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We consider the two-dimensional electron gas confined laterally to a narrow channel by a harmonic potential.
As the Zeeman splitting matches the intersubband separation, the nonlocal spin polarization develops a minimum
as reported by Frolov er al. [Nature (London) 458, 868 (2009)]. This phenomenon, termed ballistic spin resonance,
is due to the degeneracy between the nearest oppositely polarized subbands that is lifted by spin-orbit coupling.
We showed that the resonance survives the weak and short-range interaction. The latter detunes it, and as a result
shifts the Zeeman splitting at which the minimum in spin polarization occurs. Here this shift is attributed to
the absence of the Kohn theorem for the spin-sloshing collective mode. We characterized the shift due to weak
interaction qualitatively by analyzing the spin-sloshing mode within the Fermi liquid phenomenology.
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I. INTRODUCTION

The manipulation of spins in nonmagnetic structures by all
electrical means is central to the technology of semiconductor
spintronic devices [1-4]. Spin-relaxation processes cause a
loss of information encoded in the spin degrees of freedom
and represent a challenge for semiconductor technologies.

The geometrical confinement was argued to enhance spin
correlations [5—8]. In the limiting case of a one-dimensional
wire, the spin relaxation is suppressed [9]. Experimentally,
the increase in the spin-relaxation length was observed in
wires with thickness exceeding the mean free path [10], which
was attributed to the long-lived homogeneous and spin spiral
configurations [9,11-13]. Likewise, the in-plane magnetic
field was argued theoretically [12] and shown experimentally
[14] to suppress spin relaxation.

While separately both the confinement and the magnetic
field increase the spin-relaxation length, their combination
was shown experimentally to produce an opposite effect under
certain conditions [15]. In the experiment [15], spins were
injected into a quasi-one-dimensional channel and detected via
a spin-polarized quantum point contact. The spin accumulation
in the channel was a nonmonotonic function of the in-plane
magnetic field B oriented perpendicular to the channel. It
reached a minimum for special values of the Zeeman splitting
E 7. Quasiclassically, the dip in spin polarization was attributed
to the commensuration between the spin precession time
2w E;" (we henceforth set i = 1) with twice the time it takes
electrons to cross the channel in the direction of confinement
[16,17]. Hence the phenomenon was termed ballistic spin
resonance (BSR). For the parabolic confinement that is
assumed in this paper, this time interval is the classical period
of oscillations perpendicular to the channel 27w !, where o,
is the frequency of such oscillations. The condition for the
BSR as stated in Refs. [16,17] can therefore be formulated as
Egl = a);l.

Recently, one of us constructed a quantum-mechanical
description of the BSR [18]. The mechanism of the BSR
according to Ref. [18] is summarized as follows. Electrons
injected via the quantum point contact are polarized parallel
to the external field B. Normally, electrons maintain their
polarization during their propagation along the channel; see
Fig. 1(a). The special situation arises when the pairs of
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oppositely polarized states at nearest subbands are tuned into
degeneracy, as shown in Fig. 1(d). The magnetic field required
for this satisfies £z =~ w., which is the quantum-mechanical
version of the semiclassical condition formulated in Ref. [15].
In this regime, the spin-orbit interaction mixes the degenerate
pairs of states even if nominally weak. The subband recon-
struction taking place at E; &~ w, modifies drastically the spin
dynamics inside the channel. The injected spins no longer
maintain their initial polarization; see Fig. 1(b). Instead, they
oscillate between the original states defined in the absence of
spin-orbit interaction. These oscillations eventually lead to a
decay of the total spin polarization down the channel.

In the ballistic regime, the spin oscillations are washed
out because of the finite spread in oscillation frequencies
across subbands and/or due to the differences in arrival time
from injector to detector. Even though the BSR is robust in
the presence of relatively strong short-range disorder [18],
its actual shape is sensitive to the details of intersubband
scattering [17].

In this work, we analyze the effect of the electron-electron
interaction on the BSR. We start with a brief summary of our
main results.

