−2γ (0)kD

(
γ (0)α̃2D

1+γ (0)α̃2D

)2] , (4.112)

where the suppressed function arguments are (k,iξ ). Thus the force on the atom from the TM modes is

F TM(d) = −�

∫ ∞

0
dkk3

∫ ∞

−∞

dξ

2π
αat(iξ )

[(
ξ

ck

)2

+ 2

] γ (0)α̃2D

1+γ (0)α̃2D

[
e−2γ (0)kd − e−2γ (0)k(D−d)

]
[
1 − e−2γ (0)kD

(
γ (0)α̃2D

1+γ (0)α̃2D

)2] , (4.113)

and at finite temperature it is

F TM(d) = − 2

β

∫ ∞

0
dkk3

∑
ξn

′αat(iξn)

[(
ξn

ck

)2

+ 2

] γ (0)α̃2D

1+γ (0)α̃2D

[
e−2γ (0)kd − e−2γ (0)k(D−d)

]
[
1 − e−2γ (0)kD

(
γ (0)α̃2D

1+γ (0)α̃2D

)2] , (4.114)

where the suppressed function arguments are (k,iξn).
Now, we continue with the TE modes. The resulting matrices for the two 2D films were given in Eq. (4.67) and for the gas

film in Eq. (4.65), respectively. They are

M̃TE
0 =

(
1 0
0 1

)
+ α̃2D

(
ω

ck

)2 1

γ (0)

(−1 −1
1 1

)
,

M̃TE
1 =

(
1 0
0 1

)
+ (δn)2πkαat

γ (0)

(
ω

ck

)2 ( −1 −e2γ (0)kd

e−2γ (0)kd 1

)
, (4.115)

M̃TE
2 =

(
1 0
0 1

)
+ α̃2D

(
ω

ck

)2 1

γ (0)

( −1 −e2γ (0)kD

e−2γ (0)kD 1

)
.

The matrix element of interest is

MTE
11 =

[
1 − α̃2D

(
ω

ck

)2 1

γ (0)

]2

−
(

α̃2D

(
ω

ck

)2 1

γ (0)

)2

e−2γ (0)kD − (δn)2πkαat

γ (0)

(
ω

ck

)2[
1 − 2α̃2D

(
ω

ck

)2 1

γ (0)

]2

− (δn)2πkαat

γ (0)

(
ω

ck

)2

α̃2D

(
ω

ck

)2 1

γ (0)
(e−2γ (0)kd + e−2γ (0)k(D−d))

+ (δn)2πkαat

γ (0)

(
ω

ck

)2[
α̃2D

(
ω

ck

)2]2[
e−2γ (0)kd − e−2γ (0)kD + e−2γ (0)k(D − d)

]
. (4.116)

The first term is the mode condition when all three films are at infinite distance from each other. The mode condition function
after division with the part of the function that is independent of the position of the gas layer is

f̃ TE
k = 1 − (δn)2πkαat

γ (0)

(
ω

ck

)2
α̃2D ( ω

ck
)2

[γ (0)−α̃2D ( ω
ck

)2]
(e−2γ (0)kd + e−2γ (0)k(D−d))

1 − [ α̃2D( ω
ck

)2

γ (0)−α̃2D( ω
ck

)2

]2
e−2γ (0)kD

, (4.117)

where the suppressed function arguments are (k,ω).
The interaction energy per atom from the TE modes becomes

ETE

nδ
= −�

∫ ∞

0
dkk2

∫ ∞

−∞

dξ

2π

αat

γ (0)

(
ξ

ck

)2
α̃2D( ξ

ck
)
2

[γ (0)+α̃2D ( ξ

ck
)
2
]

(
e−2γ (0)kd + e−2γ (0)k(D−d)

)
1 −

[
α̃2D( ξ

ck
)
2

γ (0)+α̃2D( ξ

ck
)
2

]2

e−2γ (0)kD

, (4.118)
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where the suppressed function arguments are (k,iξ ). Thus the force on the atom from the TE modes is

F TE(d) = −2�

∫ ∞

0
dkk3

∫ ∞

−∞

dξ

2π
αat

(
ξ

ck

)2
α̃2D ( ξ

ck
)
2

[γ (0)+α̃2D ( ξ

ck
)
2
]

(
e−2γ (0)kd − e−2γ (0)k(D−d)

)
1 −

[
α̃2D( ξ

ck
)
2

γ (0)+α̃2D ( ξ

ck
)
2

]2

e−2γ (0)kD

, (4.119)

and at finite temperature, it is

F TE(d) = − 1

β

∫ ∞

0
dkk3

∑
ξn

′4αat

(
ξn

ck

)2
α̃2D( ξ

ck
)
2

[γ (0)+α̃2D( ξ

ck
)
2
]

(
e−2γ (0)kd − e−2γ (0)k(D−d)

)
1 −

[
α̃2D ( ξ

ck
)
2

γ (0)+α̃2D ( ξ

ck
)
2

]2

e−2γ (0)kD

, (4.120)

where the suppressed function arguments are (k,iξn).

V. SPHERICAL STRUCTURES

For a spherical object, the rightmost medium, n = N + 1,
in Fig. 3 is the core. The leftmost, n = 0, is the ambient. The
boundary condition is that there are no incoming waves, i.e.,
there is no wave moving towards the right in medium n = 0.
The fields are self-sustained; no fields are coming in from
outside.

A. Nonretarded main results

In the nonretarded treatment of a spherical structure, we let
the waves represent solutions to Laplace’s equation, Eq. (3.21),
in spherical coordinates, (r,θ,ϕ), for the scalar potential, �.
The interfaces are spherical surfaces and the r coordinate is
the coordinate that is constant on each interface. The solutions

are of the form

�l,m (r,θ,ϕ) = r

+l

− (l + 1) Yl,m (θ,ϕ) , (5.1)

where the functions Yl,m (θ,ϕ) are the so-called spherical
harmonics. We let r increase towards the left in Fig. 3. We
want to find the normal modes for a specific set of l and m

values. Then all waves have the common factor Yl,m (θ,ϕ). We
suppress this factor here. Then

R(r) = rl, L(r) = r−(l+1). (5.2)

Using the boundary conditions that the potential and the
normal component of the D field are continuous across an
interface n gives

anrl
n + bnr−(l+1)

n = an+1rl
n + bn+1r−(l+1)

n , anε̃nlr
l−1
n − bnε̃n (l + 1) r−(l+2)

n = an+1ε̃n+1lr
l−1
n − bn+1ε̃n+1 (l + 1) r−(l+2)

n , (5.3)

and we may identify the matrix Ãn (rn) as

Ãn (rn) =
(

rl
n r−(l+1)

n

ε̃nlr
l−1
n −ε̃n (l + 1) r−(l+2)

n

)
. (5.4)

The matrix M̃n is

M̃n = 1

(2l + 1) ε̃n

(
ε̃n (l + 1) + ε̃n+1l (l + 1) (ε̃n − ε̃n+1) r−(2l+1)

n

l (ε̃n − ε̃n+1) r2l+1
n ε̃n+1 (l + 1) + ε̃nl

)
. (5.5)

Since the function L(r) in Eq. (5.2) diverges at the origin it
is excluded from the core region and hence we have no wave
moving towards the left in that region. According to Eq. (3.6)
this means that

fl,m(ω) = M11. (5.6)

Before we end this section we introduce the 2l pole polarizabil-
ities αn

l and α
n(2)
l for the spherical interface since these appear

repeatedly in the sections that follow. The first is valid outside
and the second inside. The polarizability αn

l = −bn/an under
the assumption that bn+1 = 0. One obtains αn

l = −M21/M11,

and from Eq. (5.5), one finds

αn
l = − r2l+1

n l (ε̃n − ε̃n+1)

ε̃n (l + 1) + ε̃n+1l
. (5.7)

The polarizability α
n(2)
l = −an+1/bn+1 under the assumption

that an = 0. One obtains α
n(2)
l = M12/M11, and from Eq. (5.5),

one finds

α
n(2)
l = rn

−(2l+1) (l + 1) (ε̃n − ε̃n+1)

ε̃n (l + 1) + ε̃n+1l
. (5.8)
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r = a
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FIG. 10. (Color online) The geometry of a solid sphere or a solid
cylinder in the nonretarded treatment.

Sometimes it is convenient to use an alternative form of the
matrix M̃n,

M̃n = ε̃n (l + 1) + ε̃n+1l

(2l + 1) ε̃n

×
⎛
⎝ 1 (l+1)(ε̃n−ε̃n+1)r−(2l+1)

n

ε̃n(l+1)+ε̃n+1l

l(ε̃n−ε̃n+1)r2l+1
n

ε̃n(l+1)+ε̃n+1l

ε̃n+1(l+1)+ε̃nl

ε̃n(l+1)+ε̃n+1l

⎞
⎠

= Mn
11

(
1 α

n(2)
l

−αn
l

ε̃n+1(l+1)+ε̃nl

ε̃n(l+1)+ε̃n+1l

)
. (5.9)

Now we have all we need to determine the nonretarded normal
modes in a layered spherical structure. We give some examples
in the following sections.

B. Nonretarded special results

1. Solid sphere (no layer)

For a solid sphere of radius a and dielectric function ε̃1(ω)
in an ambient of dielectric function ε̃0(ω), as illustrated in
Fig. 10, we have

M̃ = M̃0

= 1

(2l + 1) ε̃0

×
(

ε̃0 (l + 1) + ε̃1l (l + 1) (ε̃0 − ε̃1) a−(2l+1)

l (ε̃0 − ε̃1) a2l+1 ε̃1 (l + 1) + ε̃0l

)
,

(5.10)

and the condition for modes is ε̃1(ω)/ε̃0(ω) = −(l + 1)/l. This
result covers both solid spheres and spherical cavities. For a
solid sphere of dielectric function ε̃(ω) in vacuum and for
a spherical cavity in a medium of dielectric function ε̃(ω),
the condition for modes is ε̃(ω) = − (l + 1) /l and ε̃(ω) =
−l/ (l + 1), respectively.

2. Spherical shell or gap (one layer)

Here we start from a more general geometry namely that
of a coated sphere in a medium and get the spherical shell and
gap as special limits. For a solid sphere of dielectric function
ε̃2 with a coating of inner radius a and outer radius b, Fig. 11,
made of a medium with dielectric function ε̃1 in an ambient

0 1

0

r = b

ε0

1

r = a

ε1 ε2

2

FIG. 11. (Color online) The geometry of a coated sphere or
cylinder in the nonretarded treatment.

medium with dielectric function ε̃0, we have

M̃ = M̃0 · M̃1

= 1

(2l + 1)ε̃0

(
ε̃0 (l + 1) + ε̃1l

(l+1)(ε̃0−ε̃1)
b2l+1

l (ε̃0 − ε̃1) b2l+1 ε̃1 (l + 1) + ε̃0l

)

× 1

(2l + 1) ε̃1

(
ε̃1 (l + 1) + ε̃2l

(l+1)(ε̃1−ε̃2)
a2l+1

l (ε̃1 − ε̃2) a2l+1 ε̃2 (l + 1) + ε̃1l

)
,

(5.11)

and from direct derivation of the M11 element, the condition
for modes becomes(

b

a

)2l+1(
ε̃1

ε̃0
+ (l + 1)

l

)(
ε̃2

ε̃1
+ (l + 1)

l

)

= − (l + 1)

l

(
ε̃1

ε̃0
− 1

)(
ε̃2

ε̃1
− 1

)
. (5.12)

Alternatively, we may elaborate using the matrix version in
Eq. (5.9):

M11 = M0
11M

1
11

(
1 − α

0(2)
l α1

l

)
= M0

11M
1
11

[
1 − b−(2l + 1)(l + 1)(ε̃0 − ε̃1)

ε̃0(l + 1) + ε̃1l

a2l+1l(ε̃2 − ε̃1)

ε̃1(l + 1) + ε̃2l

]
= 0. (5.13)

Let us now study a spherical shell of inner radius a, outer
radius b and of a medium with dielectric function ε̃(ω) in a
medium of dielectric function ε̃0(ω). The condition for modes
we get from Eq. (5.12) by the replacements ε̃2(ω) → ε̃0(ω) and
ε̃1(ω) → ε̃(ω). For a spherical gap of dielectric function ε̃0(ω)
in a medium of dielectric function ε̃(ω), we instead make the
replacements ε̃0(ω), ε̃2(ω) → ε̃(ω) and ε̃1(ω) → ε̃0(ω). For
both these geometries, we find the same condition for modes,
viz.,(

b

a

)2l+1

[ε̃(ω)l + ε̃0(ω)(l + 1)][ε̃0(ω)l + ε̃(ω)(l + 1)]

= l(l + 1)[ε̃(ω) − ε̃0(ω)]2. (5.14)

3. Thin spherical diluted gas film (one layer)

It is of interest to find the van der Waals force on an atom in
a layered structure. We can obtain this by studying the force on
a thin layer of a diluted gas with dielectric function εg(ω) =
1 + 4πnαat(ω), where αat is the polarizability of one atom
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and n the density of atoms (we have assumed that the atom
is surrounded by vacuum; if not, the 1 should be replaced by
the dielectric function of the ambient medium and the atomic
polarizability should be replaced by the excess polarizability).
For a diluted gas layer, the atoms do not interact with each
other and the force on the layer is just the sum of the forces
on the individual atoms. So by dividing with the number of
atoms in the film, we get the force on one atom. The layer
has to be thin in order to have a well defined r value of the
atom. Since we will derive the force on an atom in different
spherical geometries, it is fruitful to derive the matrix for a
thin diluted gas shell. This result can be directly used in the
derivation of the van der Waals force on an atom in different
spherical geometries.

We let the film have the thickness δ and be of a general
radius r . We only keep terms up to linear order in δ and linear
order in n. We find the result is

M̃gaslayer = M̃0 · M̃1

=
(

1 0
0 1

)
+ (δn)4παat

×
(

0 (l + 1) r−(2l+2)

−lr (2l) 0

)
. (5.15)

Now we are done with the gas layer. We will use these
results later in calculating the van der Waals force on an atom
in spherical layered structures.

4. 2D spherical film (one layer)

In many situations, one is dealing with very thin films.
These may be considered 2D (two dimensional). Important
examples are a graphene sheet and a 2D electron gas. In
the derivation, we let the film have finite thickness δ and
be characterized by a 3D dielectric function ε̃3D . We then
let the thickness go towards zero. The 3D dielectric function
depends on δ as ε̃3D ∼ 1/δ for small δ. In the planar structure,
we could in the limit when δ goes towards zero obtain a
momentum dependent 2D dielectric function. Here we only
keep the long-wavelength limit of the 2D dielectric function
[31,32]. We obtain

M̃2D = M̃0 · M̃1

=
(

1 0
0 1

)
+ (δε̃3D)l (l + 1)

(2l + 1) r

(
1 r−(2l+1)

−r (2l+1) −1

)
.

(5.16)

We will also need the 2l pole polarizability of the thin
spherical shell in vacuum. It can be obtained from Eq. (5.16).
The polarizability is −b0/a0 under the assumption that b1 = 0.
One obtains α2D

l = −M21/M11. We find

α2D
l (a; ω) = δε̃3Dl (l + 1) a2l+1

(2l + 1) a + δε̃3Dl (l + 1)
, (5.17)

where we have reserved the first argument before the
semicolon for the radius of the spherical film. Note that
for a perfectly reflecting thin spherical shell the 2l pole
polarizability, α2D

l = a2l+1, coincides with that for a perfectly
reflecting sphere of the same radius [compare with Eq. (5.7)]
and the interaction is the same. This is what one would expect.

0 1

0

r = a+d+δ

ε = 1

1 2

2

r = ar = a+d

εg

3

ε = 1 ε1

FIG. 12. (Color online) The geometry of a thin gas layer the
distance d from a sphere or cylinder of radius a in the nonretarded
treatment.

It is further convenient to define the 2l pole susceptibility [39]
as the polarizability stripped by the factor a2l+1,

χ2D
l (a; ω) = δε̃3Dl (l + 1)

(2l + 1) a + δε̃3Dl (l + 1)
, (5.18)

The 2l pole polarizability “seen from inside the shell” we
get from Eq. (5.16). The polarizability is −a1/b1 under the
assumption that a0 = 0. One obtains α

2D(2)
l = M12/M11 and

α
2D(2)
l (a; ω) = (δε̃3D)l (l + 1) a−(2l+1)

(2l + 1) a + (δε̃3D)l (l + 1)
. (5.19)

Note that it is the same as the ordinary 2l pole polarizability
Eq. (5.17), for a thin spherical shell except that now the
radius of the sphere has been inverted in the numera-
tor. Thus α2D

l (a; ω) = a2l+1χ2D
l (a; ω) and α

2D(2)
l (a; ω) =

a−(2l+1)χ2D
l (a; ω).

Sometimes it is convenient to use an alternative form of the
matrix M̃2D,

M̃2D = (2l + 1) r + (δε̃3D)l (l + 1)

(2l + 1) r

×
⎛
⎝ 1 (δε̃3D)l(l+1)r−(2l+1)

(2l+1)r+(δε̃3D )l(l+1)

− (δε̃3D )l(l+1)r (2l+1)

(2l+1)r+(δε̃3D )l(l+1)
(2l+1)r−(δε̃3D )l(l+1)
(2l+1)r+(δε̃3D )l(l+1)

⎞
⎠

= M2D
11

(
1 α

2D(2)
l

−α2D
l

(2l+1)r−(δε̃3D )l(l+1)
(2l+1)r+(δε̃3D )l(l+1)

)
. (5.20)

5. Force on an atom outside a sphere (two layers)

We let the atom be at the distance d from the sphere of
radius a and at the distance b from the center of the sphere.
We start from the two layer structure in Fig. 12. We let the
ambient be vacuum. The first layer is a thin layer, of thickness
δ, of a diluted gas of atoms of the kind we consider. Its
dielectric function is εg(ω) = 1 + 4πnαat(ω), where αat is the
polarizability of one atom. The density of gas atoms, n, is
very low. We let the first interface be at r = b + δ and hence
the second at r = b, where b = a + d. The second layer is a

155457-21



BO E. SERNELIUS PHYSICAL REVIEW B 90, 155457 (2014)

vacuum layer of thickness d. The remaining medium is the
sphere of radius a with the dielectric function ε̃1(ω). In what
follows we only keep lowest-order terms in δ and in n.

The matrix becomes M̃ = M̃0 · M̃1 · M̃2 = M̃gaslayer · M̃2

where M̃gaslayer is the matrix in Eq. (5.15) now for the r value
b and

M2 = 1

(2l + 1)

(
(l + 1) + ε̃1l (l + 1)(1 − ε̃1)a−(2l+1)

l(1 − ε̃1)a2l+1 ε̃1(l + 1) + l

)
,

(5.21)

the matrix in Eq. (5.10) with the replacement ε̃0 → 1. The
matrix element of interest is

M11 ≈ 1

(2l + 1)
{(l + 1) + ε̃1l − (δn)4παatl(l + 1)

× b−(2l+2)a2l+1(ε̃1 − 1)}. (5.22)

The mode condition function when the reference system is
that when the atom is at infinite distance from the sphere then
becomes

f̃l,m = 1 − (δn)4παat

[
l(l + 1)b−(2l+2)a2l+1(ε̃1 − 1)

(l + 1) + ε̃1l

]
.

(5.23)

The interaction energy per atom we get by dividing the energy
with the number of atoms in the gas shell. It is

E

4πb2δn

= �

4πb2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

ln[f̃l,m(iξ )]

≈ − �

4πb2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

4πnαatδ

×
[
l(l + 1)b−(2l+2)a2l+1(ε̃1 − 1)

(l + 1) + ε̃1l

]

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

αat(iξ )
(2l + 1)(l + 1)

b2(l+2)

a2l+1l[ε̃1(iξ ) − 1]

(l + 1) + ε̃1(iξ )l

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1)(l + 1)

b2(l+2)
αat(iξ )αl(a; iξ )

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

[2l + 2]!

[2l]![2]!

αat(iξ )αl(a; iξ )

b2(l+2)
, (5.24)

where b = a + d, and

αl (a; iξ ) = a2l+1l[ε̃1(iξ ) − 1]

(l + 1) + ε̃1(iξ )l
(5.25)

is the 2l pole polarizability, introduced in Eq. (5.7), of the
sphere in vacuum (Ref. [3], Eq. (5.68)). Note that the l = 0
term does not contribute to the interaction.
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FIG. 13. (Color online) The geometry of a thin gas layer at radius
d inside a spherical or cylindrical cavity of radius a in the nonretarded
treatment.

The force on the atom is obtained as minus the derivative
of the result in Eq. (5.24) with respect to d, i.e.,

F (b) = −�

∫ ∞

0

dξ

2π

∞∑
l=0

[2l + 2]!

[2l]! [2]!
2 (l + 2)

αat(iξ )αl (a; iξ )

b2l+5
.

(5.26)

6. Force on an atom in a spherical cavity (two layers)

We let the atom be at the distance d from the center of
the spherical cavity, of radius a. We start from the two layer
structure in Fig. 13. We let the medium surrounding the cavity
have dielectric function ε̃1(ω). The first layer is a vacuum
layer. The second is a thin layer, of thickness δ, of a diluted
gas of atoms of the kind we consider. Its dielectric function is
εg(ω) = 1 + 4πnαat(ω), where αat is the polarizability of one
atom. The density of gas atoms, n, is very low. We let the first
interface be at r = a and hence the second at r = d + δ and
the third at r = d. In what follows, we only keep lowest-order
terms in δ and in n.

The matrix becomes M̃ = M̃0 · M̃1 · M̃2 = M̃0 · M̃gaslayer,
where M̃0 is obtained from Eq. (5.10) with the replacements
ε̃1 → 1 and ε̃0 → ε̃1. M̃gaslayer is obtained from Eq. (5.15) with
r = d. We find

M11 ≈ 1

(2l + 1)ε̃1

[
(ε̃1(l + 1) + l)

− δn
4παat

d
(l + 1)l(ε̃1 − 1)(d/a)2l+1

]
. (5.27)

The mode condition function when the reference system is that
in absence of the atom is

f̃l,m ≈ 1 − (δn)4παat (l + 1) l(ε̃1 − 1)(d/a)2l+1

d [ε̃1 (l + 1) + l]

= 1 − (δn)4παatα
(2)
l (a; ω) ld2l , (5.28)

where we have identified the new 2l pole polarizability that
was in introduced in Eq. (5.8),

α
(2)
l (a; ω) = − (l + 1) (1 − ε̃1) (1/a)2l+1

l + ε̃1 (l + 1)
, (5.29)

for the spherical cavity of radius a “as seen from the inside.”
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From this we find that the interaction energy per atom
becomes

E

4πd2δn

= �

4πd2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

ln[f̃l,m(iξ )]

≈ − �

4πd2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

4π (δn)αat(iξ )α(2)
l (a; iξ )ld2l

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

αat(iξ )α(2)
l (a; iξ ) (2l + 1) ld2(l−1)

= −�

∫ ∞

0

dξ

2π

∞∑
l=1

[2l + 1]!

