
PHYSICAL REVIEW B 90, 155451 (2014)

Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes
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We report on unprecedentedly large-scale density-functional calculations that clarify atomic and electronic
structures of twisted bilayer graphene (BLG). We find the existence of the critical twist angle from either the
AB or the AA stacking BLG, above which the two graphene layers are essentially decoupled and below which
the atomic planes are corrugated and the Dirac electrons are localized. We also find a magic angle at which
the Fermi velocity of the Dirac electron vanishes. We clarify that the Moiré pattern in tBLG with a tiny twist
angle generates inhomogeneity for the electron systems and thus causes the drastic modification of the electronic
properties, leading to flat bands at the Fermi level. Sensitivity to the Moiré of the valence-electron density and
the electron state near the Fermi level is discussed.
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I. INTRODUCTION

Interference of two waves causes rich phenomena in nature.
Beat patterns in sounds and Moiré patterns in sights are
commonly recognized in human life. In condensed matter, two
periodicities in atomic arrangements slightly different from
each other induce a Moiré pattern: e.g., turbostratic stacking
of surface layers of graphite leads to a Moiré pattern which is
observed by scanning tunneling microscope (STM) [1,2]. How
electron waves sense Moiré patterns of atomic arrangements
is an intriguing issue. In this paper, we clarify the decisive role
of Moiré in the atomic structures and electron states of twisted
bilayer graphene (tBLG) [3].

Bilayer graphene (BLG) is produced by exfoliation of
graphite [4,5] or by heat treatments of SiC surfaces [6,7].
Typical stacking of the two layers is either AB (Bernal) or
AA. However, the two graphene layers are often twisted to each
other in their basal planes. The layers with a tiny twist angle
θ generate a Moiré pattern with its period L = √

3d/(2 sin θ
2 ),

where d is the C-C bond length [4–10].
The electronic structure of tBLG, in particular the behavior

of Dirac electrons [11,12], has been intensely debated: Raman
spectra [5], STM images [7], ARPES data [13], and theoretical
calculations [6,14,15] indicate decoupling of twisted layers,
leading to linear-dispersive Dirac electrons as those in single-
layer graphene (SLG). On the other hand, another Raman
spectra [4], effective Hamiltonian theory [16,17], and tight-
binding calculations [17–19] indicate substantial reduction
of the Fermi velocity vF in tBLGs with small twist angles
θ . This vF reduction for small θ is also supported by a
Landau-level spectroscopy combined with STM [8]. No such
reduction, however, is deduced from ARPES experiments
[9,10]. In addition, existence of the interesting magic angle
θM at which vF vanishes is predicted using the continuum
theory [20]. To exploit fascinating properties of graphene in
device applications, it is important to resolve these issues.

It is thus highly demanded to perform reliable first-
principles calculations for tBLGs systematically. However,
even if we confine ourselves to tBLGs where the Moiré
period L is commensurate with that of SLG, first-principles
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calculations have been regarded as formidable since the
number of atoms in a unit cell increases tremendously with
decreasing θ , reaching tens of thousands for θ � 1◦. We here
apply our real-space scheme (RSDFT code) [21] which has
been optimized for current massively parallel supercomputers
and enables us to perform the total-energy electronic-structure
calculations for unprecedentedly large systems consisting of
10–100 thousand atoms [22] in the density-functional theory
(DFT) [23,24].

We find that there is a critical twist angle θe ∼ 5◦ from
either the AA or AB stacking, below which the Fermi velocity
vF decreases dramatically toward zero to cause flat bands at
the Fermi level EF. This vF reduction is a consequence of
localization of electrons sensing the Moiré in tBLGs. We
discover a magic angle θM ∼ 1.08◦ where vF vanishes. We
also find that the two graphene layers are corrugated below
another critical angle θa ∼ 10◦. The two critical angles θe and
θa are unequal to each other, reflecting the difference in the
sensitivity to the Moiré between the electron waves near EF and
the valence-electron density in the honeycomb lattice which
decides the atomic structure.

The organization of this paper is as follows. Our calcula-
tional method is briefly described in Sec. II, and its details
are given in the Appendix. Section III presents our systematic
results on the atomic and electronic structures of tBLGs for
various twist angles. Section IV summarizes our findings.

II. METHOD

Calculations have been performed using the local-density
approximation (LDA) [25] to the exchange-correlation energy
in the DFT. Ultrasoft pseudopotentials [26] are used to
describe the electron-ion interactions. We have examined 58
commensurate tBLGs with various twist angles including the
smallest θ = 0.76◦ (22 708 atoms per cell). Details of the
present calculations are in Appendix A. We have also examined
the validity of LDA by repeating the calculations using van
der Waals (vdW)-DFT functional [27]. The results obtained
are essentially identical to those by LDA (Appendix E).