‘We consider the Fermi gas confined by a parabolic potential
characterized by a frequency w, of the transversal motion. The
local electron-electron interaction

A

1
A = 5 f ArV, [P + V6 6] (1)

is parametrized by amplitudes V, and V; of the interaction in
the charge, p(r), and spin, 6(r), channels, respectively. Our
main finding is that whereas for noninteracting system the BSR
occurs at B = Bggr such that the Zeeman splitting £ = w,,
in the presence of interaction Eq. (1) this field is renormalized,

Bjisg ~ Bpsrl[l —3(V, —3V,)v/4]. )

The result (2) holds for weak interaction, {V,v,V,v} <1,
where v = m/m is the density of states of a Fermi gas of
electrons of a mass m. The result (2) is obtained by a combina-
tion of the two approaches: perturbation theory and the Fermi
liquid phenomenology with local quasiparticle interaction.
The latter is applicable provided the channel width is much
larger than the typical Fermi wavelength. This condition is
equivalent to the number of occupied subbands being large.
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FIG. 1. (Color online) (a) The spins shown as (red) straight
arrows injected into the channel via the quantum point contact denoted
by a (black) square are polarized along the applied magnetic field,
B || z. The channel is running parallel to the x axis. Normally,
they maintain their polarization in the course of propagation along
the channel. (b) At the BSR, E; =~ w,, the spins are still injected
with the initial polarization along B. Their state of polarization,
however, is modified as they move along the channel. (c¢) In the
absence of a magnetic field, the energy levels form subbands due
to the quantization along Z. For the parabolic confinement, the
subband splitting, w,, is equal to the angular frequency of oscillations
across the channel. (d) At the BSR, E; ~ w,, the adjacent subbands
with opposite spin polarization are nearly degenerate. The spin-flip
intersubband p-h excitations shown by thick round (blue) arrows
become soft at the BSR, and they play a central role in our analysis.

In the experiment [15], the Fermi energy of the electron gas
was Erp &~ 4 meV, corresponding to the density of ~ 1.1 x
10"" ¢cm~2 in the high-mobility GaAs-based heterostructures.
The reported magnetic field at the onset of the BSR, on the
other hand, was & 7 T. This gives w. =~ 0.15 meV for the bulk
g-factor of —0.44. The number of occupied subbands was
therefore Er/w. ~ 27 > 1, and the Fermi liquid description
applies.

In a Fermi gas when the Zeeman splitting is tuned into the
resonance, E; = w,, the spin-flip intersubband particle-hole
(p-h) excitations shown by round arrows in Fig. 1(d) become
soft, i.e., with nearly zero excitation energy. Perturbation
theory shows that although the energy of each such pair is
modified by interaction, different p-h remains degenerate.
It follows that the BSR can be meaningfully defined for
{V,v,Viv} S 1. Asinteraction causes the detuning of the BSR,
the condition for the BSR is modified in turn.

The second ingredient leading to Eq. (2) is the relation of
the BSR to the spin-density oscillations across the channel,
or to the collective spin-sloshing mode (see Fig. 3). The
perturbation theory indicates that the energy of this mode
is very close to the spin-flip intersubband p-h excitations.
This observation links the BSR to the collective behavior. We
studied the spin-sloshing mode within the phenomenological
Fermi and obtained for its frequency

ws(Ez) ® Ez —we + (V,=3Viv(o /2 + Ez/4)  (3)
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valid under the same conditions as Eq. (2). The latter readily
follows from Eq. (3) since the BSR sets in for E; = E7 such
that w(E%) = 0.

As evidenced by the result (3), the Bgsr is renormalized
because of the absence of what would be the equivalent of the
Kohn theorem [19] for the spin-sloshing mode. At first glance,
the Kohn theorem for the spin-sloshing mode should hold.
Indeed, in the parabolic potential, the frequency of the density
oscillations across the channel, or of the so called sloshing
mode, is w, regardless of interaction. This was first discussed
theoretically [20,21] and confirmed experimentally [22] in the
context of semiconductor quantum wells, and more recently
in relation to trapped cold fermions in optical lattices [23,24].
Similarly, the Zeeman splitting gives rise to a collective
spin-precession mode, which is similarly not renormalized
according to another version of the Kohn theorem [25].
As neither w, nor E; is renormalized, it is tempting to
conclude that the frequency of the spin-sloshing mode assumes
its nonrenormalized value, w; = |w, — Ez|. Correspondingly,
the spin-sloshing mode and the p-h excitations degenerate
with it soften at £z = w,. As a result, one would mistakenly
conclude that interactions do not modify the condition for
BSR.