[2l − 1]! [2]!
αat(iξ )α(2)

l (a; iξ ) d2(l−1),

(5.30)

and the force on the atom is

F = −�

∫ ∞

0

dξ

2π

∞∑
l=1

[2l + 1]!

[2l − 1]![2]!
2(l − 1)d2l−3

×αat(iξ )α(2)
l (a; iξ ). (5.31)

Note that the l = 0 and l = 1 terms do not contribute to the
interaction.

7. Van der Waals interaction between two atoms (two layers)

Here we may use the result from the previous section
to derive the van der Waals interaction between two atoms.
We let the atom outside the sphere be of type 1. We let the
spherical core of the structure be made up of a diluted gas of
atoms of type 2. Then we let the density of the gas go towards
zero and at the same time let the radius of the sphere go to
zero (b goes towards d). We furthermore only keep the l = 1
term in the expansion; we are only interested in dipole dipole
interactions. So we divide the energy in Eq. (5.24) further
with the number of atoms of the other species contained in
the sphere and take the limits

E

4πb2δn1(n24πa3/3)

≈ − �

b2(n24πa3/3)

∫ ∞

0

dξ

2π
αat

1 (iξ )
3 · 2

b4

a3
[
4πn2α

at
2 (iξ )

]
3

≈ −6�

d6

∫ ∞

0

dξ

2π
αat

1 (iξ )αat
2 (iξ ), (5.32)

which is the van der Waals result (Ref. [3], Eq. (6.39)).

8. Force between two spherical objects

In Sec. V B 5, we obtained the force between an atom
and a spherical object. We kept contributions from dipolar
fluctuations in the atom, only. The dipolar and all higher-order
fluctuations of the sphere were included. This means that the
results are valid for separations large compared to the size of
the atom. Equation (5.24) is the first term of the more general
expression,

E = −2�

∫ ∞

0

dξ

2π

∞∑
l′=0

∞∑
l=0

[2l + 2l′]!
[2l]![2l′]!

α1
l (iξ )α2

l′(iξ )

d2(l+l′+1)
, (5.33)

which is valid for all spherical objects. Here, d denotes the
distance between the centers of the spheres.

9. Force on an atom in a spherical gap (three layers)

Here, we study an atom in a spherical vacuum gap with the
outer and inner radii b and a, respectively. The medium outside
the gap has dielectric function ε̃1(ω) and the medium inside
the dielectric function ε̃2(ω). The atom is at the distance r from
the center. The matrix for this geometry is M̃ = M̃0 · M̃1 · M̃2,
where

M̃0 = ε̃1(l + 1) + l

(2l + 1)ε̃1

(
1 α

0(2)
l

−α0
l

(l+1)+ε̃1l

ε̃1(l+1)+l

)
,

M̃1 =
(

1 0
0 1

)
+ (δn)4παat

(5.34)

×
(

0 (l + 1) r−(2l+2)

−lr (2l) 0

)
,

M̃2 = (l + 1) + ε̃2l

(2l + 1)

(
1 α

2(2)
l

−α2
l

ε̃2(l+1)+l

(l+1)+ε̃2l

)
.

The matrix element of interest is

M11 = M0
11M

2
11

{
1 − α2

l α
0(2)
l − (δn)4παat

× [
(l + 1)r−(2l+2)α2

l + lr (2l)α
0(2)
l

]}
. (5.35)

This leads to the following proper mode condition function:

f̃l,m = 1 − (δn)4παat

[
(l + 1)r−(2l+2)α2

l + lr (2l)α
0(2)
l

]
1 − α2

l α
0(2)
l

,

(5.36)

where the reference system is the spherical gap in absence of
the atom. The two 2l pole polarizabilities α2

l and α
0(2)
l defined

in Eqs. (5.7) and (5.8) are

α2
l = l(ε̃2 − 1)a2l+1

ε̃2l + (l + 1)
,

(5.37)

α
0(2)
l = − (l + 1) (1 − ε̃1) (1/b)2l+1

l + ε̃1 (l + 1)
.

The energy per atom is

E

4πr2δn
= �

4πr2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

ln[f̃l,m(iξ )]

≈ − �

4πr2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

(δn)4παat

×
(
(l + 1)α2

l r
−(2l+2) + lα

(2)
l r2l

)
1 − α2

l α
0(2)
l

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

αat [2l + 2]!

[2l]![2]!

1

r3

×
(
α2

l r
−(2l+1) + l

l+1α
0(2)
l r2l+1

)
1 − α2

l α
0(2)
l

, (5.38)
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FIG. 14. (Color online) The geometry of a thin gas layer the
distance d from thin spherical or cylindrical shell of radius a in
the nonretarded treatment.

and the force on the atom is

F (r) = −�

∫ ∞

0

dξ

2π

∞∑
l=0

αat [2l + 2]!

[2l]! [2]!

×
[
(2l + 4)α2

l r
−(2l+5) − (2l − 2) l

l+1α
0(2)
l r2l−3

]
1 − α2

l α
0(2)
l

.

(5.39)

10. Force on an atom outside a 2D spherical shell (three layers)

In this section, we derive the van der Waals interaction on an
atom outside a very thin spherical shell. We start from the three
layer structure in Fig. 14. We take the limit when the thickness
goes to zero. The 3D dielectric function of the shell material
then goes to infinity. We follow the procedure in Sec. V B 5
but now there is one extra matrix. The matrix becomes M̃ =
M̃0 · M̃1 · M̃2 · M̃3, where M̃0 · M̃1 is the matrix for a gas layer
in Eq. (5.15) with r = b = a + d and M̃2 · M̃3 is the matrix
for a thin film in Eq. (5.20) with r = a. The matrix element of
interest for us is

M11 = (2l + 1)a + (δε̃3D)l(l + 1)

(2l + 1)a

[
1 − (δn)4παat(ω)α2D

l

× (a; ω)(l + 1)b−(2l+2)
]
. (5.40)

The mode condition function when the reference system is
that in absence of the atom is

f̃l,m(iξ ) = 1 − (δn)4παat(iξ )α2D
l (a; iξ )(l + 1)b−(2l+2).

(5.41)

We may identify the 2l pole polarizability of the thin spherical
shell in vacuum given in Eq. (5.17).

Two examples where these results can be applied are a
sphere made of a graphenelike film and a thin metal film,
respectively. Then [31,32]

δε̃3D(iξ ) ≈ δα3D(iξ )

≈
{

πe2

�|ξ | , graphenelike film
4πn2De2

m∗meξ 2 , metal film
. (5.42)

The final result is independent of δ and is the 2D limit.

0 1

0

r = a+δ

1 3

2

r = dr = a

εg

4

ε1ε3D

2

3

r = d+δ

ε = 1 ε = 1

FIG. 15. (Color online) The geometry of a thin gas layer at radius
d inside a thin spherical or cylindrical shell of radius a in the
nonretarded treatment.

The energy per atom is

E

4πb2δn

= �

4πb2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

ln[f̃l,m(iξ )]

≈ − �

4πb2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

(δn)4παat(iξ )α2D
l

× (a; iξ )(l + 1)b−(2l+2)

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

αat(iξ )α2D
l (a; iξ )

(2l + 1)(l + 1)

b2(l+2)

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

[2l + 2]!

[2l]![2]!

1

b2(l+2)
αat(iξ )α2D

l (a; iξ ),

(5.43)

and the force on the atom is

F (b) = −�

∫ ∞

0

dξ

2π

∞∑
l=0

[2l + 2]!

[2l]![2]!

2(l + 2)

b2l+5
αat(iξ )α2D

l (a; iξ ).

(5.44)

11. Force on an atom inside a 2D spherical shell (three layers)

In this section, we derive the van der Waals interaction
on an atom inside a very thin spherical shell. We start from
the three layer structure in Fig. 15. We take the limit when
the thickness goes to zero. The derivation is analogous to the
one in Sec. V B 10. The matrix becomes M̃ = M̃0 · M̃1 · M̃2 ·
M̃3, where M̃0 · M̃1 is the matrix for the thin film, given in
Eq. (5.20) for r = a, and M̃2 · M̃3 is the matrix for the gas
film, given in Eq. (5.15) for r = d. The matrix element of
interest for us is

M11 = (2l + 1)a + (δε̃3D)l(l + 1)

(2l + 1)a

× [
1 − (δn)4παat(ω)α2D(2)

l (a; ω)ld2l
]
. (5.45)

The mode condition function when the reference system is
that in absence of the atom is

f̃l,m(iξ ) = 1 − (δn)4παat(iξ )α2D(2)
l (a; iξ ) ld2l , (5.46)
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where we have introduced the 2l pole polarizability for a thin
spherical shell as “seen from the inside,” given in Eq. (5.18).

The energy per atom is

E

4πd2δn

= �

4πd2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

ln[f̃l,m(iξ )]

≈ − �

4πd2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

4πδnαat

×αat(iξ )α2D(2)
l (a; iξ )ld2l

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

αat(iξ )α2D(2)
l (a; iξ )ld2(l−1)

= −�

∫ ∞

0

dξ

2π

∞∑
l=1

[2l + 1]!

[2l − 1]!2!
d2(l−1)αat(iξ )α2D(2)

l (a; iξ ),

(5.47)

and the force on the atom is

F = −�

∫ ∞

0

dξ

2π

∞∑
l=1

[2l + 1]!

[2l − 1]! [2]!
2 (l − 1) d2l−3

×αat(iξ )α2D(2)
l (a; iξ ) . (5.48)

Note that the l = 0 and l = 1 terms do not contribute to the
interaction.

12. Interaction between two 2D concentric spherical
shells (three layers)

We consider two concentric thin spherical shells. The outer
shell has radius b and the inner radius a. Here, the matrix is
M̃ = M̃0 · M̃1, where

M̃0 =
(

1 0
0 1

)
+ (δε̃3D)l(l + 1)

(2l + 1)b

(
1 b−(2l+1)

−b(2l+1) −1

)
,

M̃1 =
(

1 0
0 1

)
+ (δε̃3D)l(l + 1)

(2l + 1)a

(
1 a−(2l+1)

−a(2l+1) −1

)
,

(5.49)

and the element of interest is

M11 = 1 + (δε̃3D)l(l + 1)

(2l + 1)

(
1

a
+ 1

b

)

+
[

(δε̃3D)l(l + 1)

(2l + 1)

]2 1

ab

[
1 −

(
a

b

)2l+1]
. (5.50)

The proper mode condition function becomes

f̃l,m(iξ ) = 1 −
[

δε̃3Dl (l + 1)

a (2l + 1) + δε̃3Dl (l + 1)

]

×
[

δε̃3Dl (l + 1)

b (2l + 1) + δε̃3Dl (l + 1)

](
a

b

)2l+1

= 1 − αl(a; iξ )α(2)
l (b; iξ ), (5.51)

where αl is the 2l pole polarizability of a thin spherical shell
of radius a in vacuum according to Eq. (5.37) and α

(2)
l is the

2l pole polarizability of a thin spherical shell of radius b in
vacuum as seen from inside according to Eq. (5.37). We have
chosen as reference system a system where the two shells
are separated from each other and at infinite distance from
each other. The energy obtained by using this mode condition
function is the energy change when bringing the two shells at
infinite separation together and putting the inner shell inside
the outer shell.

13. Force on an atom in between two 2D spherical
films (five layers)

Here, we study an atom in between two spherical films
in vacuum. The outer and inner films are of radii b and a,
respectively. The atom is at the distance r from the center. The
matrix for this geometry is M̃ = M̃0 · M̃1 · M̃2, where

M̃0 = (2l + 1)b + (δε̃3D)l(l + 1)

(2l + 1)b

×
(

1 α
2D(2)
l (b; ω)

−α2D
l (b; ω) (2l+1)b−(δε̃3D )l(l+1)

(2l+1)b+(δε̃3D )l(l+1)

)
,

M̃1 =
(

1 0
0 1

)
+ (δn)4παat

(5.52)

×
(

0 (l + 1)r−(2l+2)

−lr (2l) 0

)
,

M̃2 = (2l + 1)a + (δε̃3D)l(l + 1)

(2l + 1)a

×
(

1 α
2D(2)
l (a; ω)

−α2D
l (a; ω) (2l+1)a−(δε̃3D )l(l+1)

(2l+1)a+(δε̃3D )l(l+1)

)
.

The matrix element of interest to us is

M11 = (2l + 1)b + (δε̃3D)l(l + 1)

(2l + 1)b
× (2l + 1)a + (δε̃3D)l(l + 1)

(2l + 1)a

× {
1 − α

2D(2)
l (b; ω)α2D

l (a; ω) − (δn)4παat

× [
α2D

l (a; ω)(l + 1)r−(2l+2) + α
2D(2)
l (b; ω)lr (2l)

]}
,

(5.53)

which results in the following, proper mode condition function:

f̃l,m(iξ ) = 1 − (δn)4παat(iξ )

× α2D
l (a; iξ ) (l + 1) r−(2l+2) + α

2D(2)
l (b; iξ ) lr2l

1 − α
2D(2)
l (b; iξ ) α2D

l (a; iξ )
.

(5.54)

From this we obtain the interaction energy of the atom. It is

E

4πr2δn
= �

4πr2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

ln[f̃l,m(iξ )]

≈ − �

4πr2δn

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

4πδnαat
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× α2D
l (a; iξ )(l + 1)r−(2l+2) + α

2D(2)
l (b; iξ )lr2l

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

= −�

∫ ∞

0

dξ

2π

∞∑
l=0

l∑
m=−l

[
α2D

l (a; iξ )(l + 1)r−2(l+2)

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

+ α
2D(2)
l (b; iξ )lr2(l−1)

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

]

= −�

∫ ∞

0

dξ

2π

∞∑
l=1

⎡
⎣ [2l+2]!

[2l]![2]!α
2D
l (a; iξ )r−2(l+2)

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

+
[2l+1]!

[2l−1]![2]!α
2D(2)
l (b; iξ )r2(l−1)

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

⎤
⎦. (5.55)

Note that this expression agrees formally with the results
for an atom in a spherical gap, Eq. (5.38), but the 2l pole
polarizabilities are of course different. The force on the atom
becomes

F (r) = −�

∫ ∞

0

dξ

2π

∞∑
l=1

[
[2l+2]!
[2l]![2]! 2(l + 2)α2D

l (a; iξ )r−2l−5

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

−
[2l+1]!

[2l−1]![2]! 2(l − 1)α2D(2)
l (b; iξ )r2l−3

1 − α
2D(2)
l (b; iξ )α2D

l (a; iξ )

]
. (5.56)

Now we are done with the nonretarded treatment of spherical
systems and turn to the more complicated retarded treatment.

C. Retarded main results

To find the normal modes for a layered sphere including
retardation effects, we need to solve the wave equation for
the electric and magnetic fields in all layers and use the proper
boundary conditions at the interfaces. To solve the vector-wave
equation, the vector Helmholtz equation, Eq. (3.22), is not a
trivial task. Instead, one may solve the problem by introducing
Hertz-Debye potentials π1 and π2. They are solutions to the
scalar wave equation, Eq. (3.23). We let π1 be the potential that
generates TM modes and π2 be the potential that generates TE
modes. Separation of variables, π = R(r)� (θ ) � (φ), leads to
one differential equation for each of the variables,

d2[rR(r)]

dr2
+

[
q2 − i(i + 1)

r2

]
[rR(r)] = 0,

1

sin θ

d

dθ

[
sin θ

d�(θ )

dθ

]
+

[
i(i + 1) − m2

sin2θ

]
�(θ ) = 0,

d2�(φ)

dφ2
+ m2�(φ) = 0.

(5.57)

The angular equations lead to spherical harmonics and for
the radial part rR(r) is a solution to the Ricatti-Bessel equation,

z2 d2ω

dz2
+ [z2 − i(i + 1)]ω = 0. (5.58)

The Ricatti-Bessel equation has many different solutions:
(1) Ricatti-Bessel functions of the first kind:

Si(z) = zji(z) =
√

πz/2Ji+1/2(z) = ψi(z); (5.59)

(2) Ricatti-Bessel functions of second kind:

Ci(z) = −zyi(z) =
√

πz/2Yi+1/2(z) = χi(z); (5.60)

(3) Ricatti-Bessel functions of the third kind:

ξi(z) = zh
(1)
i (z) =

√
πz/2H

(1)
i+1/2(z)

= Si(z) − iCi(z) = zji(z) + izyi(z),
(5.61)

ζi(z) = zh
(2)
i (z) =

√
πz/2H

(2)
i+1/2(z)

= Si(z) + iCi(z) = zji(z) − izyi(z).

Let us study a layered sphere of radius R consisting of N

layers and an inner spherical core. We have N + 2 media and
N + 1 interfaces. Let the numbering be as follows. Medium
0 is the medium surrounding the sphere, medium 1 is the
outermost layer and medium N + 1 the innermost layer and
N + 2 the innermost spherical core region. Let rn be the inner
radius of layer n. This is completely in line with the system
represented by Fig. 3.

We will use the two Hankel versions in Eq. (5.61) since
they represent waves that go in either the positive or negative
r-directions. We assume a time dependence of the form
e−iωt . With this choice the first Ricatti-Hankel function,
ξn (qr) e−iωt ∝ ei(qr−ωt), represents a wave moving in the
positive radial direction (towards the left in Fig. 3) while the
second, ζn (qr) e−iωt ∝ e−i(qr+ωt), represents a wave moving
in the negative radial direction (towards the right in Fig. 3).
Thus the general solution for the potentials is

rπ =
∞∑
l=0

l∑
m=−l

[alζl (qr) + blξl (qr)] Yl,m (θ,φ)e−iωt .

(5.62)

From the potentials we get the fields [40–42]

Er = E1r + E2r = ∂2(rπ1)

∂r2
+ q2rπ1 + 0,

Eθ = E1θ + E2θ = 1

r

∂2(rπ1)

∂r∂θ
− iω

c

1

r sin θ

∂(rπ2)

∂φ
,

Eφ = E1φ + E2φ = 1

r sin θ

∂2(rπ1)

∂r∂φ
+ iω

c

1

r

∂(rπ2)

∂θ
,

(5.63)

Hr = H1r + H2r = 0 + ∂2(rπ2)

∂r2
+ q2rπ2,

Hθ = H1θ + H2θ = iωε̃

c

1

r sin θ

∂(rπ1)

∂φ
+ 1

r

∂2(rπ2)

∂r∂θ
,

Hφ = H1φ + H2φ = − iωε̃

c

1

r

∂(rπ1)

∂θ
+ 1

r sin θ

∂2(rπ2)

∂r∂φ
.

Let us now use the boundary conditions that the tangential
components of E and H are continuous at the interface between
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layer n and n + 1. We get

(∂/∂r)
[
rπn

1

]
r=rn

= (∂/∂r)
[
rπn+1

1

]
r=rn

,

(∂/∂r)
[
rπn

2

]
r=rn

= (∂/∂r)
[
rπn+1

2

]
r=rn

,

(5.64)
(ε̃niω/c)

[
rπn

1

]
r=rn

= (ε̃n+1iω/c)
[
rπn+1

1

]
r=rn

,

(ω/c)
[
rπn

2

]
r=rn

= (ω/c)
[
rπn+1

2

]
r=rn

.

This gives

qn

[
an

1,lζ
′
l (qnrn) + bn

1,lξ
′
l (qnrn)

]
= qn+1

[
an+1

1,l ζ ′
l (qn+1rn) + bn+1

1,l ξ ′
l (qn+1rn)

]
,

qn

[
an

2,lζ
′
l (qnrn) + bn

2,lξ
′
l (qnrn)

]
= qn+1

[
an+1

2,l ζ ′
l (qn+1rn) + bn+1

2,l ξ ′
l (qn+1rn)

]
,

q2
n

[
an

1,lζl(qnrn) + bn
1,lξl(qnrn)

]
= q2

n+1

[
an+1

1,l ζl(qn+1rn) + bn+1
1,l ξl(qn+1rn)

]
,

[
an

2,lζl(qnrn) + bn
2,lξl(qnrn)

]
= [

an+1
2,l ζl(qn+1rn) + bn+1

2,l ξl(qn+1rn)
]
, (5.65)

where a prime on a function means the derivative with respect
to its argument.

Let us first assume pure TM modes. That means keeping
π1 only. Then we have

an
1,lqnζ

′
l (qnrn) + bn

1,lqnξ
′
l (qnrn)

= an+1
1,l qn+1ζ

′
l (qn+1rn) + bn+1

1,l qn+1ξ
′
l (qn+1rn) ,

(5.66)
an

1,lq
2
nζl (qnrn) + bn

1,lq
2
nξl (qnrn)

= an+1
1,l q2

n+1ζl (qn+1rn) + bn+1
1,l q2

n+1ξl (qn+1rn) ,

and we may identify the matrix Ãn (rn) as

ÃTM
n (rn) =

(
qnζ

′
l (qnrn) qnξ

′
l (qnrn)

q2
nζl (qnrn) q2

nξl (qnrn)

)
, (5.67)

and the matrix M̃n as

M̃TM
n = −qn+1

q2
n (2i)

(
qnξlζ

′+
l − qn+1ξ

′
l ζ

+
l qnξlξ

′+
l − qn+1ξ

′
l ξ

+
l

−qnζlζ
′+
l + qn+1ζ

′
l ζ

+
l −qnζlξ

′+
l + qn+1ζ

′
l ξ

+
l

)
, (5.68)

where we to save space have omitted the function arguments. All functions with a + added as a superscript have the argument
qn+1rn and the ones without the superscript have the argument qnrn. We have also made use of the Wronskian of the two
Ricatti-Bessel functions: W [ζl (x) ,ξl (x)] = ξ ′

l (x) ζl (x) − ξl (x) ζ ′
l (x) = 2i.