III. RESULTS

We set out structural optimizations. Figure 1 shows tBLGs
for three representative twist angles θ . For θ = 29.4◦, the two
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FIG. 1. (Color online) The side and top views of the optimized
tBLG with the twist angle θ of (a) 29.4◦, (b) 8.26◦, and (c) 3.89◦. In
(b) and (c), the corrugation � is visible with the longest distance dfar

and the shortest distance dnear. In (d), dfar and dnear as functions of the
twist angle θ are shown. The crosses are the calculated values. The
lines are guides for eyes. The orange (light) and blue (dark) circles in
(b) and (c) depict the AA and AB stacking regions, respectively.

layers are almost flat [Fig. 1(a)] with the interlayer distance
of 3.42 Å. This value is between the distances in the AA
stacking (θ = 0◦) and the AB stacking (θ = 60◦) BLGs, which
are dAA = 3.61 Å and dAB = 3.34 Å, respectively, in our
LDA calculations. When θ becomes small, we observe Moiré
patterns in which the AA and AB stacking regions as well as
other stacking regions constitute a patchwork: θ = 8.26◦ and
3.89◦ in Figs. 1(b) and 1(c), respectively (see also Appendix B
and Fig. 7). The period L of the patchwork pattern and the
size of each of the AA and AB stacking regions increase as
θ becomes close to 0◦ (or 60◦) [Fig. 7 in the Appendix]. For
small θ , the two layers are corrugated. The interlayer distance
is the longest (dfar) in the AA stacking region and the shortest
(dnear) in the AB stacking region. The calculated amounts of the
corrugation, � ≡ (dfar − dnear)/2, are 0.07 Å and 0.12 Å for
θ = 8.26◦ and 3.89◦, respectively. The corrugation is periodic.
Its period is identical to that of the Moiré: L = 16.96 Å and
35.98 Å for θ = 8.26◦ and 3.89◦, respectively.

Period of the supercell Lcell is not necessarily identical to
the Moiré period L: e.g., for θ = 8.26◦, L is a half of Lcell

[Fig. 1(b)]. Interestingly, though the atomic structures in the
regions marked by ∗ and ∗∗ in the top view of Fig. 1(b) are
different, the amount of the corrugation is essentially the same
for the regions. This indicates that what is relevant to the cor-
rugation is the Moiré pattern, not the detailed atomic structure.

Figure 1(d) summarizes the corrugation of the calculated
tBLGs as a function of the twist angle θ . The upper and lower
curves show the longest (dfar) and the shortest (dnear) interlayer
distances, respectively. We have found that the amount of the
corrugation is a unique function of θ (and thus of the Moiré
period L), but that the behavior is peculiar: In the range of
20◦ < θ < 40◦, the corrugation is absent; when θ < 20◦ or
>40◦, the corrugation begins and the dfar and dnear approach to
dAA and dAB, respectively; for θ = 0◦ or 60◦, the corrugation is
absent again. The results reveal the existence of a critical twist
angle θa below which the corrugation is prominent. Figure 1(d)
indicates that θa is about 10◦.

The critical twist angle of θa ∼ 10◦ corresponds to the
Moiré period of L ∼ 10d. This assures the extent of the
AA stacking region being ∼3.3a0 (see Appendix C), where
a0 = √

3d is the lattice constant of the honeycomb lattice. It
is thus concluded that atoms on the honeycomb lattice, in
other words the valence electron density, sense the Moiré
when it causes a locally distinct region of the size. In Fig.
1(d), the calculated distances of tBLGs with largely different
Lcell but with similar θ are compiled as a unique function
of θ . This strongly infers that the present results for the
atomic corrugation obtained for the commensurate tBLGs
are not owing to the periodicity Lcell imposed but applicable
even to the incommensurate tBLGs. The corrugation we have
identified is indeed observed in the STM images [6–8,10].

A tBLG with θ → 0◦ and a BLG with θ = 0◦ are qual-
itatively different: The former shows Moiré pattern, while
the latter does not; the corrugation is prominent with dfar →
3.61 Å and dnear → 3.34 Å in the former, while it is absent
with a unique interlayer distance of 3.61 Å in the latter. The
twist angle θ = 0◦ is a singular point. Such singularity is also
observed at θ = 60◦.