To see why the BSR is nevertheless shifted by the inter-
action in accordance with Eq. (2), it is necessary to identify
the collective degree of freedom unaffected by interactions
whenever the Kohn theorem applies. In the case of the sloshing
mode, such a degree of freedom is the center of mass,
d, =), z. Here z; is the location of the ith electron. In
the case of spin precession, such an observable is the total
spin, o0 = Zi o;. The collective variable associated with the
spin-sloshing mode is ), z;0;, inducing the transitions shown
in Fig. 1(d). In contrast to d, and ¢, the observable ) . z;0; in
general does not commute with the interaction Hamiltonian.
This is the underlying reason for the absence of the Kohn
theorem for the spin-sloshing mode. The situation similar
in this regard arises for the chiral spin resonance when the
transitions between spin-orbit split bands are induced by an ac
electric field [26]. In the remainder of the paper, we expand
upon the above results.

The paper is organized as follows. In Sec. II, we develop the
hydrodynamic approach based on the Fermi liquid to describe
the three collective excitations: sloshing mode, spin-precession
mode, and spin-sloshing mode analyzed in Secs. IT A, II B,
and II C, respectively. In Sec. III, we analyze the spin-sloshing
mode using the perturbation theory. We compare the results
obtained in Secs. IIC and III in Sec. III A. Following the
comparison, the effect of interaction on BSR is presented
in Sec. III B. The results are summarized and discussed in
Sec. IV. Some of the technicalities are relegated to the
Appendixes.

II. FERMI LIQUID THEORY
OF THE SPIN-SLOSHING MODE

In this section, we study the three types of collective
excitations in parabolically confined Fermi liquid: the sloshing
mode, the spin precession, and the spin-sloshing mode.
Crucially, while the BSR requires finite spin-orbit interaction,
the condition for its onset does not depend on it. For that reason,
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here we limit the consideration disregarding the spin-orbit
interaction. See Refs. [27-29] for a discussion of the Fermi
liquid effects specific for systems with spin-orbit interaction.

A. Sloshing mode in Fermi liquid confined
by a parabolic potential

The phenomenological Fermi liquid is formulated in terms
of the weakly interacting quasiparticles. Introduce the distribu-
tion function n ,(r) as the density of quasiparticles at the point
of the phase space specified by the coordinate r and momentum
p- The function n ,(r) satisfies the transport equation [30],

atnp(r) + {gp(r),np(r)} = I[np(r)]» 4

where the Poisson bracket of the two functions Ap,(r) and
B,(r) is defined by {A,B} = 9,A0, B — 9, Ad, B. The effec-
tive Hamiltonian in Eq. (4),

Epr) =ep(r)+ Y fppdny, (5)
>

contains the quasiparticle energy €,(r) and the energy of
the interaction with the deformation of the Fermi surface
described by the nonequilibrium part of the distribution
function, én p, [30]. The coefficient f,, in Eq. (5) is the second
variational derivative of the free energy with respect to 6n,.
In this subsection, we ignore the spin for clarity. Finally, the
right-hand side of Eq. (5) is the collision term controlling the
relaxation processes.

Let the confining potential be U(z) =kz?/2 and the
equilibrium distribution function ng[€,(z)]. The Kohn mode
is the solution of Eq. (4) of the form [24,31]

8ny (2) = {3, nolep()]}e ™ (auz + by cosBp)  (6)

describing oscillations of the particle and current density
across the channel at frequency w. In Eq. (6), we denote
by 6, the angle the quasiparticle momentum forms with the
z axis directed perpendicular to the channel; see Fig. 1(a).
It follows that cos6, = p./pr, where pp(z) is the Fermi
momentum. The density oscillations represented by Eq. (6)
have a vanishing amplitude at the center of the channel,
z = 0, and grow linearly away from it. Equation (6) therefore
describes the collective sloshing of the Fermi liquid across the
channel, and this is referred to as the sloshing mode.