Now we repeat the derivation for TE modes. That means keeping π2 only. Then we have

an
2,lqnζ

′
l (qnrn) + bn

2,lqnξ
′
l (qnrn) = an+1

2,l qn+1ζ
′
l (qn+1rn) + bn+1

2,l qn+1ξ
′
l (qn+1rn) ,

(5.69)
an

2,lζl (qnrn) + bn
2,lξl (qnrn) = an+1

2,l ζl (qn+1rn) + bn+1
2,l ξl (qn+1rn) ,

and we may identify the matrix Ãn (rn) as

ÃTE
n (rn) =

(
qnζ

′
l (qnrn) qnξ

′
l (qnrn)

ζl (qnrn) ξl (qnrn)

)
, (5.70)

and the matrix M̃n as

M̃TE
n = −1

qn (2i)

(−qnξ
′
l ζ

+
l + qn+1ξlζ

′+
l −qnξ

′
l ξ

+
l + qn+1ξlξ

′+
l

qnζ
′
l ζ

+
l − qn+1ζlζ

′+
l qnζ

′
l ξ

+
l − qn+1ζlξ

′+
l

)
. (5.71)

Of the solutions to the Ricatti-Bessel equation in Eq. (5.58) the
Ricatti-Bessel function of the first kind is the function that is
regular at the origin. Thus this is the function we should use in
the rightmost region of Fig. 3. Now, since the function ψl(z) =
[ξl (x) + ζl (x)] /2 we have that bN+1 = aN+1. According to
Eq. (3.6) this means that

fl,m(ω) = M11 + M12. (5.72)

Before we end this section, we introduce the 2l pole polar-
izabilities αn

l and α
n(2)
l for the spherical interface since these

appear repeatedly in the sections that follow. The first is valid
outside and the second inside. The polarizability αn

l = −bn/an

under the assumption that bn+1 = an+1. One obtains αn
l =

−(Mn
21 + Mn

22)/(Mn
11 + Mn

12) and from Eq. (5.68) one finds

that for TM modes,

α
TM,n
l = qnζl (qnrn) ψ ′

l (qn+1rn) − qn+1ζ
′
l (qnrn) ψl (qn+1rn)

qnξl (qnrn) ψ ′
l (qn+1rn) − qn+1ξ

′
l (qnrn) ψl (qn+1rn)

.

(5.73)

In the same way, one finds from Eq. (5.71) that for TE
modes,

α
TE,n
l = qnζ

′
l (qnrn) ψl (qn+1rn) − qn+1ζl (qnrn) ψ ′

l (qn+1rn)

qnξ
′
l (qnrn) ψl (qn+1rn) − qn+1ξl (qnrn) ψ ′

l (qn+1rn)
.

(5.74)

The polarizability α
n(2)
l = −an+1/bn+1 under the assumption

that an = 0. One obtains α
n(2)
l = M12/M11 and from Eq. (5.68)
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one finds that for the TM modes,

α
TM,n(2)
l

= qnξl (qnrn) ξ ′
l (qn+1rn) − qn+1ξ

′
l (qnrn) ξl (qn+1rn)

qnξl (qnrn) ζ ′
l (qn+1rn) − qn+1ξ

′
l (qnrn) ζl (qn+1rn)

.

(5.75)

From Eq. (5.71) one finds that for TE modes,

α
TE,n(2)
l = qnξ

′
l (qnrn) ξ ′

l (qn+1rn) − qn+1ξl (qnrn) ξ ′
l (qn+1rn)

qnξ
′
l (qnrn) ζl (qn+1rn) − qn+1ξl (qnrn) ζ ′

l (qn+1rn)
.

(5.76)

When we calculate the energy by an integral along the
imaginary frequency axis the arguments of the Ricatti-Bessel
functions become imaginary. It may be favorable to have real-
valued arguments, ξa/c, and

√
ε̃(iξ )ξa/c instead of iξa/c and√

ε̃(iξ )iξa/c, respectively. To achieve real valued arguments
we transform the functions. The transformation rules are [43]

ξl (ix) = 1

il+1

1

π

√
2πxKl+1/2 (x) ,

ζl (ix) = il+1
√

2πx

[
Il+1/2 (x) + 1

π
(−1)lKl+1/2 (x)

]
,

ψl (ix) = il+1 1

2

√
2πxIl+1/2 (x) ,

ξ ′
l (ix) = 1

il+2

1

π

√
2πx

[
1

2x
Kl+1/2 (x) + K ′

l+1/2 (x)

]
,

ζ ′
l (ix) = il

√
2πx

{
1

2x

[
Il+1/2 (x) + 1

π
(−1)lKl+1/2 (x)

]

+
[
I ′
l+1/2 (x) + 1

π
(−1)lK ′

l+1/2 (x)

]}
,

ψ ′
l (ix) = il

1

2

√
2πx

[
1

2x
Il+1/2 (x) + I ′

l+1/2 (x)

]
. (5.77)

Now we have all we need to determine the fully retarded
normal modes in a layered spherical structure. We give some
examples in the following sections.

D. Retarded special results

1. Solid sphere (no layer)

For a solid sphere of radius a and dielectric function ε̃1(ω)
in an ambient of dielectric function ε̃0(ω), as illustrated in
Fig. 16, we have M̃ = M̃0, and for the TM modes, we find

M11 + M12

= iq1

2q2
0

{q0ξl(q0a)[ζ ′
l (q1a) + ξ ′

l (q1a)]

− q1ξ
′
l (q0a)[ζl(q1a) + ξl(q1a)]}

= −iq1

2q2
0

[q0ξl(q0a)2ψ ′
l (q1a) − q1ξ

′
l (q0a)2ψl(q1a)]

= −iq1

q2
0

{[
ε̃0(ω/c)2ah

(1)
l (q0a)

]
[q1ajl(q1a)]′

− [
q0ah

(1)
l (q0a)

]′
[ε̃1(ω/c)2ajl(q1a)]

}
, (5.78)

0 1

0

r = a

ε1ε0

FIG. 16. (Color online) The geometry of a solid sphere or cylin-
der of radius a in the fully retarded treatment.

where we have used the relations between the different
solutions to the Ricatti-Bessel equation given in Eqs. (5.59) and
(5.61). We have furthermore used the relations q2

0 = ε̃0(ω/c)2

and q2
1 = ε̃1(ω/c)2.

The mode condition function for TM modes is

f TM
l,m = [

ε̃0(ω)h(1)
l (q0a)

]
[(q1a) jl (q1a)]′

− [
(q0a)h(1)

l (q0a)
]′

[ε̃1(ω)jl(q1a)]. (5.79)

This result agrees with the result of Ruppin in Eq. (43) on
page 353, in Ref. [4]. For the TE modes, we find

M11 + M12 = i

2q0
{−q0ξ

′
l (q0a)[ζl(q1a) + ξl(q1a)]

+q1ξl(q0a)[ζ ′
l (q1a) + ξ ′

l (q1a)]}

= −i

2q0
[−q0ξ

′
l (q0a)2ψl(q1a)

+q1ξl(q0a)2ψ ′
l (q1a)]

= −iq1a
{−[

q0ah
(1)
l (q0a)

]′
[jl(q1a)]

+[
h

(1)
l (q0a)

]
[q1ajl(q1a)]′

}
, (5.80)

and the mode condition function for TE modes is

f TE
l,m = [

h
(1)
l (q0a)

]
[(q1a) jl (q1a)]′

−[
(q0a) h

(1)
l (q0a)

]′
[jl (q1a)] . (5.81)

This result agrees with the result of Ruppin in Eq. (34) on
page 351, in Ref. [4]. The results of Eqs. (5.79) and (5.81)
can also be used for a spherical cavity in a medium if the two
dielectric functions are interchanged.

2. Spherical shell or gap (one layer)

For a spherical shell of inner radius a and outer radius b,
Fig. 17, made of a medium with dielectric function ε̃1 in an
ambient medium with dielectric function ε̃0 we have M̃ =
M̃0 · M̃1. This geometry covers the problem of a vacuum gap
in the shape of a spherical shell inside an infinite medium, as
treated in Ref. [44].
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0 1

0

r = b

ε0

1

r = a

ε1 ε2

2

FIG. 17. (Color online) The geometry of a coated sphere or
cylinder of radius a in the fully retarded treatment.

We do not need all elements of the two matrices. We
have

M11 + M12 = (
M0

11,M
0
12

) ·
(

M1
11 + M1

12

M1
21 + M1

22

)

= M0
11

(
M1

11 + M1
12

) (
1,α

0(2)
l

) ·
(

1
−α1

l

)
= M0

11

(
M1

11 + M1
12

) (
1 − α

0(2)
l α1

l

)
. (5.82)

We want to end up with expressions for the mode condition
functions that are suitable to use on the imaginary frequency
axis. This demands some manipulations. First, we note that
1 − α

0(2)
l α1

l = 0 → 1/α
0(2)
l − α1

l = 0, and for TM modes, we
have

q0ξl (q0b) ζ ′
l (q1b) − q1ξ

′
l (q0b) ζl (q1b)

q0ξl (q0b) ξ ′
l (q1b) − q1ξ

′
l (q0b) ξl (q1b)

− q1ζl (q1a) ψ ′
l (q0a) − q0ζ

′
l (q1a) ψl (q0a)

q1ξl (q1a) ψ ′
l (q0a) − q0ξ

′
l (q1a) ψl (q0a)

= 0. (5.83)

We may use the relation 2ψl = ζl + ξl to find

2
q0ξl (q0b) ψ ′

l (q1b) − q1ξ
′
l (q0b) ψl (q1b)

q0ξl (q0b) ξ ′
l (q1b) − q1ξ

′
l (q0b) ξl (q1b)

− 1

− 2
q1ψl (q1a) ψ ′

l (q0a) − q0ψl
′ (q1a) ψl (q0a)

q1ξl (q1a) ψ ′
l (q0a) − q0ξ

′
l (q1a) ψl (q0a)

+ 1 = 0.

(5.84)

We find the following mode condition function for TM
modes

f̃ TM
l,m (ω) = 1 − q0ξl (q0b) ψ ′

l (q1b) − q1ξ
′
l (q0b) ψl (q1b)

q0ξl (q0b) ξ ′
l (q1b) − q1ξ

′
l (q0b) ξl (q1b)

× q1ξl (q1a) ψ ′
l (q0a) − q0ξ

′
l (q1a) ψl (q0a)

q1ψl (q1a) ψ ′
l (q0a) − q0ψ

′
l (q1a) ψl (q0a)

,

(5.85)

and analogous manipulations for the TE modes give

f̃ TE
l,m(ω) = 1 − q0ξ

′
l (q0b) ψl (q1b) − q1ξl (q0b) ψ ′

l (q1b)

q0ξ
′
l (q0b) ξl (q1b) − q1ξl (q0b) ξ ′

l (q1b)

× q1ξ
′
l (q1a) ψl (q0a) − q0ξl (q1a) ψ ′

l (q0a)

q1ψ
′
l (q1a) ψl (q0a) − q0ψl (q1a) ψ ′

l (q0a)
.

(5.86)

In these equations, q0 is
√

ε̃0(ω)ω/c and q1 is
√

ε̃1(ω)ω/c,
respectively. We have expressed the mode condition functions
in terms of ξl and ψl since these are easier to transform
from functions of imaginary arguments into functions of real
arguments by following Eq. (5.73). For the vacuum gap treated
in Ref. [44], one should put ε̃0 = ε̃ and ε̃1 = 1. Our results
agree with those in Ref. [44].

3. Coated sphere in a medium (one layer)

The result for a coated sphere in a medium is obtained
trivially from the previous section. One just replaces q0

in the last factor in Eqs. (5.85) and (5.86) with q2 =√
ε2(ω)ω/c, where ε2(ω) is the dielectric function of the sphere

medium.

4. Thin spherical diluted gas film (one layer)

It is of interest to find the Casimir force on an atom in a
layered structure. We can obtain this by studying the force on
a thin layer of a diluted gas with dielectric function εg(ω) =
1 + 4πnαat(ω), where αat is the polarizability of one atom
and n the density of atoms (we have assumed that the atom
is surrounded by vacuum; if not, the 1 should be replaced by
the dielectric function of the ambient medium and the atomic
polarizability should be replaced by the excess polarizability).
For a diluted gas layer, the atoms do not interact with each
other and the force on the layer is just the sum of the forces
on the individual atoms. So by dividing with the number of
atoms in the film we get the force on one atom. The layer
has to be thin in order to have a well defined r value of the
atom. Since we will derive the force on an atom in different
spherical geometries it is fruitful to derive the matrix for a
thin diluted gas shell. This result can be directly used in the
derivation of the Casimir force on an atom in different spherical
geometries.

We let the film have the thickness δ and be of general radius
r . We only keep terms up to linear order in δ and linear order
in n. We find the result for TM modes is

M̃TM
gaslayer

=
(

1 0
0 1

)
− (δn)2παatq0i

×
(

ξ ′
l ζ

′
l + ξlζl

l(l+1)
(q0r)2 [ξ ′

l ]
2 + [ξl]2 l(l+1)

(q0r)2

−[ζ ′
l ]

2 − [ζl]2 l(l+1)
(q0r)2 −ξ ′

l ζ
′
l − ξlζl

l(l+1)
(q0r)2

)
,

(5.87)

where we have suppressed the argument (q0r) in all Ricatti-
Bessel functions. For TE modes, we find

M̃TE
gaslayer =

(
1 0
0 1

)
− (δn)2παatq0i

×
(

ξl (q0r) ζl (q0r) [ξl (q0r)]2

−[ζl (q0r)]2 −ξl (q0r) ζl (q0r)

)
.

(5.88)

Now we are done with the gas layer. We will use these results
later in calculating the Casimir force on an atom in spherical
layered structures.
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5. 2D spherical film (one layer)

In many situations, one is dealing with very thin films.
These may be considered 2D. Important examples are a
graphene sheet and a 2D electron gas. In the derivation we let
the film have finite thickness δ and be characterized by a 3D
dielectric function ε̃3D . We then let the thickness go towards
zero. The 3D dielectric function depends on δ as ε̃3D ∼ 1/δ

for small δ. In the planar structure we could in the limit when δ

goes towards zero obtain a momentum dependent 2D dielectric
function. Here, we only obtain the long wavelength limit of
the 2D dielectric function [31,32]. We obtain for TM modes,

M̃TM
2D =

(
1 0
0 1

)
− δε̃3Dq0i

2

×
(

ξ ′
l (q0r)ζ ′

l (q0r) [ξ ′
l (q0r)]2

−[ζ ′
l (q0r)]2 −ξ ′

l (q0r)ζ ′
l (q0)

)
, (5.89)

and for TE modes,

M̃TE
2D =

(
1 0
0 1

)
− δε̃3Dq0i

2

×
(

ξl (q0r) ζl (q0r) [ξl (q0r)]2

−[ζl (q0r)]2 −ξl (q0r) ζl (q0r)

)
. (5.90)

We will also need the 2l pole polarizabilities α2D
l and

α
2D(2)
l for the thin spherical film since these appear repeat-

edly in the sections that follow. The first is valid outside
and the second inside. The polarizability α2D

l = −b0/a0

under the assumption that b1 = a1. One obtains α2D
l =

− (M21 + M22) / (M11 + M12), and from Eq. (5.89), one finds
that for TM modes,

α
2D,TM
l = −2 + δε̃3Dq0i[ζ ′

l (q0r)2 + ξ ′
l (q0r) ζ ′

l (q0r)]

2 − δε̃3Dq0i[ξ ′
l (q0r)2 + ξ ′

l (q0r)ζ ′
l (q0r)]

.

(5.91)

In the same way, one finds from Eq. (5.90) that for TE modes,

α
2D,TE
l = −2 + δε̃3Dq0i[ζl(q0r)2 + ξl (q0r) ζl (q0r)]

2 − δε̃3Dq0i[ξl(q0r)2 + ξl (q0r) ζl (q0r)]
. (5.92)

The polarizability α
2D(2)
l = −a1/b1 under the assumption that

a0 = 0. One obtains α
2D(2)
l = M12/M11, and from Eq. (5.89),

one finds that for the TM modes,

α
2D(2),TM
l = −δε̃3Dq0iξ

′
l (q0r)2

2 − δε̃3Dq0iξ
′
l (q0r) ζ ′

l (q0r)
. (5.93)

From Eq. (5.90), one finds that for TE modes,

α
2D(2),TE
l = −δε̃3Dq0iξl(q0r)2

2 − δε̃3Dq0iξl (q0r) ζl (q0r)
. (5.94)

6. Force on an atom outside a sphere (two layers)

We let the atom be at the distance d from the sphere of
radius a and at the distance b from the center of the sphere.
For this problem, we start with the geometry given in Fig. 18,
where we let the shell be a very thin gas layer. We have two
layers and three interfaces. The matrix M̃ = M̃0 · M̃1 · M̃2.
Here, we could instead of the first two matrices have used the
matrix for a thin diluted gas shell as given in Eqs. (5.87) and

0 1

0

r = a+d+δ

ε  = 1

1 2

2

r = ar = a+d

εg

3

ε  = 1 ε1

FIG. 18. (Color online) The geometry of a thin gas layer the
distance d from a sphere or cylinder of radius a in the fully retarded
treatment.

(5.88). To vary the derivations to some extent, we refrain from
doing that. The left-hand side of the condition for modes is

M11 + M12 = (
M0

11 M0
12

) · M̃1 ·
(

M2
11 + M2

12

M2
21 + M2

22

)
, (5.95)

where we have moved the matrix subscripts to superscripts to
make room for the element indices. We now list all elements
needed in the above equation. We begin with the matrices for
TM modes. The elements of the first matrix are

M0
11 = ing

2
{ξl[q0(b + δ)]ζ ′

l [qg(b + δ)]

−ngξ
′
l [q0(b + δ)]ζl[qg(b + δ)]},

(5.96)
M0

12 = ing

2
{ξl[q0(b + δ)]ξ ′

l [qg(b + δ)]

−ngξ
′
l [q0(b + δ)]ξl[qg(b + δ)]},

and of the second,

M1
11 = i

2n2
g

[ngξl(qgb)ζ ′
l (q0b) − ξ ′

l (qgb)ζl(q0b)],

M1
12 = i

2n2
g

[ngξl(qgb)ξ ′
l (q0b) − ξ ′

l (qgb)ξl(q0b)],

(5.97)
M1

21 = i

2n2
g

[ζ ′
l (qgb)ζl(q0b) − ngζl(qgb)ζ ′

l (q0b)],

M1
22 = i

2n2
g

[ζ ′
l (qgb)ξl(q0b) − ngζl(qgb)ξ ′

l (q0b)],

and of the third,

M2
11 + M2

12

= in1

2
[ξl(q0a)ζ ′

l (q1a) − n1ξ
′
l (q0a)ζl(q1a)

+ ξl(q0a)ξ ′
l (q1a) − n1ξ

′
l (q0a)ξl(q1a)]

= in1[ξl(q0a)ψl
′(q1a) − n1ξ

′
l (q0a)ψl(q1a)],

(5.98)
M2

21 + M2
22

= in1

2
[n1ζ

′
l (q0a)ζl(q1a) − ζl(q0a)ζ ′

l (q1a)

+ n1ζ
′
l (q0a)ξl(q1a) − ζl(q0a)ξ ′

l (q1a)]

= in1[n1ζ
′
l (q0a)ψl(q1a) − ζl(q0a)ψl

′(q1a)],
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where ng and n1 are the refractive indices of the gas layer and
the sphere, respectively.

We now make a series expansion of the first matrix up to
linear order in δ. The other matrices do not depend on δ. The
zeroth-order term multiplied with the second matrix produces
the matrix (1 0), so it contributes with M2

11 + M2
12 to the

condition for modes. We then expand in αg , the polarizability
of the gas. There is no zeroth-order term in the term linear in
δ. The lowest-order term is linear in αg . This means that we do
not need to expand M̃1 in αg . The zeroth-order term is just the
unit matrix. Thus if we denote the term of the matrix M̃0 that
is linear in both δ and αg with δM̃0, the condition for modes
can be written as(
M2

11 + M2
12

) + δM0
11

(
M2

11 + M2
12

) + δM0
12

(
M2

21 + M2
22

) = 0,

(5.99)

and the mode condition function is

f̃ TM
l

(ω)

= 1 + δM0
12

(
M2

21 + M2
22

) − (
M2

11 + M2
12

)(
M2

11 + M2
12

)
= 1 − δM0

122
n1ψ

′
l (q0a) ψl (q1a) − ψl (q0a) ψ ′

l (q1a)

n1ξ
′
l (q0a) ψl (q1a) − ξl (q0a) ψ ′

l (q1a)
,

(5.100)

where

δM0
12 = −δαgq0

i

2

{
[ξ ′

l (q0b)]2 + l (l + 1) [ξl (q0b)]2

(q0b)2

}
.

(5.101)

To obtain the mode condition function in Eq. (5.100), we have
divided the function [the left-hand side of Eq. (5.99)] both with
the corresponding function for the sphere alone, M2

11 + M2
12,

and for the spherical shell alone, 1 + δM0
11 + δM0

12. Note that
the final expression does not contain any elements of matrix
M̃1 and just one of δM̃0.

Now, we proceed with the TE modes. The elements of the
first matrix are

M0
11 = i

2
{−ξ ′

l [q0(b + δ)]ζl[qg (b + δ)]

+ ngξl[q0 (b + δ)]ζ ′
l [qg (b + δ)]},

(5.102)
M0

12 = i

2
{−ξ ′

l [q0 (b + δ)]ξl[qg (b + δ)]

+ ngξl[q0 (b + δ)]ξ ′
l [qg(b + δ)]},

and of the second,

M1
11 = i

2ng

[−ngξ
′
l (qgb)ζl(q0b) + ξl(qgb)ζ ′

l (q0b)],

M1
12 = i

2ng

[−ngξ
′
l (qgb)ξl(q0b) + ξl(qgb)ξ ′

l (q0b)],

(5.103)
M1

21 = i

2ng

[ngζ
′
l (qgb)ζl(q0b) − ζl(qgb)ζ ′

l (q0b)],

M1
22 = i

2ng

[ngζ
′
l (qgb)ξl(q0b) − ζl(qgb)ξ ′

l (q0b)],

and of the third,

M2
11 + M2

12

= i

2
[−ξ ′

l (q0a)ζl(q1a) + n1ξl(q0a)ζ ′
l (q1a)

− ξ ′
l (q0a)ξl(q1a) + n1ξl(q0a)ξ ′

l (q1a)]

= i[−ξ ′
l (q0a)ψl(q1a) + n1ξl(q0a)ψ ′

l (q1a)],

M2
21 + M2

22 (5.104)

= i

2
[ζ ′

l (q0a)ζl(q1a) − n1ζl(q0a)ζ ′
l (q1a)

+ ζ ′
l (q0a)ξl(q1a) − n1ζl(q0a)ξ ′

l (q1a)]

= i[ζ ′
l (q0a)ψl(q1a) − n1ζl(q0a)ψ ′

l (q1a)],

where ng and n1 are the refractive indices of the gas layer and
the sphere, respectively.