Figure 2 shows the calculated binding energy of tBLG
defined as Eb = (2Egra − EtBLG)/N as a function of θ , where
N is the number of C atoms per cell, and Egra and EtBLG are the
total energies of SLG and tBLG, respectively. We have found
that Eb is almost constant with the variance of a few % in the
range of 0◦ < θ < 60◦, although there is a shallow minimum
around θ = 30◦. This is a reason why STM experiments show
various images with different Moiré patterns. The singularity
at θ = 0◦ and 60◦ mentioned above manifests itself in the
binding energy. The calculated Eb remains almost constant
even to θ → 0◦ and θ → 60◦, and abruptly jumps to the
corresponding values of Eb, 7.0 meV/atom (θ = 0◦) and
11.9 meV/atom (θ = 60◦) (Fig. 2). This discontinuity is
peculiar to infinite-size tBLGs.
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FIG. 2. (Color online) Binding energy Eb per atom as a function
of θ . The crosses show calculated values. The line is a guide for eyes.
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When the lateral size is finite, this discontinuity generally
disappears. Suppose a finite-size AA or AB stacking BLG with
a particular shape. When the two layers are twisted slightly
from θ = 0◦ (60◦), the stacking is almost AA (AB). This makes
the Eb curve steep but continuous near θ = 0◦ and 60◦. The
nearly constant behavior of Eb is also modified in the finite-size
tBLGs. The energetically favorable twist angles are expected
since the ratio of the most stable stacking region to the less
stable stacking regions varies with the twist-angle variation.
This is actually found in the previous calculations for bilayer
graphene flakes [28,29].

In Figs. 1(d) and 2, we observe that the corrugation �(θ ) and
the binding energy Eb(θ ) are almost symmetric with respect to
θ = 30◦. The structure with 60◦ − θ is obtained from that with
θ by translating one layer with respect to the other after a mirror
inversion of the system. Since the mirror inversion does not
change energetics, the essential difference between the two
structures is the lateral translation. The observed symmetry
with respect to θ = 30◦ indicates that the translation has minor
effects. We therefore safely confine ourselves to the range of
0◦ < θ < 30◦ hereafter.

We are now in a position to discuss the electronic structure
of tBLG. Figure 3 shows the calculated energy bands of
three representative tBLGs. For the twist angle of θ = 29.4◦,
we have found energy bands with the linear dispersion near
the Fermi level EF as in SLG [Fig. 3(a)]. In tBLG, the
linear band near EF is almost doubly degenerate, leading to
fourfold degenerate states at the K point. The Fermi velocity
vF ≡ (∂ε/∂k)/� of this Dirac electron is essentially identical
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FIG. 3. (Color online) Energy bands of tBLGs with θ = 29.4◦

(a), 2.88◦ (b), and 0.99◦ (c). The Fermi level EF is set to be 0. The
enlargement near EF for θ = 0.99◦ is shown in (d). The energy scale is
different in each figure. Also the size of the Brillouin zone is different
since the numbers of the atoms in each (hexagonal) unit cell are 388
(a), 1588 (b), and 13 468 (c),(d), respectively. The Dirac bands of a
SLG are also shown by blue (dashed) lines.
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FIG. 4. (Color online) Fermi velocity normalized to that of SLG
v0

F, as a function of θ : the velocities in the optimized structures (vF);
those for the flat structures with the interlayer distances of 3.61 Å
(vfar

F ) and 3.34 Å (vnear
F ). Black circles are experimental data [8].

to that of SLG v0
F. This corresponds to the decoupling of the

two layers argued previously [5–7,13–15]. However, when
θ decreases, vF is reduced substantially. For θ = 2.88◦, vF

is ∼0.66v0
F [Fig. 3(b)]. This reduction is in accord with the

previous works based on the experiments [8] and the empirical
calculations [16–19].

When θ is as small as 0.99◦, the energy bands show a
dramatic variation [Figs. 3(c) and 3(d)]: The bands near EF

become flat in most of the Brillouin zone, indicating that vF

approaches to zero. The flat bands are half filled, inferring
that the magnetic behavior occurs by slightly twisting BLG.
Interestingly, at the � point, the flat bands split with the energy
gap of 10 meV. It is of interest to clarify the relation between
the Fermi-velocity reduction at the K point, the flatness of the
corresponding band, and the energy gap at the � point.

The variation of vF as a function of θ is shown in Fig. 4.
We have found that vF is almost the same as that in SLG for
θ > 10◦, and that it is dramatically reduced toward zero when
θ < θe. Figure 4 shows that the critical angle θe is about 5◦.
The calculated velocity for the optimized structure vF agrees
well with the experimental values obtained by Landau-level
spectroscopy for θ ∼ 3◦ [8]. However, there may be a reason to
be clarified why the ARPES experiments observe no reduction
of vF [9,10]. We have also calculated the Fermi velocity of flat
tBLGs with the interlayer distance in the AA stacking BLG
(3.61 Å), vfar

F , and that in the AB stacking BLG (3.34 Å),
vnear

F . It is found that the geometry optimization is imperative
to assess the amount of the vF reduction quantitatively, yet the
existence of the critical twist angle θe is common to all cases.