We show that in the Galilean invariant system, the nontrivial
solutions to Eq. (4) of the form (6) exist for the choice
w = w. = 4/k/m determined by the bare electron mass and
not sensitive to the interaction. The statement of the existence
of the sloshing mode with unrenormalized frequency w, is
general and does not depend on the statistics or temperature.
Below we demonstrate it for the Galilean invariant Fermi
liquid, setting the stage for the discussion of the spin-sloshing
mode.

Thanks to the particle and momentum conservation,
I[6n%] =0 and substitution of Eq. (5) into Eq. (4) yields
to linear order in 8nX,

—iwsn® + 33" fpponk n®t +{ep 80y =0. (7
>
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In the second term of Eq. (7), we have

> fowdnly = —e"'[Foza, + Fibycos6,],  (8)
~

where the Landau parameters are defined by the Fourier expan-
sion v* fpp =Y oo Fe™® %) Here the quasiparticle
density of states v* = m*/m is proportional to the effective
mass m*.

The momentum derivative of the equilibrium distribution
function in Eq. (7) reads

8P7n0 = [3en0](17z/m*) ©))

as by definition 1/m* = 9, €,(z)/ p evaluated at p = pp. For
the spatial derivative, we have d,ny = [0¢10]0,€,(z), where

az U(Z)
1+ Fy
Equation (10) can be understood as follows. Let the quasi-
particle be translated from the Fermi surface at z to the
Fermi surface at z + dz, as shown in Fig. 2 as path A. At

equilibrium, the free energy should be the same before and
after the translation,

U(z+dz) — U()=vrlpr(z) — prz+d2)l(1 + Fp), (1)

where vy = pp/m* is the Fermi velocity. The term o Fy
accounts for the interaction of the trial quasiparticle with
the Fermi surface deformation it sees as a result of a spatial
translation by dz; see Fig. 2. Equation (11) gives

v dpr(z) _ 9.U
F dZ - 1+F0

We now translate the quasiparticle from z to z 4+ dz while
keeping its momentum constant, as shown in Fig. 2 as path B.
The energy change as a result of this translation is

dep(r) =[U(z +dz) = U(2)] + vrdprFy,  (13)

d.€p(2) = (10)

12)

>

2 z+dz

FIG. 2. (Color online) The two Fermi surfaces located at z and
z+dz shown as solid circles. As the confining potential U(z)
decreases with z, the Fermi momenta at the two points satisfy
pr(z+dz) > pr(z). When a quasiparticle is transferred from z
to z +dz, its energy changes partly due to the interaction with
the quasiparticles in the annulus pr(z) < p < pr(z +dz) (gray)
of a radius dpp. This interaction is an ultimate cause of the force
renormalization, Eq. (10). For the quasiparticle transferred along the
path A, the energy change is zero. The translation along path B with
momentum kept constant is used to derive Eq. (10).
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where the first term is the change in the confining potential,
and the second term is due to the interaction with an extra
quasiparticle with momenta in the annulus of the width dpp,
pr(z) < p < pr(z+dz). A combination of Egs. (12) and
(13) gives Eq. (10).

Substituting Egs. (8), (9), and (10) in Eq. (7), and equating
both the linear in z and linear in p, parts to zero, we obtain
kK 1+F

iway — by,— =
Y prl+ F

(14)
a,vr(1 + Fy) + iwb, = 0.
The nontrivial solution of (14) is obtained for w? =
(k/m*)(1 4+ Fy). In view of the Galilean invariance,

m*/m =1+ Fy, (15)

and we recover the Kohn mode with frequency v = w,.