We now make a series expansion of the first matrix up to
linear order in δ. The other matrices do not depend on δ. The
zeroth-order term multiplied with the second matrix produces
the matrix (1 0), so it contributes with M2

11 + M2
12 to the

condition for modes. We then expand in αg , the polarizability
of the gas. There is no zeroth-order term in the term linear in
δ. The lowest-order term is linear in αg . This means that we do
not need to expand M̃1 in αg . The zeroth-order term is just the
unit matrix. Thus if we denote the term of the matrix M̃0 that
is linear in both δ and αg with δM̃0, the condition for modes
can be written as

(
M2

11 + M2
12

) + δM0
11

(
M2

11 + M2
12

) + δM0
12

(
M2

21 + M2
22

)= 0,

(5.105)

and the mode condition function is

f̃ TE
l

(ω)

= 1 + δM0
12

(
M2

21 + M2
22

) − (
M2

11 + M2
12

)(
M2

11 + M2
12

)
= 1 − δM0

122
ψ ′

l (q0a) ψl (q1a) − n1ψl (q0a) ψ ′
l (q1a)

−ξ ′
l (q0a) ψl (q1a) + n1ξl (q0a) ψ ′

l (q1a)
,

(5.106)

where

δM0
12 = −δαgq0

i

2
[ξl (q0b) ξl (q0b)] . (5.107)

To obtain the mode condition function in Eq. (5.106) we
have divided the function [the left-hand side of Eq. (5.105)]
both with the corresponding function for the sphere alone,
M2

11 + M2
12, and for the spherical shell alone, 1 + δM0

11 +
δM0

12.
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The interaction energy per atom is

E(b)

4πb2δng

= �

4πb2δng

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) ln
[
f̃ TM

l (iξ )f̃ TE
l (iξ )

]

≈ �

4πb2δng

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1)
{[

f̃ TM
l (iξ ) − 1

] + [
f̃ TE

l (iξ ) − 1
]}

= �

4πb2δng

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) 4πngα
at(iξ )δ

i (iξb/c)

2b

{
−

[
[ξ ′

l (iξb/c)]2 + l (l + 1) [ξl (iξb/c)]2

(iξb/c)2

]

×2
n1ψ

′
l (iξa/c) ψl (iξn1a/c) − ψl (iξa/c) ψ ′

l (iξn1a/c)

n1ξ
′
l (iξa/c) ψl (iξn1a/c) − ξl (iξa/c) ψ ′

l (iξn1a/c)

+ 2[ξl (iξb/c)]2 ψ ′
l (iξa/c) ψl (iξn1a/c) − n1ψl (iξa/c) ψ ′

l (iξn1a/c)

−ξ ′
l (iξa/c) ψl (iξn1a/c) + n1ξl (iξa/c) ψ ′

l (iξn1a/c)

}

= �

b2

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) αat(iξ )
i (iξb/c)

b

{
−

[
[ξ ′

l (iξb/c)]2 + l (l + 1) [ξl (iξb/c)]2

(iξb/c)2

]

× n1ψ
′
l (iξa/c) ψl (iξn1a/c) − ψl (iξa/c) ψ ′

l (iξn1a/c)

n1ξ
′
l (iξa/c) ψl (iξn1a/c) − ξl (iξa/c) ψ ′

l (iξn1a/c)

+ [ξl (iξb/c)]2 ψ ′
l (iξa/c) ψl (iξn1a/c) − n1ψl (iξa/c) ψ ′

l (iξn1a/c)

−ξ ′
l (iξa/c) ψl (iξn1a/c) + n1ξl (iξa/c) ψ ′

l (iξn1a/c)

}
, (5.108)

where now ng is the density of gas atoms in the gas shell. The
force on the atom is F (b) = −r̂dE(b)/db.

7. Force on an atom in a spherical cavity (two layers)

We let the atom be at the distance d from the center of
the spherical cavity, of radius a. We start from the two layer
structure in Fig. 19. We let the medium surrounding the cavity
have dielectric function ε̃1(ω). The first layer is a vacuum
layer. The second is a thin layer, of thickness δ, of a diluted
gas of atoms of the kind we consider. Its dielectric function is
εg(ω) = 1 + 4πNαat(ω), where αat is the polarizability of one
atom. The density of gas atoms, N , is very low. We let the first
interface be at r = a and hence the second at r = d + δ and
the third at r = d. In what follows, we only keep lowest-order
terms in δ and in N .

0 1

0

r = a

1 2

2

r = dr = d+δ

εg

3

ε = 1ε1 ε = 1

FIG. 19. (Color online) The geometry of a thin gas layer at radius
d inside a spherical or cylindrical cavity of radius a in the fully
retarded treatment.

Just as in Sec.V D 6 the matrix becomes M̃ = M̃0 · M̃1 · M̃2

and the left-hand side of the condition for modes is given by
Eq. (5.95). In this section, q0 = ω/c, q1 = √

ε̃1(ω)ω/c and
qg = √

εg(ω)ω/c.
We now list all elements needed in Eq. (5.95). We begin

with the matrices for TM modes. The elements of the first
matrix are

M0
11 = i

2ε̃1
[n1ξl (q1a) ζ ′

l (q0a)−ξ ′
l (q1a) ζl (q0a)],

(5.109)
M0

12 = i

2ε̃1
[n1ξl (q1a) ξ ′

l (q0a)−ξ ′
l (q1a) ξl (q0a)],

and of the second,

M1
11 = ing

2
{ξl[q0(d + δ)]ζ ′

l [qg(d + δ)]

− ngξ
′
l [q0(d + δ)]ζl[qg(d + δ)]},

M1
12 = ing

2
{ξl[q0(d + δ)]ξ ′

l [qg(d + δ)]

− ngξ
′
l [q0(d + δ)]ξl[qg(d + δ)]},

(5.110)

M1
21 = ing

2
{ngζ

′
l [q0(d + δ)]ζl[qg(d + δ)]

− ζl[q0(d + δ)]ζ ′
l [qg(d + δ)]},

M1
22 = ing

2
{ngζ

′
l [q0(d + δ)]ξl[qg(d + δ)]

− ζl[q0(d + δ)]ξ ′
l [qg(d + δ)]},
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and of the third,

M2
11 + M2

12

= i

2εg

[ngξl(qgd)ζ ′
l (q0d) − ξ ′

l (qgd)ζl(q0d)

+ ngξl(qgd)ξ ′
l (q0d) − ξ ′

l (qgd)ξl(q0d)]

= i

εg

[ngξl(qgd)ψ ′
l (q0d) − ξ ′

l (qgd)ψl(q0d)],

M2
21 + M2

22 (5.111)

= i

2εg

[ζ ′
l (qgd)ζl(q0d) − ngζl(qgd)ζ ′

l (q0d)

+ ζ ′
l (qgd)ξl(q0d) − ngζl(qgd)ξ ′

l (q0d)]

= i

εg

[ζ ′
l (qgd)ψl(q0d) − ngζl(qgd)ψ ′

l (q0d)],

where ng and n1 are the refractive indices of the gas layer and
the surrounding medium, respectively.

We now make a series expansion of the second matrix,
Eq. (5.110), up to linear order in δ. The other matrices do
not depend on δ. The zeroth-order term multiplied with the
third matrix produces the matrix (1

1), so it contributes with

M0
11 + M0

12 to the condition for modes. We then expand in αg ,
the polarizability of the gas. There is no zeroth-order term in
the term linear in δ. The lowest-order term is linear in αg . This
means that we do not need to expand the third matrix in αg .
Thus if we denote the term of the matrix M̃1 that is linear
in both δ and αg with δM̃1, the condition for modes can be
written as (

M0
11 + M0

12

) + M0
11

(
δM1

11 + δM1
12

)
+M0

12

(
δM1

21 + δM1
22

) = 0. (5.112)

To get the mode condition function we first rewrite this as(
M0

11 + M0
12

) + (
M0

11 + M0
12

) (
δM1

11 + δM1
12

)
+M0

12

[(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)] = 0, (5.113)

and the proper mode condition function becomes

f̃ TM
l (ω)

= 1 + M0
12

(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)(
M0

11 + M0
12

)
= 1 + 4πNαatiδq0

{
[ψ ′

l (q0d)]2 + l (l + 1)

(q0d)2 [ψl (q0d)]2

}

× n1ξl (q1a) ξ ′
l (q0a) − ξ ′

l (q1a) ξl (q0a)

n1ξl (q1a) ψ ′
l (q0a) − ξ ′

l (q1a) ψl (q0a)
. (5.114)

To obtain the mode condition function in Eq. (5.114), we
have divided the function [the left-hand side of Eq. (5.113)]
both with the corresponding function for the cavity alone,
M0

11 + M0
12, and for the spherical shell alone, 1 + δM1

11 +
δM1

12.

Now, we proceed with the TE modes. The elements of the
first matrix are

M0
11 = i

2n1
[−n1ξ

′
l (q1a) ζl (q0a) + ξl (q1a) ζ ′

l (q0a)],
(5.115)

M0
12 = i

2n1
[−n1ξ

′
l (q1a) ξl (q0a) + ξl (q1a) ξ ′

l (q0a)],

and of the second,

M1
11 = i

2
{−ξ ′

l [q0(d + δ)]ζl[qg(d + δ)]

+ ngξl[q0(d + δ)]ζ ′
l [qg(d + δ)]},

M1
12 = i

2
{−ξ ′

l [q0(d + δ)]ξl[qg(d + δ)]

+ ngξl[q0(d + δ)]ξ ′
l [qg(d + δ)]},

(5.116)
M1

21 = i

2
{−ngζl[q0(d + δ)]ζ ′

l [qg(d + δ)]

+ ζ ′
l [q0(d + δ)]ζl[qg(d + δ)]},

M1
22 = i

2
{−ngζl[q0(d + δ)]ξ ′

l [qg(d + δ)]

+ ζ ′
l [q0(d + δ)]ξl[qg(d + δ)]},

and of the third,

M2
11 + M2

12

= i

2ng

[−ngξ
′
l (qgd)ζl(q0d) + ξl(qgd)ζ ′

l (q0d)

− ngξ
′
l (qgd)ξl(q0d) + ξl(qgd)ξ ′

l (q0d)]

= i

ng

[−ngξ
′
l (qgd)ψl(q0d) + ξl(qgd)ψ ′

l (q0d)],

M2
21 + M2

22 (5.117)

= i

2ng

[−ζl(qgd)ζ ′
l (q0d) + ngζ

′
l (qgd)ζl(q0d)

− ζl(qgd)ξ ′
l (q0d) + ngζ

′
l (qgd)ξl(q0d)]

= i

ng

[−ζl(qgd)ψ ′
l (q0d) + ngζ

′
l (qgd)ψl(q0d)],

where ng and n1 are the refractive indices of the gas layer and
the surrounding medium, respectively.

We now make a series expansion of the second matrix,
Eq. (5.116), up to linear order in δ. The other matrices do
not depend on δ. The zeroth-order term multiplied with the
third matrix produces the matrix (1

1), so it contributes with

M0
11 + M0

12 to the condition for modes. We then expand in αg ,
the polarizability of the gas. There is no zeroth-order term in
the term linear in δ. The lowest-order term is linear in αg . This
means that we do not need to expand the third matrix in αg .
Thus if we denote the term of the matrix M̃1 that is linear
in both δ and αg with δM̃1, the condition for modes can be
written as (

M0
11 + M0

12

) + M0
11

(
δM1

11 + δM1
12

)
+M0

12

(
δM1

21 + δM1
22

) = 0. (5.118)
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To get the mode condition function we first rewrite this as(
M0

11 + M0
12

) + (
M0

11 + M0
12

) (
δM1

11 + δM1
12

)+M0
12

[(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)] = 0, (5.119)

and the proper mode condition function becomes

f̃ TE
l (ω) = 1 + M0

12

(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)(
M0

11 + M0
12

) = 1 + 4πNαatiδq0[ψl [q0d]]2 [−n1ξ
′
l (q1a) ξl (q0a) + ξl (q1a) ξ ′

l (q0a)]

[−n1ξ
′
l (q1a) ψl (q0a) + ξl (q1a) ψ ′

l (q0a)]
.

(5.120)

To obtain the mode condition function in Eq. (5.120), we have divided the function [the left-hand side of Eq. (5.119)] both
with the corresponding function for the cavity alone, M0

11 + M0
12, and for the spherical shell alone, 1 + δM1

11 + δM1
12.

The interaction energy per atom is

E(d)

4πNd2δ
= �

4πNd2δ

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) ln
[
f̃ TM

l (iξ )f̃ TE
l (iξ )

]

= − �

d2

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) αat ξ

c

[{[
ψ ′

l

(
iξd

c

)]2

+ l (l + 1)(
iξd

c

)2

[
ψl

(
iξd

c

)]2
}

× n1ξl

(
in1ξa

c

)
ξ ′
l

(
iξa

c

) − ξ ′
l

(
in1ξa

c

)
ξl

(
iξa

c

)
n1ξl

(
in1ξa

c

)
ψ ′

l

(
iξa

c

) − ξ ′
l

(
in1ξa

c

)
ψl

(
iξa

c

) +
[
ψl

(
iξd

c

)]2 n1ξ
′
l

(
in1ξa

c

)
ξl

(
iξa

c

) − ξl

(
in1ξa

c

)
ξ ′
l

(
iξa

c

)
n1ξ

′
l

(
in1ξa

c

)
ψl

(
iξa

c

) − ξl

(
in1ξa

c

)
ψ ′

l

(
iξa

c

)
]

, (5.121)

where we have let δ, the thickness of the gas layer, go to zero
when passing from the first to the second line. The force on
the atom is F(d) = −r̂dE(d)/dd.

8. Casimir Polder interaction between two atoms (two layers)

Here, we start with the geometry in Fig. 18. We let the
thin shell consist of a diluted gas of atoms of type 2 with
density N2 and the sphere consist of a diluted gas of atoms of
type 1 with density N1. We use upper case N for the density
here to distinguish the densities from the refractive indices
that we denote by lower case n. The thickness of the shell
and the radius of the sphere we let go toward zero at the end.
This means that the interaction energy becomes the sum of
the interaction energy between all pairs of atoms of type 1
and 2, all with the separation d. To get the energy for one
atom pair, we divide the result by the number of atoms of
type 1 and by the number of atoms of type 2. Since we let
the thickness of the layer δ go toward zero, we may expand
the logarithm in the integrand and keep the lowest-order term,
ln (1 + x) ≈ x. We are, furthermore, only interested in the
dipole-dipole interactions, which means that only the l = 1
term is kept in the integrand. Both the TE and TM contributions
have the same structure,

E = �

∫ ∞

0

dξ

2π
(2l + 1) A (b) N1

∂B (a)

∂N1

∣∣∣∣
N1=0

, (5.122)

where

A (b) = δM0
12 (b) , (5.123)

and

B (a) =
(
M2

21 + M2
22

) − (
M2

11 + M2
12

)(
M2

11 + M2
12

) , (5.124)

respectively. Now,

N1
∂B (a)

∂N1

∣∣∣∣
N1=0

= N1
1

2
4παat

1
∂B (a)

∂n1

∣∣∣∣
n1=1

. (5.125)

In the contribution for TE modes, we have

ATE (b) = −δαg(iξ )
iξ

c

i

2

[
ξ1

(
iξb

c

)]2

= δαg(iξ )
ξ

c

1

2
e−2ξb/c

(
1 + ξb/c

ξb/c

)2

(5.126)

and

BTE (a) = 2
ψ ′

l (iξa/c) ψl (in1ξa/c) − n1ψl (iξa/c) ψ ′
l (in1ξa/c)

ξ ′
l (iξa/c) ψl (in1ξa/c) − n1ξl (iξa/c) ψ ′

l (in1ξa/c)
. (5.127)

Now,

∂BTE (a)

∂n1

∣∣∣∣
n1=1

= 0, (5.128)
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so there is no TE contribution to the dipole-dipole interaction between two polarizable atoms. In the contribution for TM modes,
we have

ATM (b) = −δ4πN2α
at
2 (iξ )

iξ

c

i

2

{
[ξ ′

l (iξb/c)]2 + l (l + 1) [ξl (iξb/c)]2

(iξb/c)2

}

= −δ4πN2α
at
2 (iξ )

ξ

c

1

2

1

(ξb/c)4 e−2ξb/c[3 + 6(ξb/c) + 5(ξb/c)2 + 2(ξb/c)3 + (ξb/c)4], (5.129)

and

BTM (a) = −2
n1ψ

′
l (iξa/c) ψl (in1ξa/c) − ψl (iξa/c) ψ ′

l (in1ξa/c)

n1ξ
′
l (iξa/c) ψl (in1ξa/c) − ξl (iξa/c) ψ ′

l (in1ξa/c)
. (5.130)

Now,

∂BTM (a)

∂n1

∣∣∣∣
n1=1

= 8

9
(ξa/c)3, (5.131)

so the energy per atom pair is

E

(N14πa3/3)(N24πd2δ)
= �

(N14πa3/3)(N24πd2δ)

∫ ∞

0

dξ

2π
3ATM(b)N1.

∂BTM(a)

∂N1
|
N1=0

= − 9�

(N14πa3)(N24πd2δ)2π

∫ ∞

0
dξδ4πN2α

at
2 (iξ )

ξ

c

1

2

1

(ξd/c)4 N1
1

2
4παat

1 (iξ )
8

9
(ξa/c)3e−2ξd/c

×[3 + 6(ξd/c) + 5(ξd/c)2 + 2(ξd/c)3 + (ξd/c)4]

= − �

d6π

∫ ∞

0
dξαat

2 (iξ )αat
1 (iξ )e−2ξd/c[3 + 6(ξd/c) + 5(ξd/c)2 + 2(ξd/c)3 + (ξd/c)4]. (5.132)

It is interesting to note that we reproduce the Casimir-Polder interaction between two polarizable atoms [45,46]. Thus we have
three quite different methods to derive the Casimir-Polder interaction that produce identical results. To be noted is that only the
TM modes contribute.

9. Force on an atom in a spherical gap (three layers)

Let the outer radius be b, the inner radius a and the radial position of the atom be r . The medium surrounding the vacuum gap
has the dielectric function ε(ω). This geometry involves four interfaces and in a straightforward approach the final matrix would
be the product of four matrices. The matrix elements in this retarded treatment are rather bulky and difficult to put in print. We
will use three matrices, where the middle one is that for the thin diluted gas shell, and take advantage of Eq. (5.95). To make the
expressions even more compact we make use of the two types of 2l pole polarizabilities, introduced in Sec. V C. Thus the matrix
is M̃ = M̃0 · M̃1 · M̃2 and

M11 + M12 = M0
11

(
M2

11 + M2
12

) (
1 α

0(2)
l

) · M̃1 ·
(

1
−α2

l

)
. (5.133)

Now, let us introduce δM̃1 so that

M̃1 =
(

1 0
0 1

)
+ δM̃1. (5.134)

Then

f̃l,m = M1
11 + α

0(2)
l M1

21 − α2
l

(
M1

12 + α
0(2)
l M1

22

)
(
1 − α

0(2)
l α2

l

) (
M1

11 + M1
12

)
≈ 1 − δM1

12

[
1 + α2

l

(
1 − α

0(2)
l

)] − α
0(2)
l δM1

21 + α
0(2)
l α2

l

(
δM1

22 − δM1
11

)
(
1 − α

0(2)
l α2

l

) , (5.135)

where we have kept terms up to linear order in the atom density. We have chosen as reference system a system with the spherical
gap and the gas shell well separated from each other. Thus we have divided our mode condition function both with that for a free
gas film and that for the spherical gap.
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For TM modes, we have

δM̃TM
1 = −(δn)2παatq0i

⎛
⎝ ξ ′

l ζ
′
l + ξlζl

l(l+1)
(q0r)2 [ξ ′

l ]
2 + [ξl]2 l(l+1)

(q0r)2

−[ζ ′
l ]

2 − [ζl]2 l(l+1)
(q0r)2 −ξ ′

l ζ
′
l − ξlζl

l(l+1)
(q0r)2

⎞
⎠ ,

α
2,TM
l = ζl (q0a) ψ ′

l (qma) − nζ ′
l (q0a) ψl (qma)

ξl (q0a) ψ ′
l (qma) − nξ ′

l (q0a) ψl (qma)
, (5.136)

α
0(2),TM
l = nξl (qmb) ξ ′

l (q0b) − ξ ′
l (qmb) ξl (q0b)

nξl (qmb) ζ ′
l (q0b) − ξ ′

l (qmb) ζl (q0b)
,

where q0 = ω/c, qm = nω/c, and n = √
ε. All Ricatti-Bessel functions in the matrix have the argument (q0r). For TE modes,

the functions are

δM̃TE
1 = −(δn)2παatq0i

(
ξl (q0r) ζl (q0r) [ξl (q0r)]2

−[ζl (q0r)]2 −ξl (q0r) ζl (q0r)

)
,

α
2,TE
l = ζ ′

l (q0a) ψl (qma) − nζl (q0a) ψ ′
l (qma)

ξ ′
l (q0a) ψl (qma) − nξl (q0a) ψ ′

l (qma)
, (5.137)

α
0(2),TE
l = nξ ′

l (qmb) ξl (q0b) − ξl (qmb) ξ ′
l (q0b)

nξ ′
l (qmb) ζl (q0b) − ξl (qmb) ζ ′

l (q0b)
.

Here one may take the opportunity to check the results. If we let α
0(2)
l = 0, we regain the results for an atom outside a solid

sphere, in Sec. V D 6. If we instead let α2
l = −1, we regain the results for an atom in a spherical cavity, in Sec. V D 7.

10. Force on an atom outside a 2D spherical shell (three layers)

We start from the geometry in Fig. 20. We use already from the outset the matrices for a gas layer at r = b = a + d and a
spherical 2D film at r = a. These were given in Eqs. (5.87)–(5.90). We find

f̃ TM
l = 1 − (δn)4παatq0i

{
[ξ ′

l (q0b)]2 + [ξl (q0b)]2 l (l + 1)

(q0b)2

}
δε̃3Dq0i[ψ ′

l (q0a)]2

[1 − δε̃3Dq0iξ
′
l (q0a) ψ ′

l (q0a)]
(5.138)

and

f̃ TE
l = 1 − (δn)4παatiq0[ξl (q0b)]2 δε̃3Diq0[ψl (q0a)]2

1 − δε̃3Diq0 [ξl (q0a) ψl (q0a)]
. (5.139)

We have also derived these results in the alternative way followed in the preceding sections. The interaction energy per atom is

E(b)

4πnb2δ
= �

4πnb2δ

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) ln
[
f̃ TM

l (iξ )f̃ TE
l (iξ )

]

= − �

b2

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) αat(iξ )δε̃3D(iξ )

(
ξ

c

)2
({[

ξ ′
l

(
i
ξb

c

)]2

−
[
ξl

(
i
ξb

c

)]2
l (l + 1)(

ξb

c

)2

}

×
[
ψ ′

l

(
i

ξa

c

)]2[
1 + δε̃3D(iξ )

(
ξ

c

)
ξ ′
l

(
i

ξa

c

)
ψ ′

l

(
i

ξa

c

)] +
[
ξl

(
iξb

c

)]2[
ψl

(
iξa

c

)]2

1 + δε̃3D(iξ )
(

ξ

c

)[
ξl

(
iξa

c

)
ψl

(
iξa

c

)]
)

, (5.140)

where we have let δ, the thickness of the gas layer, go to zero when passing from the first to the second line. The force on the
atom is F (b) = −r̂dE(b)/db.