The reason for the reduction of vF and then the emergence
of the flat bands is ascribed to the electron localization due to
the Moiré pattern. Figure 5 shows Kohn-Sham orbitals at EF

for two representative tBLGs. For θ = 29.4◦, the Kohn-Sham
orbitals are characterized by π orbitals extending over the
whole region [Fig. 5(a)]. However, when θ becomes as small
as 0.99◦ [Fig. 5(b)], the Moiré pattern becomes prominent
and the Kohn-Sham orbitals at EF are localized in the AA
stacking region. The localization is also found for other states,
though the region and amount of the localization depends on
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FIG. 5. (Color online) The squared Kohn-Sham orbitals at the
Fermi level EF, summed over fourfold degenerate states. The θ is (a)
29.4◦ and (b) 0.99◦. The AA and AB in (b) depict the local AA and
AB stacking regions, respectively.

band index and k point. The Moiré pattern which becomes
prominent for small θ induces inhomogeneity. The electron
wave senses the inhomogeneity, and finally the Kohn-Sham
orbitals are localized.

The reduction in vF is not monotonic, however. As shown in
the inset of Fig. 4, vF vanishes at θM ∼ 1.08◦ and then slightly
increases for the smaller θ . There is a magic angle θM at
which vF vanishes. This behavior is consistent with previous
arguments by a continuum model [20] and a tight-binding
calculation [30]. Yet, the present value differs from those by
the empirical methods: 1.05◦ [20] and 1.13◦ [30]. We have
unequivocally shown the existence of the magic angle in real
geometry optimized tBLGs.

The existence of the critical angle θe in Fig. 4 is a manifesta-
tion of the sensitivity to the Moiré pattern of the electron wave
at EF. The critical angle θe ∼ 5◦ corresponds to the Moiré
period L ∼ 20d. This assures the extent of the AA-stacking
region being ∼6.6a0 (see Appendix C). This size is necessary
to make the electron at EF sense the Moiré. When the interlayer
interaction becomes stronger as in vnear

F , the critical angle θe

is unchanged though the vF reduction is enhanced, supporting
our argument that the Moiré pattern with the critical size of the
AA stacking region is essential. It is intriguing that the critical
angle for the electron localization θe (∼5◦) is a half of the
critical angle for the structural corrugation θa (∼10◦) already
discussed [Fig. 1(d)]: The density of all valence electrons,
which plays a decisive role in the structural corrugation, senses
the Moiré pattern with larger twist angle (smaller AA stacking
region). This may be a reflection of general statement that the
density matrix represented in real space is more localized than
the electron orbital of each state [31].

IV. CONCLUSION

In summary, we have performed unprecedentedly
large-scale density-functional calculations in our real-space
scheme for tBLGs. We have shown that the graphene layers
in tBLG are essentially decoupled for the twist angle θ ∼ 30◦
and are strongly coupled to each other for θ close to 0◦ and
60◦. Two regimes are separated by the critical angle θa (∼10◦,
50◦) for atomic structures and θe (∼5◦, 55◦) for electron states.
The small twist from the AA or AB stacking BLG causes
atomic corrugation of the layers and also the drastic reduction
in the Fermi velocity vF, eventually leading to the emergence
of the half-filled flat bands at the Fermi level with θ ∼ 1◦. We
have also shown the magic twist angle θM ∼ 1.08◦ where vF

vanishes.
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APPENDIX A: REAL-SPACE DENSITY-FUNCTIONAL
CALCULATIONS

Architecture of current and future supercomputers is rapidly
changing. The current TOP 10 supercomputers are mostly
of the multi-core massively parallel architecture [32], and in
future many-core and/or hardware-accelerated architecture is
expected to emerge. In this circumstance, the development
of new schemes of the calculations associated with suitable
algorithms is imperative.