B. Collective spin-precession mode in a confined Fermi liquid

We now consider the collective spin-precession mode in
the presence of an in-plane magnetic field B. For definiteness,
we assume that B || Z. In the absence of interaction spin of
the ith electron, o; precesses with the frequency E; equal
to the Zeeman splitting. As the spin-conserving interaction
commutes with the total spin, the latter precesses at the same
unrenormalized frequency E as in the noninteracting case.

We show that this statement holds when the Fermi liquid is
spatially confined. To describe the spin dynamics, we consider
the distribution function as a density matrix in spin space, and
we generalize the transport equation (4) to [32]

3t p(r)+il€p(r) A p(N+{Ep(r) i p (M} =117 p(r)],  (16)

where the commutator of the two matrices is [A,B] = AB —
B A. The quasiparticle Hamiltonian

r

2 ’ & B EZ
Ep=€pt ) [8ppo Tr(@'Sny) + fopTr(En,)] — —Fo..
>

a7

where Tr stands for the trace over spin indices. The last term
on the right-hand side of Eq. (17) is the renormalized Zeeman
coupling [32],

E}, = Ez(1+Go)™". (18)

Here and below we neglect the dependence of the Fermi liquid
parameters on the magnetic field. Such an approximation
is satisfied as long as Er > Ez. In a particular setup of
Ref. [15], the above condition is safely satisfied. The collective
spin precession is described by the density matrix

E .
ﬁpr =no+ [aEnO]TZo‘z + [36710]6_1&”1401[, (19)

where 0 = o, = io,. The second term of Eq. (19) stands for
the equilibrium polarization of the Fermi liquid. Due to the
spin conservation, /[, ] = 0. As the precession amplitude A
is position-independent, the Poisson bracket term of Eq. (16)
vanishes for the solution of the form (19). The quasiparticle
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energy Eq. (17) takes the form

TZGZ — GoAogpe (20)
for the distribution functjon Eq. (19). Here we have introduced
Vi gy = Yoo o Gme™% %) We obtain for the commuta-
tor of Egs. (19) and (20),

My

p=¢€p—

[€p.fipr] = —AEL(1 + Go)ore . 20

Substitution of Egs. (21) in Eq. (16) shows that Eq. (19) is a
solution with unrenormalized frequency w = E% (1 4 Go) =
Ez, as expected.

C. Collective spin-sloshing mode

In this section, we construct and analyze the spin-sloshing
mode. It combines features of both the Kohn mode and the
collective spin-precession mode discussed in Secs. Il A and
II B, respectively. This mode is important because, as we
will show in Sec. III B, it provides us with information on
the interaction-induced renormalization of the BSR. In the
spin-sloshing mode, the density does not change but the spin
density undergoes precession with the amplitude vanishing at
the center of the channel and growing linearly away from it;
see Fig. 3.

Accordingly, the trial solution of the transport equation (16)
describing the spin-sloshing mode is

A —iwt E%
iy = ng + [0enol | e (awz + by cOS0p)os — > %)
(22)

where similar to Sec. II B we assume B || Z. We look for the
frequencies w such that Eq. (22) is the nontrivial solution of
Eq. (16) witha2 + b2 # 0. The quasiparticle Hamiltonian (17)
for the density matrix (22) reads

— e " (q,7Go + b, G cos 0p)os. (23)

FIG. 3. (Color online) The representation of the spin-sloshing
mode. The magnetic field B is assumed to point in the z direction per-
pendicular to the channel running along the x direction. Thick arrows
(red) represents the spin polarization changing across the channel, and
vanishing at its center, z = 0. The profile is translationally invariant
along the channel, and all the spins collectively precess at frequency
wy. (a) The snapshot of spin polarization at an instant such that the
polarization is perpendicular to the xz plane. (b) In a quarter period
of precession, 7 /2w,, the spin polarization starting in a configuration
shown in (a) rotates by 90° and becomes parallel to the xz plane.
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We now substitute (22) and (23) in the transport equation,
Eq. (16), and find the frequency w at which the expression
(22) is a nontrivial solution.