11. Force on an atom inside a 2D spherical shell (three layers)

We start from the geometry in Fig. 21. We use already from the outset the matrices for a spherical 2D film at r = a and a gas
layer at r = d. These were given in Eqs. (5.87)–(5.90). We find

f̃ TM
l = 1 + M0

12

(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)
M0

11 + M0
12

= 1 − iq0δε̃
3D 1

2
[ξ ′ (q0a)]2

(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)
1 − iq0δε̃3Dψ ′ (q0a) ξ ′

l (q0a)

= 1 − iq0δε̃
3D[ξ ′

l (q0a)]24πNαatδiq0

1 − iq0δε̃3Dψ ′ (q0a) ξ ′
l (q0a)

{
[ψ ′

l (q0d)]2 + l (l + 1)

(q0d)2 [ψl (q0d)]2

}
(5.141)
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FIG. 20. (Color online) The geometry of a thin gas layer at
distance d from a thin spherical or cylindrical shell of radius a in
the fully retarded treatment.
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FIG. 21. (Color online) The geometry of a thin gas layer at radius
d inside a thin spherical or cylindrical shell of radius a in the fully
retarded treatment.

and

f̃ TE
l = 1 + M0

12

(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)
M0

11 + M0
12

= 1 − iq0δε̃
3D 1

2
[ξl (q0a)]2

(
δM1

21 + δM1
22

) − (
δM1

11 + δM1
12

)
1 − iq0δε̃3Dψ (q0a) ξl (q0a)

= 1 − iq0δε̃
3D[ξl (q0a)]24πNαatδiq0[ψl (q0d)]2

1 − iq0δε̃3Dψ (q0a) ξl (q0a)
. (5.142)

The interaction energy per atom is

E(d)

4πNd2δ
= �

4πnd2δ

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) ln
[
f̃ TM

l (iξ )f̃ TE
l (iξ )

]

= − �

d2

∫ ∞

0

dξ

2π

∞∑
l=0

(2l + 1) αat(iξ )δε̃3D(iξ )

(
ξ

c

)2
({[

ψ ′
l

(
i
ξd

c

)]2

−
[
ψl

(
i
ξd

c

)]2
l (l + 1)(

ξd

c

)2

}

×
[
ξ ′
l

(
i

ξa

c

)]2[
1 + δε̃3D(iξ )

(
ξ

c

)
ξ ′
l

(
i

ξa

c

)
ψ ′

l

(
i

ξa

c

)] +
[
ξl

(
iξa

c

)]2[
ψl

(
iξd

c

)]2

1 + δε̃3D(iξ )
(

ξ

c

)[
ξl

(
iξa

c

)
ψl

(
iξa

c

)]
)

, (5.143)

where we have let δ, the thickness of the gas layer, go to zero when passing from the first to the second line. The force on the
atom is F(d) = −r̂dE(d)/dd.

12. Interaction between two 2D spherical shells (three layers)

We consider two concentric thin spherical shells in vacuum. Since the films are in vacuum q0 = ω/c. The outer shell has
radius b and the inner radius a. Here, the matrix is M̃ = M̃0 · M̃1, where for TM modes

M̃TM
0 =

(
1 0
0 1

)
− δε̃3Dq0i

2

(
ξ ′
l (q0b) ζ ′

l (q0b) [ξ ′
l (q0b)]2

−[ζ ′
l (q0b)]2 −ξ ′

l (q0b) ζ ′
l (q0b)

)
,

(5.144)

M̃TM
1 =

(
1 0
0 1

)
− δε̃3Dq0i

2

(
ξ ′
l (q0a) ζ ′

l (q0a) [ξ ′
l (q0a)]2

−[ζ ′
l (q0a)]2 −ξ ′

l (q0a) ζ ′
l (q0a)

)
,

and the condition for modes is

MTM
11 + MTM

12 = 1 − δε̃3Dq0i

2
[ξ ′

l (q0b) ζ ′
l (q0b)+[ξ ′

l (q0b)]2 + ξ ′
l (q0a)ζ ′

l (q0a) + [ξ ′
l (q0a)]2]

+
(

δε̃3Dq0i

2

)2

[ξ ′
l (q0b) ζ ′

l (q0b) ξ ′
l (q0a) ζ ′

l (q0a)−[ξ ′
l (q0b)]2[ζ ′

l (q0a)]2] = 0. (5.145)

For TE modes, the two matrices are

M̃TE
0 =

(
1 0
0 1

)
−δε̃3Dq0i

2

(
ξl (q0b) ζl (q0b) [ξl (q0b)]2

−[ζl (q0b)]2 −ξl (q0b) ζl (q0b)

)
,

(5.146)

M̃TE
1 =

(
1 0
0 1

)
−δε̃3Dq0i

2

(
ξl (q0a) ζl (q0a) [ξl (q0a)]2

−[ζl (q0a)]2 −ξl (q0a) ζl (q0a)

)
,
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and the condition for modes becomes

MTE
11 + MTE

12 = 1 − δε̃3Dq0i

2
[ξl (q0b) ζl (q0b) + [ξl (q0b)]2 + ξl (q0a) ζl (q0a) + [ξl (q0a)]2]

+
(

δε̃3Dq0i

2

)2

{ξl (q0b) ζl (q0b) ξl (q0a) ζl (q0a) − [ξl (q0b)]2[ζl (q0a)]2} = 0. (5.147)

The mode condition function for TM modes is

f̃ TM
l.m (iξ ) = 1 −

(
δε̃3D(iξ )ξ

2c

)2[
ξ ′
l

(
iξb

c

)]2[
ξ ′
l

(
iξa

c

)]2

[
2

ψ ′
l (

iξa

c
)

ξ ′
l ( iξa

c
)
− 1

] [
4

ψ ′
l (

iξa

c
)

ξ ′
l ( iξa

c
)
− 1

]
+

[
2

ψ ′
l (

iξb

c
)

ξ ′
l ( iξb

c
)
− 1

]
[
1 + δε̃3D(iξ )

(
ξ

c

)
ξ ′
l

(
iξb

c

)
ψ ′

l

(
iξb

c

)][
1 + δε̃3D(iξ )

(
ξ

c

)
ξ ′
l

(
iξa

c

)
ψ ′

l

(
iξa

c

)] ,
(5.148)

and for TE modes,

f̃ TE
l.m (iξ ) = 1 −

(
δε̃3D(iξ )ξ

2c

)2[
ξl

(
iξb

c

)]2[
ξl

(
iξa

c

)]2

[
2

ψl (
iξa

c
)

ξl (
iξa

c
)

− 1
] [

4
ψl (

iξa

c
)

ξl (
iξa

c
)

− 1
]

+
[
2

ψl (
iξb

c
)

ξl (
iξb

c
)

− 1
]

[
1 + δε̃3D(iξ )

(
ξ

c

)
ξl

(
iξb

c

)
ψl

(
iξb

c

)][
1 + δε̃3D(iξ )

(
ξ

c

)
ξl

(
iξa

c

)
ψl

(
iξa

c

)] .
(5.149)

Here, our notation may unfortunately cause some confusion. Note that ξ is the variable along the imaginary frequency axis
and ξl is a Ricatti-Bessel function. We have chosen to express the mode condition functions in terms of the functions ξl and ψl

to simplify the transformation into real valued functions of real valued arguments according to Eq. (5.73).
We have chosen as reference system a system where the two shells are separated from each other and at infinite distance

from each other. The energy obtained by using this mode condition function is the energy change when bringing the two shells
together from at infinite separation and putting the inner shell inside the outer shell.

13. Force on an atom in between two 2D spherical films (five layers)

Here, we may reuse the results from Sec. V D 9. The only difference is the expressions for the 2l pole polarizabilities.
The mode condition function is

f̃l,m = M1
11 + α

2D0(2)
l M1

21 − α2D2
l

(
M1

12 + α
2D0(2)
l M1

22

)
(
1 − α

2D0(2)
l α2D2

l

)(
M1

11 + M1
12

)
≈ 1 − δM1

12

[
1 + α2D2

l

(
1 − α

2D0(2)
l

)]−α
2D0(2)
l δM1

21 + α
2D0(2)
l α2D2

l

(
δM1

22 − δM1
11

)
(
1 − α

2D0(2)
l α2D2

l

) , (5.150)

where we have kept terms up to linear order in the atom density. We have chosen as reference system a system with the spherical
films and the gas shell well separated from each other. Thus we have divided our mode condition function both with that for a
free gas film and that for the thin spherical films.

For TM modes, we have

δM̃TM
1 = −(δn)2παatq0i

⎛
⎝ ξ ′

l ζ
′
l + ξlζl

l(l+1)
(q0r)2 [ξ ′

l ]
2 + [ξl]2 l(l+1)

(q0r)2

−[ζ ′
l ]

2 − [ζl]2 l(l+1)
(q0r)2 −ξ ′

l ζ
′
l − ξlζl

l(l+1)
(q0r)2

⎞
⎠,

α
2D2,TM
l = −2 + δε̃3Dq0i[ζ ′

l (q0a)2 + ξ ′
l (q0a) ζ ′

l (q0a)]

2 − δε̃3Dq0i[ξ ′
l (q0a)2 + ξ ′

l (q0a) ζ ′
l (q0a)]

, (5.151)

α
2D0(2),TM
l = −δε̃3Dq0iξ

′
l (q0b)2

2 − δε̃3Dq0iξ
′
l (q0b) ζ ′

l (q0b)
,

where q0 = ω/c. All Ricatti-Bessel functions in the matrix have the argument (q0r). For TE modes, the functions are

δM̃TE
1 = −(δn)2παatq0i

(
ξl (q0r) ζl (q0r) [ξl (q0r)]2

−[ζl (q0r)]2 −ξl (q0r) ζl (q0r)

)
,

α
2D2,TE
l = −2 + δε̃3Dq0i[ζl(q0a)2 + ξl (q0a) ζl (q0a)]

2 − δε̃3Dq0i[ξl(q0a)2 + ξl (q0a) ζl (q0a)]
, (5.152)

α
2D0(2),TE
l = −δε̃3Dq0iξl(q0b)2

2 − δε̃3Dq0iξl (q0b) ζl (q0b)
.
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VI. CYLINDRICAL STRUCTURES

The system we consider here is a layered cylinder consisting
of N layers and an inner cylindrical core. We have N + 2
media and N + 1 interfaces. Let the numbering be as follows.
Medium 0 is the medium surrounding the cylinder, medium
1 is the outermost layer, medium N the innermost layer and
N + 1 the innermost cylindrical region (the core). Let rn be the
inner radius of layer n. The boundary condition is that there are
no incoming waves, i.e., there is no wave moving towards the
right in medium n = 0 in Fig. 3. The fields are self-sustained;
no fields are coming in from outside.

A. Nonretarded main results

In the nonretarded treatment of a cylindrical structure we
let the waves represent solutions to Laplace’s equation (3.21),
in cylindrical coordinates (r,θ,z), for the scalar potential, �.
The interfaces are cylindrical surfaces and the r coordinate is
the coordinate that is constant on each interface. The solutions
are of the form

�k,m (r,θ,z) = Im (kr) eimθeikz and Km (kr) eimθeikz,

(6.1)

where the functions Im (z) and Km (z) are so-called modified
Bessel functions. The first is bounded for small z values and
the second for large. They are solutions to the modified Bessel
equation,

z2∂2ω/∂z2 + z∂ω/∂z − (m2 + z2)ω = 0. (6.2)

Note that the variable z here denotes a general complex
variable and should not be mistaken for the spatial z variable
in Eq. (6.1). We let r increase towards the left in Fig. 3. We
want to find the normal modes for a specific set of k and m

values. Then all waves have the common factor eimθeikz. We
suppress this factor here. Then

R(r) = Im (kr) , L(r) = Km (kr) . (6.3)

Using the boundary conditions that the potential and the
normal component of the D field are continuous across an
interface n gives

anIm (krn) + bnKm (krn)

= anIm (krn) + bnKm (krn) ,
(6.4)

anε̃nkI ′
m (krn) + bnε̃nkK ′

m (krn)

= an+1ε̃n+1kI ′
m (krn) + bn+1ε̃n+1kK ′

m (krn) ,

and we may identify the matrix Ãn (rn) as

Ãn (rn) =
(

Im (krn) Km (krn)

ε̃nI
′
m (krn) ε̃nK

′
m (krn)

)
. (6.5)

The matrix M̃n is

M̃n = Ã−1
n · Ãn+1

= 1

Wε̃n

(
ε̃n+1I

′
mKm − ε̃nImK ′

m (ε̃n+1 − ε̃n) KmK ′
m

(ε̃n − ε̃n+1) ImI ′
m ε̃nI

′
mKm − ε̃n+1ImK ′

m

)
,

(6.6)

where we have suppressed the argument (krn) of all mod-
ified Bessel functions and their derivatives. As before the
derivative is with respect to the argument. We have made
use of the Wronskian of the two modified Bessel functions:
W [Km (x) ,Im (x)] = Km (x) I ′

m (x) − K ′
m (x) Im (x) = 1/x.

Since the function L(z) in Eq. (6.3) diverges at the origin it
is excluded from the core region and hence we have no wave
moving towards the left in that region. According to Eq. (3.6),
this means that

fk,m(ω) = M11. (6.7)

Before we end this section, we introduce the multipole
polarizabilities αn

k,m and α
n(2)
k,m for the cylindrical interface

since these appear repeatedly in the sections that follow. The
first is valid outside and the second inside. The polarizability
αn

k,m = −bn/an under the assumption that bn+1 = 0. One
obtains αn

k,m = −M21/M11, and from Eq. (6.6), one finds

αn
k,m (rn; ω) = (ε̃n+1 − ε̃n) ImI ′

m

ε̃n+1I ′
mKm − ε̃nImK ′

m

. (6.8)

The polarizability α
n(2)
k,m = −an+1/bn+1 under the assumption

that an = 0. One obtains α
n(2)
k,m = M12/M11, and from Eq. (5.5),

one finds

α
n(2)
k,m (rn; ω) = (ε̃n+1 − ε̃n) KmK ′

m

ε̃n+1I ′
mKm − ε̃nImK ′

m

. (6.9)

The suppressed argument of the modified Bessel functions in
the multipole polarizabilities above is (krn). Sometimes it is
convenient to use an alternative form of the matrix M̃n,

M̃n = Mn
11

(
1 α

n(2)
k,m

−αn
k,m

ε̃nI
′
mKm−ε̃n+1ImK ′

m

ε̃n+1I ′
mKm−ε̃nImK ′

m

)
. (6.10)

Now we have all we need to determine the nonretarded
normal modes in a layered cylindrical structure. We give some
examples in the following sections.

B. Nonretarded special results

1. Solid cylinder (no layer)

For a solid cylinder of radius a and dielectric function ε̃1(ω)
in an ambient of dielectric function ε̃0(ω), as illustrated in
Fig. 10, we have

M̃=M̃0

= ka

ε̃0

(
ε̃1I

′
mKm − ε̃0ImK ′

m (ε̃1 − ε̃0)KmK ′
m

(ε̃0 − ε̃1) ImI ′
m ε̃0I

′
mKm − ε̃1ImK ′

m

)
, (6.11)
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where the suppressed arguments are (ka). The condition for
modes is

ε̃1(ω)

ε̃0(ω)
= Im (ka) K ′

m (ka)

I ′
m (ka) Km (ka)

. (6.12)

2. Cylindrical shell or gap (one layer)

Here, we start from a more general geometry namely that of
a coated cylinder in a medium and get the cylindrical shell and
gap as special limits. For a solid cylinder of dielectric function
ε̃2 with a coating of inner radius a and outer radius b, Fig. 11,
made of a medium with dielectric function ε̃1 in an ambient
medium with dielectric function ε̃0, we have

M̃ = M̃0 · M̃1

= kb

ε̃0
(ε̃1I

′
m (kb) Km (kb) − ε̃0Im(kb)K

′
m (kb))

×
(

1 α
0(2)
k,m

−α0
k,m

ε̃0I
′
m(kb)Km(kb)−ε̃1Im(kb)K ′

m(kb)
ε̃1I ′

m(kb)Km(kb)−ε̃0Im(kb)K ′
m(kb)

)

× ka

ε̃1
(ε̃2I

′
m (ka) Km (ka) − ε̃1Im (ka) K ′

m (ka))

×
(

1 α
1(2)
k,m

−α1
k,m

ε̃1I
′
m(ka)Km(ka)−ε̃2Im(ka)K ′

m(ka)
ε̃2I ′

m(ka)Km(ka)−ε̃0Im(ka)K ′
m(ka)

)
, (6.13)

and from direct derivation of the M11 element, the condition
for modes becomes

0 = (
1 − α

0(2)
k,mα1

k,m

)
= 1 − (ε̃1 − ε̃0) Km (kb) K ′

m (kb)

ε̃1I ′
m (kb) Km (kb) − ε̃0Im (kb) K ′

m (kb)

× (ε̃2 − ε̃1) Im (ka) I ′
m (ka)

ε̃2I ′
m (ka) Km (ka) − ε̃1Im (ka) K ′

m (ka)
. (6.14)

Let us now study a cylindrical shell of inner radius a, outer
radius b and of a medium with dielectric function ε̃(ω) in a
medium of dielectric function ε̃0(ω). The condition for modes
we get from Eq. (6.14) by the replacements ε̃2(ω) → ε̃0(ω)
and ε̃1(ω) → ε̃(ω). The result is[

ε̃
K ′

m (ka)

I ′
m (ka)

− ε̃0
Km (ka)

Im (ka)

] [
ε̃

I ′
m (kb)

K ′
m (kb)

− ε̃0
Im (kb)

Km (kb)

]
= (ε̃ − ε̃0)2. (6.15)

For a cylindrical gap of dielectric function ε̃0(ω) in a
medium of dielectric function ε̃(ω), we instead make the
replacements ε̃0(ω), ε̃2(ω) → ε̃(ω) and ε̃1(ω) → ε̃0(ω). The
condition for modes is[

ε̃
Km (ka)

Im (ka)
− ε̃0

K ′
m (ka)

I ′
m (ka)

] [
ε̃

Im (kb)

Km (kb)
− ε̃0

I ′
m (kb)

K ′
m (kb)

]
= (ε̃ − ε̃0)2. (6.16)

3. Thin cylindrical diluted gas film (one layer)

It is of interest to find the van der Waals force on an atom in
a layered structure. We can obtain this by studying the force on
a thin layer of a diluted gas with dielectric function εg(ω) =
1 + 4πnαat(ω), where αat is the polarizability of one atom

and n the density of atoms (we have assumed that the atom
is surrounded by vacuum; if not the 1 should be replaced by
the dielectric function of the ambient medium and the atomic
polarizability should be replaced by the excess polarizability).
For a diluted gas layer, the atoms do not interact with each
other and the force on the layer is just the sum of the forces
on the individual atoms. So by dividing with the number of
atoms in the film, we get the force on one atom. The layer
has to be thin in order to have a well defined r value of the
atom. Since we will derive the force on an atom in different
cylindrical geometries, it is fruitful to derive the matrix for a
thin diluted gas shell. This result can be directly used in the
derivation of the van der Waals force on an atom in different
cylindrical geometries.

We let the film have the thickness δ and be of a general
radius r . We only keep terms up to linear order in δ and linear
order in n. The matrix for the gas film is M̃0 · M̃1, where

M̃0 =
(

1 0
0 1

)
+ 4πnαatkr

×
(

I ′
m (kr) Km (kr) Km (kr) K ′

m (kr)

−Im (kr) I ′
m (kr) −Im (kr) K ′

m (kr)

)
. (6.17)

Now,

M̃1 =
(

1 0
0 1

)
− 4πnαatk (r − δ)

(
I ′
mKm KmK ′

m

−ImI ′
m −ImK ′

m

)
,

(6.18)

where the suppressed arguments of all modified Bessel
functions are k (r − δ). We find

M̃gaslayer = M̃0 · M̃1

=
(

1 0
0 1

)
+ 4π (δn)αatk

×
(

d[(kr)I ′
mKm]

d(kr)
d[(kr)K ′

mKm]
d(kr)

− d[(kr)I ′
mIm]

d(kr) − d[(kr)ImK ′
m]

d(kr)

)
, (6.19)

where now the arguments of all modified Bessel functions are
(kr). Performing the derivatives and using the modified Bessel
equation, Eq. (6.2), we find

M̃gaslayer

=
(

1 0
0 1

)

+ (δn)
4παat[m2 + (kr)2]

r

(
ImKm KmKm

−ImIm −ImKm

)

+ (δn)
4παat(kr)2

r

(
I ′
mK ′

m K ′
mK ′

m

−I ′
mI ′

m −I ′
mK ′

m

)
. (6.20)

Now we are done with the gas layer. We will use these
results later in calculating the van der Waals force on an atom
in cylindrical layered structures.

4. 2D cylindrical film (one layer)

In many situations, one is dealing with very thin films.
These may be considered 2D. Important examples are a
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graphene sheet and a 2D electron gas. In the derivation, we let
the film have finite thickness δ and be characterized by a 3D
dielectric function ε̃3D . We then let the thickness go towards
zero. The 3D dielectric function depends on δ as ε̃3D ∼ 1/δ for
small δ. In the planar structure, we could in the limit when δ

goes towards zero obtain a momentum dependent 2D dielectric
function. Here, we only keep the long-wavelength limit of the
2D dielectric function [31,32]. The matrix is M̃2D = M̃0 · M̃1.
Before we derive these matrices, it it convenient to introduce
two auxiliary matrices,

B̃ (x) = kx

(
I ′
m (kx) Km (kx) Km (kx) K ′

m (kx)

−Im (kx) I ′
m (kx) −Im (kx) K ′

m (kx)

)
,

(6.21)

C̃ (x) = kx

(
−Im (kx) K ′

m (kx) −Km (kx) K ′
m (kx)

Im (kx) I ′
m (kx) I ′

m (kx) Km (kx)

)
.

Using the Wronskian for the modified Bessel function, we find
these matrices have the following properties:

B̃ (x) + C̃ (x) = 1̃,

B̃ (x) · B̃ (x) = B̃ (x) ,
(6.22)

C̃ (x) · C̃ (x) = C̃ (x) ,

B̃ (x) · C̃ (x) = 0̃.

Now, we have

M̃0 = ε̃3DB̃(r) + C̃(r),
(6.23)

M̃1 = 1

ε̃3D
B̃ (r − δ) + C̃ (r − δ) ,

and using Eq. (6.22) and the modified Bessel equation,
Eq. (6.2), we arrive at

M̃2D =M̃0 · M̃1

= 1̃ − δε̃3D m2 + (kr)2

r

(−ImKm −KmKm

ImIm ImKm

)
, (6.24)

where the suppressed arguments of the modified Bessel
functions are (kr).

We will also need the multipole polarizability of the thin
cylindrical shell in vacuum. It can be obtained from Eq. (6.24).
The polarizability is −b0/a0 under the assumption that b1 = 0.
One obtains α2D

l = −M21/M11. We find

α2D
k,m (r; ω) = δε̃3D[m2 + (kr)2]Im (kr) Im (kr)

r + δε̃3D[m2 + (kr)2]Im (kr) Km (kr)
, (6.25)

where we have reserved the first argument before the semi-
colon for the radius of the cylindrical film.