To perform accurate large-scale total-energy electronic-
structure calculations efficiently on the current and future
architectures, we have adopted a real-space (RS) scheme
[33,34] in the density functional theory (DFT) combined
with the first-principles pseudopotential method, and have
developed a highly efficient computation code named RSDFT
[21]. In the real-space scheme, discrete grid points are
introduced in real space, and the Hamiltonian in the Kohn-
Sham (KS) equation in the DFT is expressed as a matrix
represented at the grid-point space. Differential operators
for kinetic energy are replaced by finite-difference operators
with sufficiently high orders. Hence, the Hamiltonian matrix
becomes sparse and fast-Fourier transformation (FFT) is
not required for the Hamiltonian operation. FFT generally
causes heavy communication burden among all the compute
nodes in the conventional plane-wave basis-set scheme. As
a result, the communication in the RSDFT code arises from
the finite-difference operations, the nonlocal pseudopotential
operations, and the nonlocal exchange-correlation functional
operations, if any. Hence, the communication becomes local
only among neighboring compute nodes, so that the total
communication cost is tremendously reduced. In fact, the
RSDFT shows good scalability even with 80 000 compute
nodes at K computer at Kobe, Japan [35].

The basic algorithm to solve KS equation is almost
the same as that used in the conventional O(N3) scaling
method. The main routines are constructed from three parts:
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conjugate-gradient minimization, Gram-Schmidt orthonor-
malization, and subspace diagonalization. The latter two are
the bottlenecks which have O(N3) scaling. In the Gram-
Schmidt routine in our RSDFT code, most of the computations
are performed as matrix-by-matrix product, so that the com-
putational performance has reached 80–90% of the theoretical
peak performance by using level 3 of Basic Linear Algebra
Subprograms (BLAS). Similar techniques have been applied
to the matrix construction and the wave function update in
the subspace diagonalization routine. The diagonalization of
subspace Hamiltonian is also performed in parallel by using
ScaLAPACK or similar libraries.

Parallelization is performed by dividing the unit cell into
several subregions, and each region is allocated on each CPU
or compute node. Internode communication is performed by
using the Message-Passing Interface (MPI) library. All of the
computation is done in real-space. Global reduction commu-
nications occur in the computation of inner products of wave
functions. This communication becomes time consuming as
the number of nodes in parallel computations increases. In
this case, we divide the compute nodes into several small
groups and perform band-index parallelization by using these
groups. Consequently, the number of nodes for grid-point
parallelization is reduced and the cost of communication for
global summation is also reduced.

In each node, we further parallelize the computation into
several threads by using OpenMP directives. With this MPI and
OpenMP hybrid parallelization scheme, we have performed
self-consistent calculations of tens-of-thousands-of-atom sys-
tems, and also performed a benchmark test for 100 000-atom
system with more than 640 000 cores at K computer. We
have achieved extremely high performance even with such
large number of CPU cores, and recorded more than three
PFLOPS in effective performance. For this high performance,
the RSDFT code was awarded the ACM Gordon-Bell prize for
peak performance in 2011 [22].

In the actual calculations for twisted bilayer graphenes,
we use a repeated slab model in which a bilayer graphene is
separated from its images by a vacuum region with a thickness
of more than 7 Å. The periodicity Lcell in the lateral plane
depends on the twist angle θ (see Appendix B and Table I).
We have carefully examined the accuracy of our computations
and found that the intergrid distance of 0.18 Å for structural
optimizations suffices to guarantee the total energy with an
error less than 0.1 meV/atom, and that the distance of 0.31
Å for the band-structure calculations does to guarantee the
KS energy level with an error less than 1 meV. Geometry
optimization has been performed until the remaining force on
each atom becomes less than 0.5 meV/Å. Structures for θ < 2◦
are constructed by extrapolating the fully optimized structures
for larger θ , as is explained in Appendix D. A commensurate
(see Appendix B) tBLG with θ = 0.76◦ includes 22 708 atoms
in the unit cell, which is the largest system calculated in the
present paper.

APPENDIX B: COMMENSURATE TWISTED BILAYER
GRAPHENE

A twisted bilayer graphene (tBLG) is obtained by stacking
two graphene layers with a twist angle θ . In the directions

TABLE I. A list of tBLGs calculated in this work. For θ < 2◦,
atomic structures are obtained by extrapolating the fully optimized
geometries of the tBLGs with larger θ (see Appendix D).

(M,N ) θ (twist angle)[◦] Lcell (cell size) [Å] Natom [/cell]