Unlike the particle and spin density, the spin current in
general is not conserved and the collision term [[a] is
in general nonzero. Here we limit the consideration to the
collisionless regime. On general grounds, collisions lead the
attenuation of the spin-sloshing collective mode. For the low
temperatures studied in the experiment [15], electron-electron
collision-induced broadening can be assumed to be negligible.

In contrast to Eq. (20) obtained for the collective spin
precession, Eq. (23) contains the coordinate z explicitly. It
follows that both the commutator and the Poisson brackets
terms of Eq. (16) are nonzero for Eq. (22). The commutator
term in (16) can be easily computed, yielding

[€.A] = FELe ' 01[0cn0l(awzG§ + by cos0,GT), (24)

where we have introduced the notation G,J{ =G, +1, and
similarly F,” = F, + 1 for short.

The linearized expression for the Poisson bracket term in
Eq. (16) can be obtained from the following expressions for
the derivatives of the quasiparticle Hamiltonian, Eq. (23):

9.6 = 3,6, — e a,Goou, (25a)
. . G

9,8 =L _ priorp Tl (25b)

; m* Pr

and the derivatives of the density matrix, Eq. (22):

3Ry = [0en0l(0:€p + ape ™ 0s), (26a)

by _.
8,.71s = [deno] (& + —e_’“”oi> . (26b)

. m | pr

In writing Eq. (25a), the spatial derivatives of the Fermi lig-
uid parameters were neglected. These derivatives are expected
to be small for a large number of occupied subbands. The
reason is the slow variation of the Fermi liquid parameters in
this high-density and shallow confinement regime. Note that in
the considered case of a confined two-dimensional system with
weak and short-range interaction, this approximation becomes
exact because of the independence of the density of states on
the particle concentration in two dimensions. This justification
is elaborated in Sec. III A, where we compare the results of
Fermi liquid analysis with the microscopic calculations.

Using Egs. (25) and (26), we obtain for the linearized
Poisson bracket entering Eq. (16),

2 : : by
(&7} = [Benole oy <awcg& _ —Graze,,) %))
m* PF
Substitution of Egs. (24) and (27) along with Eq. (10) and
the expression for the time derivative, 9,4 = —iwe ' (a,z +
by, cos 0p)o+, into Eq. (16) yields in the collisionless regime
two conditions,
k GT
. r ~+ I _
1vpaw(a) + EZGO ) + bwn?F_(;— = O,
(28)
ivpawGa' + b, (w = E’ZGT) =0.
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The nontrivial solution of Egs. (28) is obtained for w = wy and
® = wys, where

G +G7
=B, 0
@s.f ‘Z 2G]
2
(G —Gy) GyGY
ol S R R 9
$\/[ ‘26 R FT @

The result Eq. (29) is stated in terms of bare frequencies E,
and o, through the Galilean invariance condition Eq. (15) and
the relation (18).

The slow and fast collective modes with eigenfrequencies
w, and wy are distinguished by their noninteracting limit.
In a free gas, the two frequencies become wy; = |, & Ez|.
Therefore, for not too strong interactions, at the onset of BSR
the slow mode with frequency w; softens down. It is for this
reason we henceforth focus on this mode.

We define E% as the Zeeman splitting at which @, = 0. In
the noninteracting Fermi gas we have £ = w,. In the Fermi
liquid, Eq. (29) gives

Gi
JESFF

Both Egs. (29) and (30) refer to the collective excitations
of a confined Fermi liquid. The BSR, on the other hand,
occurs when the individual quasiparticles satisfy the resonant
condition. Nevertheless, we demonstrate that the result (30)
bears on the renormalization of the BSR in the limit of
weak interactions. Toward that end, in the next section

we supplement the Fermi liquid phenomenology with the
microscopic analysis.

E} = o, (30)

III. MICROSCOPIC ANALYSIS: PERTURBATION THEORY

Our goal is to compute the frequency of the collective mode,
wy, in perturbation theory in the interaction. The microscopic
calculation will provide us with an independent way to confirm
the results Egs. (29) and (30) obtained phenomenologically.
More importantly, it will allow us to relate the interaction-
induced shift of the BSR to the renormalization of the
collective mode as given by Eq. (29). Here we focus on the
spin-sloshing mode. An analogous analysis of the sloshing and
spin-precession modes is detailed in Appendix B.