The multipole polarizability “seen from inside the shell” we
get from Eq. (6.24). The polarizability is −a1/b1 under the
assumption that a0 = 0. One obtains α

2D(2)
l = M12/M11, and

α
2D(2)
k,m (r; ω) = δε̃3D[m2 + (kr)2]Km (kr) Km (kr)

r + δε̃3D[m2 + (kr)2]Im (kr) Km (kr)
.

(6.26)

Sometimes, it is convenient to use an alternative form of
the matrix M̃2D,

M̃2D = M2D
11

(
1 α

2D(2)
k,m

−α2D
k,m

r−δε̃3D[m2+(kr)2]Im(kr)Km(kr)
r+δε̃3D[m2+(kr)2]Im(kr)Km(kr)

)
. (6.27)

5. Force on an atom outside a cylinder (two layers)

In this section, we derive the van der Waals interaction
between a polarizable atom and an infinitely long solid cylinder
of dielectric function ε̃1(ω). We assume that the atom and
cylinder are in vacuum for simplicity. The geometry of the
problem is shown in Fig. 12. The radius of the cylinder is a and
the atom is at the distance b = a + d from the cylinder axis.
To obtain the results we proceed as follows. We introduce a
thin shell defined by the radii b and b + δ. We let the medium
of the shell have the dielectric function εg = 1 + α = 1 +
4πnαat = 1 + 4παat/ (2πbδL) = 1 + 2αat/ (bδL), where αat

is the polarizability of the atom and L is the length of the
cylinder which we let go to infinity at the end. We assume that
the medium of the shell is very diluted. We let α go towards
zero and keep only terms up to linear order before we let δ go
towards zero.

The matrix of the problem is just the matrix of the thin shell,
Eq. (6.20), multiplying that for the cylindrical core, given in
Eq. (6.11), M̃ = M̃shell · M̃core. The element of interest is

M11 = Mshell
11 Mcore

11 + Mshell
12 Mcore

21 . (6.28)

The mode condition function becomes

f̃k,m = 1 + Mshell
12

Mshell
11

Mcore
21

Mcore
11

= 1 − Mshell
12 αcore

k,m

= 1 − (δn)4παatka (ε̃ − 1) Im (ka) I ′
m (ka)

× [m2 + (kb)2][Km (kb)]2 + (kb)2[K ′
m (kb)]2

b[1 + ka (ε̃ − 1) I ′
m (ka) Km (ka)]

, (6.29)

where we have taken as reference system a system where the
gas shell and the core are well separated from each other.

Now, the nonretarded (van der Waals) interaction energy
between an atom and a cylinder is given by

E = �

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

−∞

dk

2π
ln[f̃k,m(iξ )]

= �L

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dk

2π
ln

[
1 − Mshell

12 (k,iξ )αk,m (a; iξ )
]

≈ −2�L

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
Mshell

12 (k,iξ )αk,m (a; iξ )
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= −2�L

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
(δn)4παat(iξ )αk,m (a; iξ ){[m2 + (kb)2][Km (kb)]2 + (kb)2[K ′

m (kb)]2}

= −4�

b2

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
αat(iξ )αk,m (a; iξ ){[m2 + (kb)2][Km (kb)]2 + (kb)2[K ′

m (kb)]2}, (6.30)

where

αk,m (a; iξ ) = [ε̃1(iξ ) − 1] (ka) Im (ka) I ′
m (ka)

1 + [ε̃1(iξ ) − 1] (ka) Km (ka) I ′
m (ka)

(6.31)

is the multipole polarizability for a cylinder in vacuum, Eq. (6.8). See Ref. [3] Eq. (5.77). Note that in this section we defined the
density of the gas shell so that the shell contained a single atom. Then we did not have to divide the energy with the number of
atoms. The force on the atom is F (b) = −r̂dE(b)/db.

6. Force on an atom inside a cylindrical cavity (two layers)

In this section, we derive the van der Waals interaction between a polarizable atom inside an infinitely long cylindrical vacuum
cavity in a medium of dielectric function ε̃1(ω). The geometry of the problem is shown in Fig. 13. The radius of the cavity is
a and the atom is at the distance d from the cylinder axis. To obtain the results, we proceed as follows. We introduce a thin
shell defined by the radii d and d + δ. We let the medium of the shell have the dielectric function εg = 1 + α = 1 + 4πnαat =
1 + 4παat/ (2πdδL) = 1 + 2αat/ (dδL) where αat is the polarizability of the atom and L is the length of the cylinder which we
let go to infinity at the end. We assume that the medium of the shell is very diluted. We let α go towards zero and keep only terms
up to linear order before we let δ go towards zero.

The matrix of the problem is just the matrix of the cavity, Eq. (6.11), multiplying that for the diluted gas shell, given in
Eq. (6.20), M̃ = M̃cavity · M̃shell. The element of interest is

M11 = M
cavity
11 Mshell

11 + M
cavity
12 Mshell

21 . (6.32)

The mode condition function becomes

f̃k,m = 1 + M
cavity
12

M
cavity
11

Mshell
21

Mshell
11

= 1 + α
cavity(2)
k,m Mshell

21

= 1 − (1 − ε̃1) Km (ka) K ′
m (ka)

I ′
m (ka) Km (ka) − ε̃1Im (ka) K ′

m (ka)
(δn)4παat [m2 + (kd)2][Km (kd)]2 + (kd)2[K ′

m (kd)]2

d
, (6.33)

where we have taken as reference system a system where the gas shell and the cavity are well separated from each other.
Now, the nonretarded (van der Waals) interaction energy for an atom inside a cylindrical cavity is given by

E = �

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

−∞

dk

2π
ln[f̃k,m(k,iξ )]

= �L

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dk

2π
ln

[
1 + M

gasl.
21 (k,iξ )α(2)

k,m (a; iξ )
]

≈ 2�L

d

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
M

gasl.
21 (k,iξ )α(2)

k,m (a; iξ )

= −2�L

d

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
(δn)4παat(iξ )α(2)

k,m (a; iξ ){[m2 + (kd)2][Km (kd)]2 + (kd)2[K ′
m (kd)]2}

= −4�

d2

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
αat(iξ )α(2)

k,m (a; iξ ){[m2 + (kd)2][Km(kd)]2 + (kd)2[K ′
m(kd)]2}, (6.34)

where

α
(2)
k,m (a; iξ ) = (1 − ε̃1(iξ )) Km (ka) K ′

m (ka)

I ′
m (ka) Km (ka) − ε̃1(iξ )Im (ka) K ′

m (ka)
(6.35)
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is the multipole polarizability for inside a cylindrical vacuum cavity, Eq. (6.9). Note that in this section we defined the density
of the gas shell so that the shell contained a single atom. Then we did not have to divide the energy with the number of atoms.
The force on the atom is F(d) = −r̂dE(d)/dd.

7. Force on an atom in a cylindrical gap (three layers)

Here, we study an atom in a cylindrical vacuum gap with the outer and inner radii b and a, respectively. The medium outside
the gap has dielectric function ε̃1(ω) and the medium inside the dielectric function ε̃2(ω). The atom is at the distance r from the
center. The matrix for this geometry is M̃ = M̃cavity · M̃shell · M̃core, and the matrix element of interest is

M11 = (
Mcav

11 ,Mcav
12

) (Mshell
11 Mshell

12

Mshell
21 Mshell

22

)
·
(

Mcore
11

Mcore
21

)

= Mcav
11 Mshell

11 Mcore
11

(
1,α

cav(2)
k,m

)⎛⎝ 1 α
shell(2)
k,m

−αshell
k,m

Mshell
22

Mshell
11

⎞
⎠ ·

(
1

−αcore
k,m

)

= Mcav
11 Mshell

11 Mcore
11

{
1 − αcore

k,m α
cav(2)
k,m − αshell

k,m α
cav(2)
k,m − αcore

k,m

[
α

shell(2)
k,m + α

cav(2)
k,m

(
Mshell

22

Mshell
11

− 1

)]}
. (6.36)

This leads to the following proper mode condition function:

f̃k,m = 1 −
αshell

k,m α
cav(2)
k,m + αcore

k,m

[
α

shell(2)
k,m + α

cav(2)
k,m

(
Mshell

22

Mshell
11

− 1
)]

1 − αcore
k,m α

cav(2)
k,m

≈ 1 − αshell
k,m α

cav(2)
k,m + αcore

k,m

[
α

shell(2)
k,m + 2α

cav(2)
k,m

(
Mshell

22 − 1
)]

1 − αcore
k,m α

cav(2)
k,m

,

(6.37)

where the reference system is the cylindrical gap in absence of the atom. The functions appearing in the expression are

αshell
k,m ≈ (δn)

4παat(ω)

r
{[m2 + (kr)2][Im (kr)]2 + (kr)2[I ′

m (kr)]2},

α
shell(2)
k,m ≈ (δn)

4παat(ω)

r
{[m2 + (kr)2][Km (kr)]2 + (kr)2[K ′

m (kr)]2},

Mshell
22 − 1 ≈ −(δn)

4παat(ω)

r
{[m2 + (kr)2]Im (kr) Km (kr)+(kr)2I ′

m (kr) K ′
m (kr)}, (6.38)

α
cav(2)
k,m = α

(2)
k,m (b; ω) = [1 − ε̃1(ω)] Km (kb) K ′

m (kb)

I ′
m (kb) Km (kb) − ε̃1(ω)Im (kb) K ′

m (kb)
,

αcore
k,m = αk,m (a; ω) = [ε̃2(ω) − 1] (kb) Im (kb) I ′

m (kb)

1 + [ε̃2(ω) − 1] (kb) Km (kb) I ′
m (kb)

.

Before we write down the expression for the energy per atom we make the factor (δn)4παat(ω) explicit, a factor that is common
for all terms after 1− in the expression for f̃k,m. We have

f̃k,m ≈ 1 − (δn)
4παat(ω)

r
[
1 − αcore

k,m α
cav(2)
k,m

] {[m2 + (kr)2]
[
α

cav(2)
k,m [Im (kr)]2 + αcore

k,m [Km (kr)]2 − 2αcore
k,m α

cav(2)
k,m Im (kr) Km (kr)

]
+ (kr)2[αcav(2)

k,m [I ′
m (kr)]2 + αcore

k,m [K ′
m (kr)]2−2αcore

k,m α
cav(2)
k,m I ′

m (kr) K ′
m (kr)

]}
. (6.39)

Now, the energy per atom is

E

2π (δn)L
= �

2π (δn)L

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

−∞

dk

2π
ln[f̃k,m(k,iξ )]

≈ �

2π (δn)

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dk

2π
[f̃k,m(k,iξ ) − 1]

= −2�

r

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dk

2π

αat(iξ )[
1 − αcore

k,m α
cav(2)
k,m

]{[m2 + (kr)2]
[
α

cav(2)
k,m [Im(kr)]2

+αcore
k,m [Km(kr)]2 − 2αcore

k,m α
cav(2)
k,m Im(kr)Km(kr)

]
+ (kr)2

[
α

cav(2)
k,m [I ′

m(kr)]2 + αcore
k,m [K ′

m(kr)]2−2αcore
k,m α

cav(2)
k,m I ′

m(kr)Km(kr)
]}

. (6.40)

The force on the atom is F(r) = −r̂dE(r)/dr .
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8. Force on an atom outside a 2D cylindrical shell (three layers)

In this section, we derive the interaction between an atom and a very thin cylindrical shell, Fig. 20. It could approximate the
interaction between an atom and a nanotube. We let the shell have the thickness δ and let δ be very small so that one keeps
only terms linear in δ. The 3D dielectric function of the material will then be inversely proportional to δ [31,32]. The derivation
proceeds along the lines in Sec. VI B 5 and the matrix M̃core is replaced by M̃2D. The matrix of the problem is just the matrix
of the thin gas shell, Eq. (6.20), multiplying that for the 2D shell, given in Eq. (6.27), M̃ = M̃shell · M̃2D. Note that the radius of
the 2D cylindrical film is a and the atom is at the distance d from the film and distance b from the cylinder axis. The element of
interest is

M11 = Mshell
11 M2D

11 + Mshell
12 M2D

21 . (6.41)

The mode condition function becomes

f̃k,m = 1 + Mshell
12

Mshell
11

M2D
21

M2D
11

≈ 1 − Mshell
12 α2D

k,m, (6.42)

where

Mshell
12 = (δn)

4παat(ω)

b
{[m2 + (kb)2][Km(kb)]2+(kb)2[K ′

m(kb)]2},
(6.43)

α2D
k,m = δε̃3D(ω)[m2 + (ka)2]Im(ka)Im(ka)

a + δε̃3D(ω)[m2 + (ka)2]Im(ka)Km(ka)
.

Now, the nonretarded (van der Waals) interaction energy between an atom and a 2D cylinder shell is given by

E ≈ − 2�

2πbδLn

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

0

dk

2π
Mshell

12 α2D
k,m

= −4�

b2

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
αat(iξ ){[m2 + (kb)2][Km (kb)]2 + (kb)2[K ′

m (kb)]2}

× δε̃3D(iξ )[m2 + (ka)2]Im (ka) Im (ka)

a + δε̃3D(iξ )[m2 + (ka)2]Im (ka) Km (ka)
. (6.44)

Two examples where the results apply are a cylinder made of a graphenelike film and a thin metal film, respectively. Then the
expressions for δε̃(iξ ) as given in Eq. (5.43) can be used [31,32]. The force on the atom is F (b) = −r̂dE(b)/db.

9. Force on an atom inside a 2D cylindrical shell. (three layers)

In this section, we derive the interaction of an atom inside a very thin cylindrical shell, Fig. 21. It could approximate the
interaction of an atom inside a nanotube. We let the shell have the thickness δ and let δ be very small so that one keeps only terms
linear in δ. The 3D dielectric function of the material will then be inversely proportional to δ [31,32]. The derivation proceeds
along the lines in the previous section and the matrix of the problem is just the matrix of the 2D shell, Eq. (6.27), multiplying
that for the thin gas shell, given in Eq. (6.20), M̃ = M̃2D · M̃shell. Note that the radius of the 2D cylindrical film is a and the atom
is at a distance d from the cylinder axis. The element of interest is

M11 = M2D
11 Mshell

11 + M2D
12 Mshell

21 . (6.45)

The mode condition function becomes

f̃k,m = 1 + M2D
12

M2D
11

Mshell
21

Mshell
11

≈ 1 + α
2D(2)
k,m Mshell

21 , (6.46)

where

Mshell
21 = −(δn)

4παat(ω)

d
{[m2 + (kd)2][Im(kd)]2 + (kd)2[I ′

m(kd)]2},
(6.47)

α
2D(2)
k,m = δε̃3D(ω)[m2 + (ka)2]Km(ka)Km(ka)

a + δε̃3D(ω)[m2 + (ka)2]Im(ka)Km(ka)
.

155457-44



ELECTROMAGNETIC NORMAL MODES AND CASIMIR . . . PHYSICAL REVIEW B 90, 155457 (2014)

Now, the nonretarded (van der Waals) interaction energy of an atom inside a thin cylindrical shell is given by

E ≈ 2�

2πdδLn

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

0

dk

2π
α

2D(2)
k,m Mshell

21

= −4�

d2

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
αat(iξ ){[m2 + (kd)2][Im(kd)]2 + (kd)2[I ′

m(kd)]2}

× δε̃3D(iξ )[m2 + (ka)2]Im(ka)Im(ka)

a + δε̃3D(iξ )[m2 + (ka)2]Im(ka)Km(ka)
. (6.48)

Two examples where the results apply are a cylinder made of a graphenelike film and a thin metal film, respectively. Then the
expressions for δε̃(iξ ) as given in Eq. (5.43) can be used [31,32]. The force on the atom is F(d) = −r̂dE(d)/dd.

10. Interaction between two 2D cylindrical shells (three layers)

We consider two coaxial thin cylindrical shells, one outer of radius b and one inner of radius a. The matrix for the system is
M̃ = M̃2Do · M̃2Di and the matrix of interest is

M11 = M2Do
11 M2Di

11 + M2Do
12 M2Di

21 = M2Do
11 M2Di

11

(
1 − α

2Do(2)
k,m α2Di

k,m

)
, (6.49)

where all appearing functions are

M2Do
11 = 1 + δε̃3D(ω)

[m2 + (kb)2]Im(kb)Km(kb)

b
,

M2Di
11 = 1 + δε̃3D(ω)

[m2 + (ka)2]Im(ka)Km(ka)

a
,

M2Do
12 = δε̃3D(ω)

[m2 + (kb)2][Km(kb)]2

b
,

(6.50)

M2Di
21 = −δε̃3D(ω)

[m2 + (ka)2][Im(ka)]2

a
,

α
2Do(2)
k,m = α

2D(2)
k,m (b; ω) = δε̃3D(ω)[m2 + (kb)2][Km(kb)]2

b + δε̃3D(ω)[m2 + (kb)2]Im(kb)Km(kb)
,

α2Di
k,m = α2D

k,m(a; ω) = δε̃3D(ω)[m2 + (ka)2][Im(ka)]2

a + δε̃3D(ω)[m2 + (ka)2]Im(ka)Km(ka)
.

If one wants to find the electromagnetic normal modes of the system, one finds the solutions to M11 = 0. If one wants to find the
energy it takes to bring the two thin cylindrical shells from infinite separation together and place the inner inside the outer, one
uses the proper mode condition function,

f̃k,m(iξ ) = 1 − α
2D(2)
k,m (b; iξ ) α2D

k,m (a; iξ ) . (6.51)

The energy per unit length is

E = 2�

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
ln[f̃k,m(k,iξ )]

= 2�

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
ln

[
1 − α

2D(2)
k,m (b; iξ )α2D

k,m(a; iξ )
]

= 2�

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

0

dk

2π
ln

[
1 − δε̃3D(ω)[m2 + (kb)2][Km(kb)]2

b + δε̃3D(ω)[m2 + (kb)2]Im(kb)Km(kb)
× δε̃3D(ω)[m2 + (ka)2][Im(ka)]2

a + δε̃3D(ω)[m2 + (ka)2]Im(ka)Km(ka)

]
.

(6.52)

11. Force on an atom in between two 2D cylindrical films (five layers)

Here, we study an atom in a cylindrical vacuum gap between two 2D cylindrical films with the outer and inner radii b and a,
respectively. The ambient medium in which the films and the atom reside is vacuum. The atom is at a distance r from the center.
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Here, we may make use of the results in Sec. VI B 7. The matrix for this geometry is the product of those for the outer 2D film,
the gas shell and the inner 2D film, M̃ = M̃2Do · M̃shell · M̃2Di, and the matrix element of interest is

M11 = (
M2Do

11 ,M2Do
12

) (Mshell
11 Mshell

12

Mshell
21 Mshell

22

)
·
(

M2Di
11

M2Di
21

)

= M2Do
11 Mshell

11 M2Di
11

(
1,α

2Do(2)
k,m

)⎛⎝ 1 α
shell(2)
k,m

−αshell
k,m

Mshell
22

Mshell
11

⎞
⎠ ·

(
1

−α2Di
k,m

)

= M2Do
11 Mshell

11 M2Di
11

{
1 − α2Di

k,mα
2Do(2)
k,m − α2Di

k,mα
2Do(2)
k,m − α2Di

k,m

[
α

shell(2)
k,m + α

2Do(2)
k,m

(
Mshell

22

Mshell
11

− 1

)]}
. (6.53)

This leads to the following proper mode condition function:

f̃k,m = 1 −
αshell

k,m α
2Do(2)
k,m + α2Di

k,m

[
α

shell(2)
k,m + α

2Do(2)
k,m

(
Mshell

22

Mshell
11

− 1
)]

1 − α2Di
k,mα

2Do(2)
k,m

≈ 1 − αshell
k,m α

2Do(2)
k,m + α2Di

k,m

[
α

shell(2)
k,m + 2α

2Do(2)
k,m

(
Mshell

22 − 1
)]

1 − α2Di
k,mα

2Do(2)
k,m

,

(6.54)

where the reference system is a system where all three shells are well separated from each other. The functions appearing in the
expression are

αshell
k,m ≈ (δn)

4παat(ω)

r
{[m2 + (kr)2][Im(kr)]2 + (kr)2[I ′

m(kr)]2},

α
shell(2)
k,m ≈ (δn)

4παat(ω)

r
{[m2 + (kr)2][Km(kr)]2 + (kr)2[K ′

m(kr)]2},

Mshell
22 − 1 ≈ −(δn)

4παat(ω)

r
{[m2 + (kr)2]Im(kr)Km(kr)+(kr)2I ′

m(kr)K ′
m(kr)}, (6.55)

α
2Do(2)
k,m = α

2D(2)
k,m (b; ω) = δε̃3D(ω)[m2 + (kb)2][Km(kb)]2

b + δε̃3D(ω)[m2 + (kb)2]Im(kb)Km(kb)
,

α2Di
k,m = α2D

k,m(a; ω) = δε̃3D(ω)[m2 + (ka)2][Im(ka)]2

a + δε̃3D(ω)[m2 + (ka)2]Im(ka)Km(ka)
.

Before we write down the expression for the energy per atom we make the factor (δn)4παat(ω) explicit, a factor that is common
for all terms after 1− in the expression for f̃k,m. We have

f̃k,m ≈ 1 − (δn)
4παat(ω)

r
[
1 − α2Di

k,mα
2Do(2)
k,m

]{[m2 + (kr)2]
[
α

2Do(2)
k,m [Im(kr)]2 + α2Di

k,m[Km(kr)]2−2α2Di
k,mα

2Do(2)
k,m Im(kr)Km(kr)

]
+ (kr)2

[
α

2Do(2)
k,m [I ′

m(kr)]2 + α2Di
k,m[K ′

m(kr)]2−2α2Di
k,mα

2Do(2)
k,m I ′

m(kr)K ′
m(kr)

]}
. (6.56)

Now, the energy per atom is

E

2π (δn)L
= �

2π (δn)L

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

−∞

dk

2π
ln[f̃k,m(k,iξ )]

≈ �

2π (δn)

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dk

2π
[f̃k,m(k,iξ ) − 1]

= −2�

r

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dk

2π

αat(iξ )[
1 − α2Di

k,mα
2Do(2)
k,m

]{[m2 + (kr)2]
[
α

2Do(2)
k,m [Im(kr)]2 + α2Di

k,m[Km(kr)]2

− 2α2Di
k,mα

2Do(2)
k,m Im(kr)Km(kr)

] + (kr)2[α2Do(2)
k,m [I ′

m(kr)]2 + α2Di
k,m[K ′

m(kr)]2−2α2Di
k,mα

2Do(2)
k,m I ′

m(kr)Km(kr)
]}

. (6.57)

The force on the atom is F(r) = −r̂dE(r)/dr .