(44,43) 0.76 184.01 22 708
(38,37) 0.88 158.63 16 876
(34,33) 0.99 141.71 13 468
(32,31) 1.05 133.25 11 908
(31,30) 1.08 129.02 11 164
(30,29) 1.12 124.79 10 444
(29,28) 1.16 120.56 9748
(28,27) 1.20 116.33 9076
(23,22) 1.47 95.18 6076
(18,17) 1.89 74.04 3676
(12,11) 2.88 48.66 1588
(9,8) 3.89 35.98 868
(8,7) 4.41 31.75 676
(7,6) 5.09 27.52 508
(6,5) 6.01 23.30 364
(5,4) 7.34 19.07 244
(9,7) 8.26 33.93 772
(4,3) 9.43 14.86 148
(8,6) 9.43 29.71 592
(7,5) 10.99 25.50 436
(3,2) 13.17 10.65 76
(6,4) 13.17 21.29 304
(9,6) 13.17 31.94 684
(8,5) 15.18 27.74 516
(5,3) 16.43 17.10 196
(7,4) 17.90 23.55 372
(9,5) 18.73 30.01 604
(2,1) 21.79 6.46 28
(4,2) 21.79 12.92 112
(6,3) 21.79 19.38 252
(8,4) 21.79 25.85 448
(10,5) 21.79 32.31 700
(9,4) 25.04 28.16 532
(7,3) 26.01 21.71 316
(5,2) 27.80 15.25 156
(10,4) 27.80 30.50 624
(8,3) 29.41 24.05 388
(11,4) 30.16 32.86 724
(3,1) 32.20 8.81 52
(6,2) 32.20 17.61 208
(9,3) 32.20 26.42 468
(10,3) 34.54 28.79 556
(7,2) 35.57 19.99 268
(11,3) 36.52 31.18 652
(4,1) 38.21 11.19 84
(8,2) 38.21 22.38 336
(9,2) 40.35 24.79 412
(5,1) 42.10 13.60 124
(10,2) 42.10 27.20 496
(11,2) 43.57 29.61 588
(6,1) 44.82 16.01 172
(12,2) 44.82 32.03 688
(7,1) 46.83 18.44 228
(8,1) 48.36 20.87 292
(9,1) 49.58 23.30 364
(10,1) 50.57 25.73 444
(11,1) 51.39 28.16 532
(12,1) 52.07 30.06 628
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L cell

L cell

(0,1)

θ/2 (M, N)

(-N, M+N)

(c)

L cell

L cell θ/2

2nd graphene layer

(d)
θ/2

FIG. 6. (Color online) The unit cell of a commensurate (M,N )
tBLG. Suppose a graphene sheet with a superperiodicity defined by
the two (N,M) and (−M,N + M) vectors (a) and rotate it by +θ/2
(b). Similarly, take a graphene sheet with periodicity defined by the
(M,N ) and (−N,M + N ) vectors (c) and rotate it by −θ/2 (d). The
commensurate tBLG (e) with the twist angle θ and the periodicity
Lcell is obtained by stacking the thus obtained two layers, (b) and (d).

parallel to the layers, the atomic arrangements have periodicity
only for particular values of the twist angle θ . Our calculations
are performed for such tBLGs where the periodicities of the
two layers are commensurate to each other (commensurate
tBLG). We choose a lateral position at which two A-site atoms
on the different layers share the position, and set the twist axis
penetrating through the two atoms. Shift of the twist axis from
the A sites generates essentially identical tBLG structures. Due
to the C3 symmetry of the graphene layers, commensurate
tBLGs are of hexagonal symmetry, and are labeled by a pair
of integers (M,N ) as explained below.

Figure 6(e) shows the unit cell of a commensurate tBLG
labeled by (M,N ). This tBLG is obtained by stacking two
graphene layers shown in Figs. 6(b) and 6(d). The former is
a graphene layer with the superperiodicity defined by (N,M)

and (−M,N + M) vectors [Fig. 6(a)], followed by the twist
rotation with +θ/2 [Fig. 6(b)]. The latter is a layer with the
superperiodicity defined by (M,N ) and (−N,M + N ) vectors
[Fig. 6(c)], followed by the rotation with −θ/2 [Fig. 6(d)].
Any commensurate tBLG is labeled by this (M,N ) index. The
(M,N ) index for the commensurate tBLG is related with the
twist angle θ , the cell size Lcell, and the number of atoms Natom

in the unit cell as

cos θ = N2 + 4NM + M2

2(N2 + NM + M2)
, (B1)

Lcell = d
√

3(N2 + NM + M2), (B2)

Natom = 4(N2 + NM + M2), (B3)

where d is the C-C distance in the graphene layer. The
commensurate (M,N ) tBLGs we have calculated in this work
are summarized in Table I.

The reciprocal space of commensurate tBLG is also of
hexagonal symmetry. The center and apex of the Brillouin
zone (BZ) are labeled as � and K (K’), respectively. In Fig. 3,
we have drawn the band structures of the tBLGs along the �K
line in the corresponding BZ.

APPENDIX C: MOIRÉ PATTERN AND THE EXTENT
OF THE AA STACKING REGION

A tBLG with θ + 120◦ is identical with that with θ due to
the C3 symmetry. A tBLG with −θ is also a mirror image of
the tBLG with θ . Hence, we confine ourselves to the range of
0◦ < θ < 60◦. Figure 7 is a schematic view of tBLG drawn for
several twist angles. We find that the patterns are qualitatively
different for 20◦ < θ < 40◦ [Figs. 7(d)–7(h)] and for the other
angles [Figs. 7(a)–7(c) and 7(i)–7(k)]: In the latter, we find
a periodic and hexagonal patchwork of the AA, the AB, and
other stacking regions, which we call Moiré pattern; in the
former, we do not find it. The atomic structure for 60◦ − θ is
obtained from that for θ , by laterally translating one graphene
layer with respect to the other after a mirror inversion of the
bilayer. The Moiré patterns are essentially the same for the
tBLG with 60◦ − θ and that with θ , as we find in Fig. 7.

In Fig. 7(a), we show the period L of the Moiré pattern, i.e.,
the distance between two neighboring AA stacking regions,
by an arrow. As shown in Fig. 7, this period L and size of each
AA, AB, and other stacking regions become larger as the twist
angle θ becomes closer to either 0◦ or 60◦. The period L is
given by

L =
√

3d

2 sin
(

θ
2

) (C1)

for θ close to 0◦. Even in the incommensurate (nonperiodic)
tBLGs, the Moiré pattern shows certain periodicity. For
commensurate (M,N ) tBLGs with small θ , the Moiré period
L and the cell size Lcell have a relation of

L = Lcell

|M − N | (C2)

as derived from Eqs. (B1), (B2), and (C1). For example, L =
Lcell/2 and L = Lcell for (9,7) [θ = 8.26◦] and (9,8) [θ =
3.89◦] tBLGs, respectively. This is what we actually find in
Figs. 1(b) and 1(c).
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(f) θ=30

(i) θ=45

(c) θ=15

(d) θ=20

(g) θ=35

(a) θ=5

L ~20d

le=6.6a0

AA
AB

(j) θ=50

(e) θ=25

(h) θ=40

(b) θ=10

la=3.3a0

L ~10d

(k) θ=55

FIG. 7. (Color online) Moiré patterns in tBLGs schematically
drawn for the twist angle θ of (a) 5◦, (b) 10◦, (c) 15◦, (d) 20◦,
(e) 25◦, (f) 30◦, (g) 35◦, (h) 40◦, (i) 45◦, (j) 50◦, and (k) 55◦. The
pattern for the tBLG with 60◦ − θ is essentially the same as that
with θ .

As stated in our paper, there are two critical angles, θa ∼ 10◦
and θe ∼ 5◦, below which the graphene layers are corrugated
and the Fermi velocity is drastically reduced, respectively.
Since the area of the particular stacking region, e.g., the AA
stacking region, increases with the decreasing θ , the critical
angle corresponds to the critical area where the stacking is
recognized to be AA. The linear dimension of the critical area
l0 which corresponds to the critical angle θ0 is simply estimated
as follows.

The lateral point separated by l0/2 from the twist-axis point
is shifted by l0θ/2 by the rotation of θ . When this shift is more
than half of the in-plane atomic distance d/2, the stacking
around the lateral point is no longer the same stacking near
the twist-axis point [36]. The condition that two lateral points
separated by l0 have the same stacking is therefore

l0θ

2
� d

2
. (C3)

The linear dimension l0 derived by taking the equal sign of
Eq. (C3) with the critical angle θ0 is thus the dimension
representing the extent of the critical area:

l0 = d

θ0
. (C4)

Then we obtain la ∼ 3.3a0 for θa = 10◦ and le ∼ 6.6a0 for θa =
5◦, where a0 = √

3d is the lattice constant of the honeycomb
lattice of graphene. We thus argue that the valence electron
density senses the AA stacking region, in other words the
Moiré pattern, when the linear dimension of the critical area
is larger than 3.3a0, whereas the more extended particular
electron state near the Fermi level requires the wider area with
the linear dimension at least 6.6a0 to sense the AA stacking
region.

APPENDIX D: EXTRAPOLATION OF ATOMIC
STRUCTURES FOR SMALL TWIST ANGLES

Computational cost of structural optimization rapidly in-
creases as the number of atoms in the unit cell becomes large.
In this work, atomic structures of tBLGs with θ > 2◦ are
obtained by performing full structural optimizations, whereas
for tBLGs with θ < 2◦ with the index of (N,N − 1), which
have more than ∼3,000 atoms/cell, structures are obtained
by extrapolating the optimized geometries for θ > 2◦ as is
explained below.