C. Retarded main results

To find the normal modes for a layered cylinder including retardation effects, we need to solve the wave equation for the
electric and magnetic fields in all layers and use the proper boundary conditions at the interfaces. To solve the vector-wave
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equation, the vector Helmholtz equation, Eq. (3.22), is not a trivial task. One can instead solve the problem by introducing
Hertz-Debye potentials π1 and π2. They are solutions to the scalar wave equation, Eq. (3.23). We let π1 be the potential that
generates TM modes and π2 be the potential that generates TE modes. Separation of variables, π = R(r)� (θ ) Z(z), leads to one
differential equation for each of the variables,

rd/dr [rdR(r)/dr] + [(q2 − h2)r2 − m2] [R(r)] = 0,

d2� (θ ) /dθ2 + m2� (θ ) = 0, (6.58)

d2Z(z)/dz2 + h2Z(z) = 0.

The variable h is the projection of the incoming momentum on the cylinder axis. The general solution for the potentials is
expressed in terms of

πi,m = [Rm(
√

q2 − h2r)][eimθ ][eihz][e−iωt ],
(6.59)

m = 0,±1,±2 . . .

The radial part R(r) is a solution to the Bessel equation,

z2 d2ω

dz2
+ z

dω

dz
+ (z2 − ν2)ω = 0. (6.60)

The Bessel equation has many different solutions: (1) Bessel functions of the first kind, J±ν(z); (2) Bessel functions of the
second kind, Yν(z) (Weber’s function, Neumann’s function); (3) Bessel functions of the third kind, H (1)

ν (z), H (2)
ν (z) (Hankel

functions).
Each is a regular function of z throughout the complex z plane cut along the negative real axis. They are related to each other

according to

Yν(z) = [Jν(z) cos (νπ ) − J−ν(z)] / sin (νπ ) ,

Hν
(1)(z) = Jν(z) + iYν(z), (6.61)

Hν
(2)(z) = Jν(z) − iYν(z).

Let us study a layered cylinder of radius R consisting of N layers and an inner cylindrical core. We have N + 2 media and
N + 1 interfaces. Let the numbering be as follows. Medium 0 is the medium surrounding the cylinder, medium 1 is the outermost
layer and medium N + 1 the innermost layer and N + 2 the innermost cylindrical core. Let rn be the inner radius of layer n. This
is completely in line with the system represented by Fig. 3.

We will use the two Hankel versions since they represent waves that go in either the positive or negative r directions. We
assume a time dependence of the form e−iωt . With this choice the first Hankel function, Hν

(1) (qr) e−iωt ∝ ei(qr−ωt), represents
a wave moving in the positive radial direction (towards the left in Fig. 3) while the second, Hν

(2) (qr) e−iωt ∝ e−i(qr+ωt),
represents a wave moving in the negative radial direction (towards the right in Fig. 3). Thus the general solution for the potentials
is

π =
∞∑

m=0

[
amH (2)

m (kr) + bmH (1)
m (kr)

]
eimθeihze−iωt ,

(6.62)
k =

√
q2 − h2.

Let us now use the boundary conditions that the tangential components of E and H are continuous at the interface between layer
n and n + 1. We get [47] [

(∂/∂r) πn

1
+ (imh/qnr) πn

2

]
r=rn

= [
(∂/∂r) πn+1

1
+ (imh/qn+1r) πn+1

2

]
r=rn

,[(
q2

n − h2)πn
1

]
r=rn

= [(
q2

n+1 − h2)πn+1
1

]
r=rn

,

(6.63)[
qn (∂/∂r) πn

2
− (imh/r) πn

1

]
r=rn

= [
qn+1 (∂/∂r) πn+1

2
− (imh/r) πn+1

1

]
r=rn

,

[[(
q2

n − h2)/qn

]
πn

2

]
r=rn

= [[(
q2

n+1 − h2)/q
n+1

]
πn+1

2

]
r=rn

,

where qn =
√

˜̃εn(ω/c).
This gives

an
1,mknH

(2)
m

′ (knrn) + bn
1,mknH

(1)
m

′ (knrn) + an
2,m

(
imh

qnrn

)
H (2)

m (knrn) + bn
2,m

(
imh

qnrn

)
H (1)

m (knrn)

= an+1
1,m kn+1H

(2)
m

′ (kn+1rn) + bn+1
1,m kn+1H

(1)
m

′ (kn+1rn) + an+1
2,m

(
imh

qn+1rn

)
H (2)

m (kn+1rn) + bn+1
2,m

(
imh

qn+1rn

)
H (1)

m (kn+1rn) ,
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an
1,mk2

nH
(2)
m (knrn) + bn

1,mk2
nH

(1)
m (knrn)

= an+1
1,m k2

n+1H
(2)
m (kn+1rn) + bn+1

1,m k2
n+1H

(1)
m (kn+1rn) ,

−an
1,m

(
imh

rn

)
H (2)

m (knrn) − bn
1,m

(
imh

rn

)
H (1)

m (knrn) + an
2,mqnknH

(2)
m

′ (knrn) + bn
2,mqnknH

(1)
m

′ (knrn)

= −an+1
1,m

(
imh

rn

)
H (2)

m (kn+1rn) − bn+1
1,m

(
imh

rn

)
H (1)

m (kn+1rn)

+ an+1
2,m qn+1kn+1H

(2)
m

′ (kn+1rn) + bn+1
2,m qn+1kn+1H

(1)
m

′ (kn+1rn) ,

an
2,m

(
k2
n

qn

)
H (2)

m (knrn) + bn
2,m

(
k2
n

qn

)
H (1)

m (knrn)

= an+1
2,m

(
k2
n+1

qn+1

)
H (2)

m (kn+1rn) + bn+1
2,m

(
k2
n+1

qn+1

)
H (1)

m (kn+1rn) . (6.64)

This may be arranged as

Ãn

⎛
⎜⎜⎜⎝

an
1,m

bn
1,m

an
2,m

bn
2,m

⎞
⎟⎟⎟⎠ = Ãn+1

⎛
⎜⎜⎜⎜⎝

an+1
1,m

bn+1
1,m

an+1
2,m

bn+1
2,m

⎞
⎟⎟⎟⎟⎠ , (6.65)

and we may now identify the matrix

Ãn =

⎛
⎜⎜⎜⎜⎝

knH
(2)
m

′ knH
(1)
m

′ imh
qnrn

H (2)
m

imh
qnrn

H (1)
m

k2
nH

(2)
m k2

nH
(1)
m 0 0

− imh
rn

H (2)
m − imh

rn
H (1)

m qnknH
(2)
m

′ qnknH
(1)
m

′

0 0 k2
n

qn
H (2)

m

k2
n

qn
H (1)

m

⎞
⎟⎟⎟⎟⎠ , (6.66)

where we have omitted the argument (knrn) in all Hankel functions and their derivatives.
For the special case when h = 0, we see that the matrices are in a block form:

Ãn =

⎛
⎜⎜⎜⎜⎝

knH
(2)
m

′ knH
(1)
m

′ 0 0

k2
nH

(2)
m k2

nH
(1)
m 0 0

0 0 qnknH
(2)
m

′ qnknH
(1)
m

′

0 0 k2
n

qn
H (2)

m

k2
n

qn
H (1)

m

⎞
⎟⎟⎟⎟⎠ , (6.67)

which means that the TM and TE modes decouple for h = 0.
Now, the resulting matrix M̃n = Ã−1

n · Ãn+1 becomes too large to write down in a matrix form. Instead, we list each element:

M11 = 1

Wk3
n

[
k2
nH

(1)
m kn+1H

(2)+
m

′ −knH
(1)
m

′k2
n+1H

(2)+
m

]
,

M12 = 1

Wk3
n

[
k2
nH

(1)
m kn+1H

(1)+
m

′ − knH
(1)
m

′k2
n+1H

(1)+
m

]
,

M13 = 1

Wk3
n

H (1)
m H (2)+

m (imh/qn+1rn)
[
k2
n − k2

n+1

]
,

M14 = 1

Wk3
n

H (1)
m H (1)+

m (imh/qn+1rn)
[
k2
n − k2

n+1

]
,

M21 = 1

Wk3
n

[−k2
nH

(2)
m kn+1H

(2)+
m

′ + knH
(2)
m

′k2
n+1H

(2)+
m

]
,

M22 = 1

Wk3
n

[−k2
nH

(2)
m kn+1H

(1)+
m

′ + knH
(2)
m

′k2
n+1H

(1)+
m

]
,

M23 = 1

Wk3
n

H (2)
m H (2)+

m (imh/qn+1rn)
[
k2
n+1 − k2

n

]
,
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M24 = 1

Wk3
n

H (1)+
m H (2)

m (imh/qn+1rn)
[
k2
n+1 − k2

n

]
,

M31 = 1

Wk3
n

H (1)
m H (2)+

m (imh/qnrn)
[
k2
n+1 − k2

n

]
,

M32 = 1

Wk3
n

H (1)
m H (1)+

m (imh/qnrn)
[
k2
n+1 − k2

n

]
,

M33 = 1

Wk3
n

[(
k2
n/qn

)
H (1)

m qn+1kn+1H
(2)+
m

′ − qnknH
(1)
m

′ (k2
n+1/qn+1

)
H (2)+

m

]
,

M34 = 1

Wk3
n

[(
k2
n/qn

)
H (1)

m qn+1kn+1H
(1)+
m

′ − qnknH
(1)
m

′ (k2
n+1/qn+1

)
H (1)+

m

]
,

M41 = 1

Wk3
n

H (2)
m H (2)+

m (imh/qnrn)
[
k2
n − k2

n+1

]
,

M42 = 1

Wk3
n

H (1)+
m H (2)

m (imh/qnrn)
[
k2
n − k2

n+1

]
,

M43 = 1

Wk3
n

[ − (
k2
n/qn

)
H (2)

m qn+1kn+1H
(2)
m

′+ + qnknH
(2)
m

′ (k2
n+1/qn+1

)
H (2)+

m

]
,

M44 = 1

Wk3
n

[− (
k2
n/qn

)
H (2)

m qn+1kn+1H
(1)+
m

′ + qnknH
(2)
m

′ (k2
n+1/qn+1

)
H (1)+

m

]
. (6.68)

We have suppressed all arguments of the Hankel functions and their derivatives. All functions with a + added as a superscript
have the argument (kn+1rn) and the ones without the superscript have the argument (knrn). W is short for the Wronskian,
W [H (1)

m (x) ,H (2)
m (x)] = H (1)

m (x) H (2)
m

′ (x) −H(1)
m

′ (x) H(2)
m (x) = −4i/πx. Now we have all we need to determine the fully retarded

normal modes in a layered cylindrical structure. We give some examples in the following sections.
Since it is inconvenient to work with 4 × 4 matrices, we divide a general matrix into 4 submatrices,

M̃ =
(

B̃ C̃
D̃ F̃

)
. (6.69)

With this alternative notation the condition for modes becomes

(B11 + B12) (F11 + F12) − (C11 + C12) (D11 + D12) = 0, (6.70)

and the product of two adjacent matrices becomes

M̃n · M̃n+1 =
(

B̃n C̃n

D̃n F̃n

)
·
(

B̃n+1 C̃n+1

D̃n+1 F̃n+1

)

=
(

B̃n · B̃n+1 + C̃n · D̃n+1 C̃n · F̃n+1

D̃n · B̃n+1 F̃n · F̃n+1 + D̃n · C̃n+1

)

=
(

B̃n · B̃n+1 0
0 F̃n · F̃n+1

)
+

(
C̃n · D̃n+1 C̃n · F̃n+1

D̃n · B̃n+1 D̃n · C̃n+1

)
. (6.71)

D. Retarded special results

1. Solid cylinder (no layer)

For a solid cylinder of radius a and dielectric function ε̃1(ω) in an ambient of dielectric function ε̃0(ω), as illustrated in Fig. 16,
we have M̃ = M̃0, and the type of combinations of matrix elements that appear in the mode condition are

M11 + M12 = B11 + B12 = 2

Wk3
0

[
k2

0H
(1)
m k1J

′
m − k0H

(1)
m

′k2
1Jm

]
,

M13 + M14 = C11 + C12 = 2

Wk3
0

H (1)
m Jm (imh/q1a)

[
k2

0 − k2
1

]
,

M21 + M22 = B21 + B22 = 2

Wk3
0

[−k2
0H

(2)
m k1J

′
m + k0H

(2)
m

′k2
1Jm

]
,
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M23 + M24 = C21 + C22 = 2

Wk3
0

H (2)
m Jm (imh/q1a)

[
k2

1 − k2
0

]
,

M31 + M32 = D11 + D12 = 2

Wk3
0

H (1)
m Jm (imh/q0a)

[
k2

1 − k2
0

]
,

M33 + M34 = F11 + F12 = 2

Wk3
0

[(
k2

0/q0
)
H (1)

m q1k1J
′
m − q0k0H

(1)
m

′ (k2
1/q1

)
Jm

]
,

M41 + M42 = D21 + D22 = 2

Wk3
0

H (2)
m Jm (imh/q0a)

[
k2

0 − k2
1

]
,

M43 + M44 = F21 + F22 = 2

Wk3
0

[− (
k2

0/q0
)
H (2)

m q1k1J
′
m + q0k0H

(2)
m

′ (k2
1/q1

)
Jm

]
, (6.72)

where we have used the relation 2Jm(z) = H (1)
m (z) + H (2)

m (z). We have suppressed all arguments of the functions. The suppressed
arguments are (k0a) for the H functions and their derivatives and (k1a) for the J functions and their derivatives.

The condition for modes is according to Eq. (3.15) (M11 + M12) (M33 + M34) = (M13 + M14) (M31 + M32), or according to
Eq. (6.70), (B11 + B12) (F11 + F12) = (C11 + C12) (D11 + D12), which leads to(

1

k1

J ′
m (k1a)

Jm (k1a)
− 1

k0

H (1)
m

′ (k0a)

H
(1)
m (k0a)

)(
q2

1

k1

J ′
m (k1a)

Jm (k1a)
− q2

0

k0

H (1)
m

′ (k0a)

H
(1)
m (k0a)

)
= (mh/a)2

(
1

k2
1

− 1

k2
0

)2

. (6.73)

This is in complete agreement with Ruppin in Eq. (107) on page 389 in Ref. [4]. When either m or h or both are zero the TM and
TE modes decouple. If they are decoupled, letting the first factor on the left-hand side be equal to zero defines the TE modes and
letting the second factor be equal to zero defines the TM modes.

2. Force on an atom outside a cylinder (two layers)

Here, we proceed in the same way as in Sec.VI B 5 but the matrices are now much more involved. Here, both α and δ appear
in the arguments of the functions. In the nonretarded case, only δ did. The geometry of this problem is illustrated in Fig. 18. We
first expand the matrix for the gas layer in α and keep terms up to linear in α. We have

M̃ = M̃0 · M̃1 · M̃2 = M̃layer · M̃2,

M̃0 ≈ 1̃ + αM̃1
0; M̃1 ≈ 1̃ + αM̃1

1, (6.74)

M̃layer ≈ 1̃ + α
(
M̃1

0 + M̃1
1

)
.

The elements of M̃1
0 are in the first row,

M11 = iπk0 (b + δ)

8

(
q0

k0

)2 [
H (1)

m H (2)
m

′ − 2H (1)
m

′H (2)
m + k0 (b + δ)

(
H (1)

m H (2)
m

′′ − H (1)
m

′H (2)
m

′)] ,

M12 = iπk0 (b + δ)

8

(
q0

k0

)2 [−H (1)
m

′H (1)
m + k0 (b + δ)

(
H (1)

m H (1)
m

′′ − H (1)
m

′H (1)
m

′)] ,

(6.75)

M13 = mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

M14 = mπ

4
H (1)

m H (1)
m

h

k0

(
q0

k0

)
,

in the second row,

M21 = iπk0 (b + δ)

8

(
q0

k0

)2 [
H (2)

m
′H (2)

m − k0 (b + δ)
(
H (2)

m H (2)
m

′′ − H (2)
m

′H (2)
m

′)] ,

M22 = iπk0 (b + δ)

8

(
q0

k0

)2 [−H (2)
m H (1)

m
′ + 2H (2)

m
′H (1)

m − k0 (b + δ)
(
H (2)

m H (1)
m

′′ − H (2)
m

′H (1)
m

′)] ,

(6.76)

M23 = −mπ

4
H (2)

m H (2)
m

h

k0

(
q0

k0

)
,

M24 = −mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,
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in the third row,

M31 = −mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

M32 = −mπ

4
H (1)

m H (1)
m

h

k0

(
q0

k0

)
,

(6.77)

M33 = iπk0 (b + δ)

8

{
H (1)

m H (2)
m

′+H (1)
m

′H (2)
m +

(
q0

k0

)2 [
H (1)

m H (2)
m

′−2H (1)
m

′H (2)
m + k0 (b + δ)

(
H (1)

m H (2)
m

′′−H (1)
m

′H (2)
m

′)] },
M34 = iπk0 (b + δ)

8

{
2H (1)

m H (1)
m

′ +
(

q0

k0

)2[−H (1)
m H (1)

m
′+k0 (b + δ)

(
H (1)

m H (1)
m

′′−H (1)
m

′H (1)
m

′)]},

and in the fourth row,

M41 = mπ

4
H (2)

m H (2)
m

h

k0

(
q0

k0

)
,

M42 = mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

(6.78)

M43 = − iπk0 (b + δ)

8

{
2H (2)

m H (2)
m

′−(ω/ck0)2
[
H (2)

m H (2)
m

′ + k0 (b + δ)
(
H (2)

m H (2)
m

′′ − H (2)
m

′H (2)
m

′)]} ,

M44 = − iπk0(b + δ)

8

{
H (2)

m H (1)
m

′ + H (2)
m

′H (1)
m +

(
q0

k0

)2[
H (2)

m H (1)
m

′ − 2H (2)
m

′H (1)
m + k0(b + δ)H (2)

m H (1)
m

′′ − H (2)
m

′H (1)
m

′]}.

The suppressed arguments are in all elements k0 (b + δ). The elements of M̃1
1 are in the first row,

M11 = iπk0b

8

(
q0

k0

)2 [
H (1)

m
′H (2)

m + (k0b)
(
H (1)

m
′H (2)

m
′ − H (1)

m
′′′′H (2)

m

)]
,

M12 = iπk0b

8

(
q0

k0

)2 [
H (1)

m H (1)
m

′ + (k0b)
(
H (1)

m
′H (1)

m
′−H (1)

m H (1)
m

′′)] ,

(6.79)

M13 = −mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

M14 = −mπ

4
H (1)

m H (1)
m

h

k0

(
q0

k0

)
,

in the second row,

M21 = − iπk0b

8

(
q0

k0

)2 [
H (2)

m H (2)
m

′ + (k0b)
(
H (2)

m
′H (2)

m
′ − H (2)

m H 2
m

′′)] ,

M22 = − iπk0b

8

(
q0

k0

)2 [
H (1)

m H (2)
m

′ + (k0b)
(
H (1)

m
′H (2)

m
′−H (1)

m H (2)
m

′′)] ,

(6.80)

M23 = mπ

4
H (2)

m H (2)
m

h

k0

(
q0

k0

)
,

M24 = mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

in the third row,

M31 = mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

M32 = mπ

4
H (1)

m H (1)
m

h

k0

(
q0

k0

)
,

(6.81)

M33 = iπk0b

8

{
−H (1)

m H (2)
m

′−H (1)
m

′H (2)
m +

(
q0

k0

)2[
H (1)

m
′H (2)

m + (k0b)
(
H (1)

m
′H (2)

m
′−H (1)

m
′′H (2)

m

)]}
,

M34 = iπk0b

8

{
−H (1)

m H (1)
m

′−H (1)
m

′H (1)
m +

(
q0

k0

)2[
H (1)

m
′H (1)

m + (k0b)
(
H (1)

m
′H (1)

m
′−H (1)

m
′′H (1)

m

)]}
,

155457-51



BO E. SERNELIUS PHYSICAL REVIEW B 90, 155457 (2014)

and in the fourth row,

M41 = −mπ

4
H (2)

m H (2)
m

h

k0

(
q0

k0

)
,

M42 = −mπ

4
H (1)

m H (2)
m

h

k0

(
q0

k0

)
,

(6.82)

M43 = iπk0b

8

{
H (1)

m H (1)
m

′+H (1)
m

′H (1)
m −

(
q0

k0

)2[
H (2)

m
′H (2)

m + (k0b)
(
H (2)

m
′H (2)

m
′−H (2)

m
′′H (2)

m

)]}
,

M44 = iπk0b

8

{
H (1)

m
′H (2)

m +H (1)
m H (2)

m
′ −

(
q0

k0

)2[
H (1)

m H (2)
m

′ + (k0b)
(
H (1)

m
′H (2)

m
′−H (1)

m H (2)
m

′′)]}.