As we have shown in the paper, the stacking pattern of the
layers decides their corrugations in the optimized structures.
Stacking patterns in the unit cells for all (N,N − 1) tBLGs
are qualitatively similar: an AA stacking region and two AB
stacking regions are in the unit cell. This leads to qualitatively
similar corrugations of the layers in the cells as we find,
for example, in Figs. 8(a) and 8(b), which are the optimized
structures for (N,N − 1) tBLGs with θ = 6.01◦ (N = 6) and
θ = 3.89◦ (N = 9), respectively. We thus reasonably obtain
the corrugated structure for (N,N − 1) tBLGs with θ < 2◦
by extrapolating the structures computed for θ > 2◦. Such
extrapolation is conveniently done in the reciprocal space as
follows. We optimize the structures of tBLGs with relatively
large twist angles. The vertical coordinate z as a function
of the lateral coordinate r = (x,y) is obtained for each atom
in the tBLG: z(x,y) = z(r). This is Fourier-expanded by
using the two-dimensional reciprocal lattice vectors Gj in the
lateral cell:

z(r) =
∞∑

j=0

{αj cos(Gj r) + βj sin(Gj r)}. (D1)

The Fourier coefficients {αj ,βj } are computed for the fully
optimized structures of (N,N − 1) tBLGs with larger θ . In
Fig. 8(d), the calculated Fourier coefficient α1, corresponding
to the shortest nonzero reciprocal vector G1, is plotted
as a function of θ . We have found that the calculated
data are well fitted by a Gaussian function shown by the
solid curve in Fig. 8(d). This fitting provides the Fourier
coefficients for (N,N − 1) tBLGs with smaller θ . Other
Fourier coefficients are also extrapolated in this way. Figure
8(c) shows the corrugated atomic structure of the (34,33)
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FIG. 8. (Color online) Atomic structures of (N,N − 1) tBLGs
with the twist angle θ of (a) 6.01◦ (N = 6), (b) 3.89◦ (N = 9), and
(c) 0.99◦ (N = 34). The structures are obtained by full structural
optimizations for (a) and (b). The structure in (c) is obtained by
the extrapolation (see Appendix D). (d) A Fourier coefficient α1

[Eq. (D1)] is calculated as a function of θ , being fitted by the solid
curve for extrapolation to the smaller twist angle (θ < 2◦).

tBLG (θ = 0.99◦,N = 34), which is constructed by using the
extrapolated Fourier coefficients. The cosine coefficients for
the 7 shortest reciprocal vectors (including G0 = 0) are found
to be dominant, and the other coefficients are safely negligible.
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FIG. 9. (Color online) (a) The farthest distance dfar and the near-
est distances dnear between the graphene layers in tBLGs, as functions
of the twist angle θ . The solid and dashed lines are from vdW-DFT
and LDA-DFT calculations, respectively. The interlayer distances of
purely AA or AB stacking bilayers are also shown by horizontal
lines. (b) The band dispersions of a tBLG with θ = 7.34◦, obtained
by vdW-DFT. The dashed line is the corresponding dispersion of the
SLG. The Fermi levels are set to be 0.

APPENDIX E: VAN DER WAALS CALCULATION

To verify the validity of LDA, we here show the results
with a more sophisticated functional, vdW-DFT [27,37], that is
capable of treating the van-der Waals interactions between the
graphane layers. Calculations have been performed using the
VASP code [38]. Projector-augmented wave (PAW) potential
[39], and a plane-wave basis set with the cutoff energy of
400 eV are used.

Figure 9(a) shows the farthest and nearest distances, dfar

and dnear, of the layers in tBLGs as functions of the twist
angle θ . Solid and dashed lines correspond to the LDA and
vdW calculations, respectively. We find that the results are
essentially the same between them: the layers are flat for
θ ∼ 30◦, and are corrugated for θ < ∼10◦ and θ > ∼50◦.
The reason why the corrugations are quantitatively different
between the schemes is ascribed to the difference in the
interlayer distance for the nontwisted bilayer between the
schemes: dAA = 3.56 Å (vdW-DFT) and 3.61 Å (LDA);
dAB = 3.31 Å (vdW-DFT) and 3.34 Å (LDA).

Figure 9(b) shows the band structure of a tBLG with θ =
7.34◦. The Dirac cone of the single-layer graphene (SLG) is
also shown by a dashed line. We find that the Fermi velocity
in the tBLG is reduced compared with that in SLG, v0

F, which
is also the same result as the LDA calculation. The reduction
rate (vF/v

0
F) is calculated to be 0.89 and 0.93 for vdW-DFT

and LDA, respectively. The above shows that our conclusions
of the paper are unchanged even if vdW-DFT is used.
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