The suppressed arguments are in all elements (k0b). Next we expand M̃layer from Eq. (6.74) in δ up to the linear term. We note
that the zeroth-order term of M̃1

0 exactly cancels M̃1
1. Thus

M̃layer ≈ 1̃ + αδ

[
∂M̃1

0

∂δ

]
δ=0

. (6.83)

The elements of the resulting matrix linear in δ are in the first row,

M11 = iπα (k0δ)

8

(
q0

k0

)2 [
H (1)

m H (2)
m

′ − 2H (1)
m

′H (2)
m + (k0b)

(
3H (1)

m H (2)
m

′′ − 3H (1)
m

′H (2)
m

′ − 2H (1)
m

′′H (2)
m

)
+ (k0b)2

(−H (1)
m

′′H (2)
m

′+H (1)
m H (2)

m
′′′)] ,

M12 = iπα (k0δ)

8

(
q0

k0

)2 [−H (1)
m

′H (1)
m + (k0b)

(
H (1)

m H (1)
m

′′ − 3H (1)
m

′H (1)
m

′) + (k0b)2 (−H (1)
m

′H (1)
m

′′+H (1)
m H (1)

m
′′′)] , (6.84)

M13 = mπα

4
(k0δ)

[
H (1)

m
′H (2)

m + H (1)
m H (2)

m
′] h

k0

(
q0

k0

)
,

M14 = mπα

4
(k0δ)

[
2H (1)

m H (1)
m

′] h

k0

(
q0

k0

)
,

in the second row,

M21 = iπα (k0δ)

8

(
q0

k0

)2 [
H (2)

m H (2)
m

′ − (k0b)
(
H (2)

m H (2)
m

′′ − 3H (2)
m

′H (2)
m

′) − (k0b)2
(−H (2)

m
′H (2)

m
′′+H (2)

m H (2)
m

′′′)] ,

M22 = − iπα (k0δ)

8

(
q0

k0

)2 [
H (2)

m H (1)
m

′ − 2H (2)
m

′H (1)
m + (k0b)

(
3H (2)

m H (1)
m

′′ − 3H (2)
m

′H (1)
m

′ − 2H (2)
m

′′H (1)
m

)
+ (k0b)2

(−H (2)
m

′′H (1)
m

′+H (2)
m H (1)

m
′′′)] , (6.85)

M23 = −mπα

4
(k0δ)

[
2H (2)

m H (2)
m

′] h

k0

(
q0

k0

)
,

M24 = −mπα

4
(k0δ)

[
H (1)

m
′H (2)

m + H (1)
m H (2)

m
′] h

k0

(
q0

k0

)
,

in the third row,

M31 = −mπα

4
(k0δ)

[
H (1)

m
′H (2)

m + H (1)
m H (2)

m
′] h

k0

(
q0

k0

)
,

M32 = −mπα

4
(k0δ)

[
2H (1)

m H (1)
m

′] h

k0

(
q0

k0

)
,

M33 = iπα (k0δ)

8

[
H (1)

m H (2)
m

′+H (1)
m

′H (2)
m + (k0b)

(
H (1)

m H (2)
m

′′+2H (1)
m

′H (2)
m

′+H (1)
m

′′H (2)
m

)]
+ iπα (k0δ)

8

(
q0

k0

)2 [
H (1)

m H (2)
m

′ − 2H (1)
m

′H (2)
m + (k0b)

(
3H (1)

m H (2)
m

′′ − 2H (1)
m

′′H (2)
m − 3H (1)

m
′H (2)

m
′)

+ (k0b)2 (−H (1)
m

′′H (2)
m

′+H (1)
m H (2)

m
′′′)] ,
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M34 = iπα(k0δ)

8

[
2H (1)

m H (1)
m

′ + (k0b)
(
2H (1)

m
′H (1)

m
′ + 2H (1)

m H (1)
m

′′)]
+ iπα(k0δ)

8

(
q0

k0

)2[−H (1)
m H (1)

m
′ + (k0b)

(
H (1)

m H (1)
m

′′ − 3H (1)
m

′H (1)
m

′) + (k0b)2
(−H (1)

m
′H (1)

m
′′ + H (1)

m H (1)
m

′′′)], (6.86)

and in the fourth row,

M41 = mπα

4
(k0δ)

[
2H (2)

m H (2)
m

′] h

k0

(
q0

k0

)
,

M42 = mπα

4
(k0δ)

[
H (1)

m
′H (2)

m + H (1)
m H (2)

m
′] h

k0

(
q0

k0

)
,

M43 = −iπα (k0δ)

8

[
2H (2)

m H (2)
m

′ + (k0b)
(
2H (2)

m
′H (2)

m
′ + 2H (2)

m H (2)
m

′′)]
+ −iπα (k0δ)

8

(
q0

k0

)2 [−H (2)
m H (2)

m
′ + (k0b)

(
H (2)

m H (2)
m

′′ − 3H (2)
m

′H (2)
m

′) + (k0b)2
(−H (2)

m
′H (2)

m
′′ + H (2)

m H (2)
m

′′′)] , (6.87)

M44 = − iπα (k0δ)

8

[
H (2)

m H (1)
m

′+H (2)
m

′H (1)
m + (k0b)

(
H (2)

m H (1)
m

′′+2H (2)
m

′H (1)
m

′+H (2)
m

′′H (1)
m

)]
− iπα (k0δ)

8

(
q0

k0

)2 [
H (2)

m H (1)
m

′ − 2H (2)
m

′H (1)
m + (k0b)

(
3H (2)

m H (1)
m

′′ − 2H (2)
m

′′H (1)
m − 3H (2)

m
′H (1)

m
′)

+ (k0b)2
(−H (2)

m
′′H (1)

m
′+H (2)

m H (1)
m

′′′)] .

The suppressed arguments are in all elements k0b = k0 (a + d). To go further, we introduce some short hand notation.
Let

Ã = M̃2,

C̃ = B̃ · Ã =
[
∂M̃1

0

∂δ

]
δ=0

· Ã, (6.88)

M̃ ≈ Ã + δαC̃.

Expressed in terms of the elements of these matrices, the condition for modes becomes

[(A11 + A12) + δα (C11 + C12)] [(A33 + A34) + δα (C33 + C34)]

− [(A13 + A14) + δα (C13 + C14)] [(A31 + A32) + δα (C31 + C32)] = 0, (6.89)

and to linear order in δ,

(A11 + A12) (A33 + A34) − (A13 + A14) (A31 + A32) + δα [(A11 + A12) (C33 + C34) − (A13 + A14) (C31 + C32)

+ (C11 + C12) (A33 + A34) − (C13 + C14) (A31 + A32)] = 0. (6.90)

From this we find the mode condition function is

f = 1 + δα [(A11 + A12) (C33 + C34) − (A13 + A14) (C31 + C32) + (C11 + C12) (A33 + A34) − (C13 + C14) (A31 + A32)] /

[(A11 + A12) (A33 + A34) − (A13 + A14) (A31 + A32)] − δα (B11 + B12 + B33 + B34) , (6.91)

or expressed in the Ã and B̃ elements,

f = 1 + δα {B32 [(A11 + A12) (A23 + A24) − (A13 + A14) (A21 + A22)]

+B34 [(A11 + A12) (A43 + A44) − (A13 + A14) (A41 + A42) − (A11 + A12) (A33 + A34) + (A13 + A14) (A31 + A32)]

+B12 [(A33 + A34) (A21 + A22) − (A31 + A32) (A23 + A24) − (A11 + A12) (A33 + A34) + (A13 + A14) (A31 + A32)]

+B13 [(A33 + A34) (A41 + A42) − (A31 + A32) (A43 + A44)]} / [(A11 + A12) (A33 + A34) − (A13 + A14) (A31 + A32)] .

(6.92)

Note that we have chosen as a reference system a system of two independent ones, one with the solid cylinder alone and the other
with the thin cylinder alone. The calculated energy is then the interaction energy between the two objects.
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Now, the retarded (Casimir) interaction energy between an atom and a cylinder is given by

E = �

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

−∞

dh

2π
ln [fm (h,iξ )]

≈ �

∫ ∞

0

dξ

2π

∞∑
m=−∞

L

∫ ∞

−∞

dh

2π
[fm (h,iξ ) − 1]

≈ �

∫ ∞

0

dξ

2π

∞∑
m=−∞

∫ ∞

−∞

dh

2π

2αat

b
{B32 [(A11 + A12) (A23 + A24) − (A13 + A14) (A21 + A22)]

+B34 [(A11 + A12) (A43 + A44) − (A13 + A14) (A41 + A42) − (A11 + A12) (A33 + A34) + (A13 + A14) (A31 + A32)]

+B12 [(A33 + A34) (A21 + A22) − (A31 + A32) (A23 + A24) − (A11 + A12) (A33 + A34) + (A13 + A14) (A31 + A32)]

+B13 [(A33 + A34) (A41 + A42) − (A31 + A32) (A43 + A44)]} / [(A11 + A12) (A33 + A34) − (A13 + A14) (A31 + A32)] ,

(6.93)

where we have used that α = 2αat/ (bLδ). Remember that b = a + d is the distance to the atom from the cylinder axis and d is
the closest distance from the atom to the cylinder. The radial coordinate in the A elements is a and in the B elements is b. The
Ã elements are equal to the M̃ elements in Eq. (6.72) and the B̃ elements are equal to the M̃ elements in Eqs. (6.84) and (6.86)
after removal of a factor δα:

(A11 + A12) (A23 + A24) − (A13 + A14) (A21 + A22)

=
(

2

Wk3
0

)2
k4

1k
4
0

q1q0

[
1

k2
0

− 1

k2
1

]
q0

k0
iW (mh/a) J 2

m

=
(

2

Wk3
0

)2
k4

1k
4
0

q1q0

[
1

k2
0

− 1

k2
1

]
4q0

πk2
0a

(mh/a) J 2
m,

(A11 + A12) (A33 + A34) − (A13 + A14) (A31 + A32)

=
(

2

Wk3
0

)2
k4

0k
4
1

q1q0

(
H (1)

m Jm

)2
[(

1

k1

J ′
m

Jm

− 1

k0

H (1)
m

′

H
(1)
m

)(
q2

1

k1

J ′
m

Jm

− q2
0

k0

H (1)
m

′

H
(1)
m

)
+ (mh/a)2

(
1

k2
0

− 1

k2
1

)2]
,

(A11 + A12) (A43 + A44) − (A13 + A14) (A41 + A42)

=
(

2

Wk3
0

)2
k4

0k
4
1

q1q0
H (1)

m H (2)
m J 2

m

[(
1

k1

J ′
m

Jm

− 1

k0

H (1)
m

′

H
(1)
m

)(
−q2

1

k1

J ′
m

Jm

+ q2
0

k0

H (2)
m

′

H
(2)
m

)
+ (mh/a)2

(
1

k2
0

− 1

k2
1

)2]
, (6.94)

(A33 + A34) (A21 + A22) − (A31 + A32) (A23 + A24)

=
(

2

Wk3
0

)2
k4

0k
4
1

q1q0
H (1)

m H (2)
m J 2

m

[(
q2

1

k1

J ′
m

Jm

− q2
0

k0

H (1)
m

′

H
(1)
m

)(
− 1

k1

J ′
m

Jm

+ 1

k0

H (2)
m

′

H
(2)
m

)
+ (mh/a)2

(
1

k2
0

− 1

k2
1

)2]
,

(A33 + A34) (A41 + A42) − (A31 + A32) (A43 + A44)

=
(

2

Wk3
0

)2
k4

0k
4
1

q1q0
H (1)

m H (2)
m J 2

m

imh

a

(
1

k2
0

− 1

k2
1

)[
1

q1

(
−q2

1

k1

J ′
m

Jm

+ q2
0

k0

H (1)
m

′

H
(1)
m

)
+ 1

q0

(
q2

1

k1

J ′
m

Jm

− q2
0

k0

H (2)
m

′

H
(2)
m

)]
.

We have suppressed all arguments of the functions. The suppressed arguments are (k0a) for the H functions and their derivatives
and (k1a) for the J functions and their derivatives. Note that the factor (2/Wk3

0)2 in common of all three A expressions cancels
out in the integrand of Eq. (6.93).

Now, the arguments of the functions are all imaginary on the imaginary axis. It may be favorable to have real-valued arguments,
(γ0ha), and (γ1ha) instead of (k0a) and (k1a), respectively, where γ0(ω) =

√
1 − (ω/ch)2 and γ1(ω) =

√
1 − ε̃(ω)(ω/ch)2, re-

spectively. On the imaginary frequency axis, these become real valued, γ0(iξ ) =
√

1 + (ξ/ch)2 and γ1(iξ ) =
√

1 + ε̃(iξ )(ξ/ch)2,
respectively. To achieve real valued arguments we transform the functions to the modified Bessel functions Im(z) and Km(z). The
transformation rules are [43]

H (1)
m (ix) = 2

π

1

im+1
Km (x) , H (2)

m (ix) = 2imSm (x) , Jm (ix) = imIm (x),

H (1)
m (ix) Jm (ix) = − 2

π
iKm (x) Im (x), H (2)

m (ix) Jm (ix) = 2(−1)mSm (x) Im (x), (6.95)

H (1)
m (ix) H (2)

m (ix) = − 4

π
iKm (x) Sm (x),
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where we have introduced the complex valued function Sm (x),

Sm (x) = 1

π
i(−1)mKm (x) + Im (x). (6.96)

The modified Bessel functions of real valued arguments are real valued. With these transformations and after a removal of a
common factor the factors containing A elements in Eq. (6.93) become

(A11 + A12) (A23 + A24) − (A13 + A14) (A21 + A22)

=
(

1

γ 2
0

− 1

γ 2
1

)
4m (q0/h)

π

1

(γ0ha)2 ,

(A11 + A12) (A33 + A34) − (A13 + A14) (A31 + A32)

= −
(

2

π

)2

(−1)m(Km (γ0ha))2

{(
q0

h

)2 [ 1

γ1

I ′
m (γ1ha)

Im (γ1ha)
− 1

γ0

K ′
m (γ0ha)

Km (γ0ha)

]

×
[

ε̃

γ1

I ′
m (γ1ha)

Im (γ1ha)
− 1

γ0

K ′
m (γ0ha)

Km (γ0ha)

]
+

(
m

ha

)2( 1

γ 2
0

− 1

γ 2
1

)2}
,

(A11 + A12) (A43 + A44) − (A13 + A14) (A41 + A42)

= −4i

π
Km (γ0ha) Sm (γ0ha)

{(
q0

h

)2 [ 1

γ1

I ′
m (γ1ha)

Im (γ1a)
− 1

γ0

K ′
m (γ0ha)

Km (γ0ha)

] [
− ε̃

γ1

I ′
m (γ1ha)

Im (γ1ha)
+ 1

γ0

S ′
m (γ0ha)

Sm (γ0ha)

]

+
(

mh

a

)2( 1

γ 2
0

− 1

γ 2
1

)2}
, (6.97)

(A33 + A34) (A21 + A22) − (A31 + A32) (A23 + A24)

= −4i

π
Km (γ0ha) Sm (γ0ha)

{(
q0

h

)2 [
ε̃

γ1

I ′
m (γ1ha)

Im (γ1ha)
− 1

γ0

K ′
m (γ0ha)

Km (γ0ha)

] [
− 1

γ1

I ′
m (γ1ha)

Im (γ1ha)
+ 1

γ0

S ′
m (γ0ha)

Sm (γ0ha)

]

+
(

m

ha

)2( 1

γ 2
0

− 1

γ 2
1

)2}
,

(A33 + A34) (A41 + A42) − (A31 + A32) (A43 + A44)

= 4

π

m

ha

(
q0

h

)[
1

γ 2
0

− 1

γ 2
1

]
Km (γ0ha) Sm (γ0ha)

{
1√
ε̃

[
− ε̃

γ1

I ′
m (γ1ha)

Im (γ1ha)
+ 1

γ0

K ′
m (γ0ha)

Km (γ0ha)

]

+
[

ε̃

γ1

I ′
m (γ1ha)

Im (γ1ha)
− 1

γ0

S ′
m (γ0ha)

Sm (γ0ha)

]}
.

The B elements in Eq. (6.93) become

B11 = 1

b

(
q0

γ0h

)2 [
m2KmSm − (γ0hb)

1

2
KmS ′

m + (γ0hb)2K ′
mS ′

m

]
,

B12 = −i(−1)m

bπ

(
q0

γ0h

)2 [
m2(Km)2 − (γ0hb)

1

2
KmK ′

m + (γ0hb)2(K ′
m)2

]
,

B13 = 1

b

mhi

q0

(
q0

γ0h

)2

[1 + 2 (γ0hb) K ′
mSm], (6.98)

B32 = −(−1)m

bπ

mh

q0

(
q0

γ0h

)2

2 (γ0hb) KmK ′
m,

B34 = −i(−1)m

bπ

(
{m2(Km)2 + (γ0hb)2[(K ′

m)2 + (Km)2]} +
(

q0

γ0h

)2[
m2(Km)2 − (γ0hb)

1

2
KmK ′

m + (γ0hb)2(K ′
m)2

])
,

where all functions have the same suppressed argument, (γ0b). To arrive at these expressions we have made use of the modified
Bessel equation and its derivative to rid us of second- and third-order derivatives of the modified Bessel functions.

Since the derivations are rather involved one should make as many checks as possible. We have checked our results by taking
the nonretarded limit of the resulting integrand in Eq. (6.93) and have reproduced the integrand of Eq. (6.30). The force on the
atom is F (b) = −r̂dE(b)/db.
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3. Force on an atom outside a 2D cylindrical shell (three layers)

In this section, we derive the interaction between an atom and a very thin cylindrical shell. It could approximate the interaction
between an atom and a nanotube. The geometry is illustrated in Fig. 20. We let the shell have the thickness δ and let δ be very
small so that one keeps only terms linear in δ. The 3D dielectric function of the material will then be inversely proportional to δ

[31,32]. The derivation proceeds along the lines in the previous section and the matrix Ã is replaced according to Ã → 1̃ + F̃ · G̃.
This result is obtained in the following way. The matrix for the thin layer is obtained as the product of two matrices of the form
of Eq. (6.68). The first is the matrix of the left interface at a + δ, the second of the next interface at a. We keep terms up to linear
order in δ only. The unit tensor is the result of the zeroth-order term and F̃ · G̃ of the first-order term, respectively,

(1 + FG11 + FG12) (FG23 + FG24) − (FG13 + FG14) (FG21 + 1 + FG22)

= δε̃(−1)m
πmq0

γ0
Im (γ0ha) I ′

m (γ0ha) − (δε̃)2(−1)m
[
iπa2γ 2

0 h2q2
0

]
K ′

m (γ0ha) I ′
m (γ0ha) Sm (γ0ha) Im (γ0ha);

(1 + FG11 + FG12) (1 + FG33 + FG34) − (FG13 + FG14) (FG31 + FG32)

= 1 + δε̃

{
K ′

m (γ0ha) I ′
m (γ0ha)

[
q2

0a
]+Km (γ0ha) Im (γ0ha)

[
m2 + (

ahγ 2
0

)2

aγ 2
0

]}
;

(1 + FG11 + FG12) (FG43 + 1 + FG44) − (FG13 + FG14) (FG41 + FG42)

= 1 + δε̃

{
K ′

m (γ0ha) I ′
m (γ0ha)

[
q2

0a
]−Sm (γ0ha) Im (γ0ha) (−1)miπ

[
m2 + (

ahγ 2
0

)2

aγ 2
0

]}
(6.99)

−(δε̃)2(−1)miπh2a2γ 2
0 q2

0K ′
m (γ0ha) I ′

m (γ0ha) Im (γ0ha) Sm (γ0ha) ,

(1 + FG33 + FG34) (FG21 + 1 + FG22) − (FG31 + FG32) (FG23 + FG24)

= 1 + δε̃

{
S ′

m (γ0ha) I ′
m (γ0ha)

[−(−1)miπq2
0a

]+Km (γ0ha) Im (γ0ha)

[
m2 + (

haγ 2
0

)2

aγ 2
0

]}
,

(1 + FG33 + FG34) (FG41 + FG42) − (FG31 + FG32) (FG43 + 1 + FG44)

= −δε̃(−1)m
πmq0

γ0
Im (γ0ha) I ′

m (γ0ha) .

To find the interaction energy between an atom and the thin cylindrical shell, we use Eq. (6.93) and replace the factors containing
A elements, given in Eq. (6.97) with the factors containing FG elements, given in Eq. (6.99).

Two examples where the results apply are a cylinder made of a graphenelike film and a thin metal film, respectively. Then the
expressions for δε̃(iξ ) as given in Eq. (5.43) can be used [31,32]. We have checked our results by taking the nonretarded limit of
the resulting integrand in Eq. (6.93) and have reproduced the integrand of Eq. (6.34).

VII. SUMMARY AND DISCUSSION

We have presented a general formalism for determining the electromagnetic normal modes in layered structures. We have,
furthermore, shown how to calculate the dispersion energy and forces for these structures, both at zero and finite temperature.
For the convenience of the reader we have derived in detail what is needed to address the three most common geometrical classes
viz. the planar, spherical, and cylindrical. We have presented both nonretarded and fully retarded treatments. We have also given
the resulting relations for a large number of illustrating examples.

Systems with a general number of layers can be handled and the thickness of each layer can have any value; even 2D layers
are allowed, which means that graphene, graphenelike, and 2D electron gases can be treated.

Within the formalism it is possible to obtain the force on an atom inside or outside the layered structures. We have given many
examples of this in the text. We have even derived the van der Waals and Casimir-Polder interactions between two atoms using
the formalism for spherical structures in Secs. V B 7 and V D 8, respectively.

Throughout this work, we have been careful to define our system and used a boundary condition that outside the system there
are only outgoing waves and no incoming waves towards the system. All normal modes included in the treatment are caused by
time-dependent charge and current densities within the system. Now, incoming waves are also solutions to Maxwell’s equations
but would be caused by objects outside our system. The energy of these could change when objects within our system are moved
relative to each other and hence affect the force between the objects. However, the influence of the external objects decreases with
the distance between these objects and our system and can be neglected if the distance is big enough. As a Gedankenexperiment,
we could in the planar case put the whole system inside a cubic box of finite size and with totally reflecting walls. We now let
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the box be included in our system. Then, there are incoming waves towards the original system but not towards our new system.
This approach is used in the standard derivation of the Casimir effect (see Ref. [3] Sec. 4.3.1). When we let the size of the box
go to infinity, the effect of the box vanishes. That we reproduced the Casimir classical result in Eq. (4.63) using our boundary
conditions with no incoming waves supports the approach we have used throughout this work.

[1] G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press,
New York and London, 1990).

[2] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGaw-Hill, New York, 1971).

[3] Bo E. Sernelius, Surface Modes in Physics (Wiley-VCH, Berlin,
2001).

[4] Electromagnetic Surface Modes, edited by A. D. Boardman
(Wiley, New York, 1982).

[5] Surface Polaritons: Electromagnetic Waves at Surfaces and
Interfaces, edited by V. M. Agronovich and D. L. Mills, Modern
Problems in Condensed Matter Sciences Vol. 1 (North-Holland,
Amsterdam, New York, Oxford, 1982).

[6] Willis E. Lamb and Robert C. Retherford, Phys. Rev. 72, 241
(1947).

[7] R. P. Feynman, in The Quantum Theory of Fields, edited by
R. Stoops (Wiley Interscience, New York, 1961).

[8] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
[9] Xianliang Zheng, Weiqing Xu, Charlie Corredor, Shuping Xu,

Jing An, Bing Zhao, and John R. Lombardi, J. Phys. Chem. C
111, 14962 (2007).

[10] A. J. Hallock, P. L. Redmond, and L. E. Brus, PNAS 102, 1280
(2005).

[11] Linda Gunnarsson, Tomas Rindzevicius, Juris Prikulis, Bengt
Kasemo, and Mikael Käll, Shengli Zou, and George C. Schatz,
J. Phys. Chem. B 109, 1079 (2005).

[12] Zhiyong Poon, Dongsook Chang, Xiaoyong Zhao, and Paula
T. Hammond, ACS Nano 5, 4284 (2011).

[13] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London)
424, 824 (2003).

[14] K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).
[15] R. Corkish, M. A. Green, and T. Puzzer, Solar Energy 73, 395

(2002).
[16] B. W. Ninham and V. A. Parsegian, J. Chem. Phys. 53, 3398

(1970).
[17] T. Nakajima, P. Lambropoulos, and H. Walther, Phys. Rev. A

56, 5100 (1997).
[18] S.-T. Wu and C. Eberlein, Proc. R. Soc. London A 456, 1931

(2000).
[19] S. Y. Buhmann and D.-G. Welsch, Prog. Quantum Electron. 31,

51 (2007).
[20] S. Scheel and S. Y. Buhmann, Acta Phys. Slov. 58, 675 (2008).
[21] S. Y. Buhmann and S. Scheel, Phys. Rev. Lett. 100, 253201

(2008).

[22] M.-P. Gorza and M. Ducloy, Eur. Phys. J. D 40, 343 (2006).
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