The Hamiltonian

H = Hy + Hi, @31

where the second term given by Eq. (1) describes the
interaction, and the first is a free quadratic part,

Ay =Y V) ot Enak)Vn at, (32)

n,aky

where llfimk is the operator creating an electron in the state
|n,ky)|a) such that

(z,xn,ke) = @alz/0)e™ . (33)
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The first factor of the wave function (33) is the standard
harmonic-oscillator wave functions,

@n(§)

where H,(£) is the Hermite polynomials, and the subband
index n is a non-negative integer. The oscillator length is £ =
1/./mwo.. The exponential prefactor describes the propagation
of the electron with the momentum k, along the channel. The
spinors |«) satisfy o, o) = a|a) and for o = %=1 describe the
state of polarization along the in-plane magnetic field B || Z.
The dispersion relation of noninteracting electrons is

= 2"m\)" 27~ V* exp(—£2/2)H, (§), (34)

k2 1 o
Eyo(ky) = —+wL n+-|)—Ez~. (35)
2 2
For fixed n and «, the states for all possible k, form subbands
labeled here by |n,«) for short. For a given Fermi energy Er, if
E,.(k, = 0) < Ef, the subband |n,«) crosses the Fermi level
at the Fermi momentum,

F 1 o
kyo=.2m|Ep — o n+§ +Ez§- (36)

It will be convenient to set k,ﬁ » = 0 for bands not crossing the
Fermi level.

Our strategy is to sum exactly all the terms of perturbation
theory in the interaction Eq. (1) of the form o [V,(w —
8) M [Vi(w — $w) ™' (w — dw) ™", with nj » being a non-
negative integer, and we introduced the detuning,

sw = |Ez — wl. (37)

Such a procedure amounts to a summation of the most
singular contributions for ® & §w at each order of perturbation
theory. It is accurate provided the interaction is sufficiently
weak. More precisely, the typical frequency shift due to the
interaction should be smaller than the intersubband separation,
V, 7% < w,. Introducing the unrenormalized density of
states, v = m/m, we arrive at the condition {V,v,V,v} < 1.

To select the graphs giving the most singular contributions
for w ~ dw, note that electron transitions between |n +

ki)l = +1) and |n,k, )| = —1) states indicated by round
arrows in Fig. 1(d) are nearly at resonance with the frequency
. The amplitude of the scattering between the resulting
p-h pairs brings for each factor of the interaction strength
the singular combination (w — 8w)~!. The above scattering
processes are exemplified in Fig. 4(a). The other class of
equally singular contributions is the self-energy corrections
[see Fig. 4(b)]. Indeed, the singularity in the propagator of a
nearly degenerate pair is obtained when both the particle and
the hole in the p-h pair are at the mass shell. The self-energy
insertions account for the on-shell singularities of particle
and hole propagators separately, and they should therefore
be included on an equal footing with the interpair scattering.

To include most singular vertex and self-energy corrections,
it is convenient to introduce the set of operators

=Y Ul ik (38)
k

creating the near-degenerate p-h excitations. The frequency
of the collective spin-sloshing mode is given by the poles of
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(a) |n+1,1) In'+1,1)

p Gt ¢

|n7¢ |n 7\1/

(b) +

e

FIG. 4. (a) The scattering process that leads to the most singular
contributions to the correlation functions has both the initial and final
states at resonance with the external frequency. To the leading order,
this amplitudes contains the direct and exchange terms. (b) The Dyson
equation for the dressed Green function, Eq. (44), shown by the thick
arrowed line combining the most singular contributions at the mass
shell. The thin line stands for the Green function of free electrons. (c)
The Dyson equation for the matrix correlation function I, Eq. (39),
shown by the shaded area. For the free electron gas, ™ is given by the
polarization operator, Eq. (43).

—_—— 4

the matrix correlation function,

[0¢]
fwt) = [ drémroplan.  G9)
—0o0
in a complex w plane, and 7; stands for the time-ordering
operation. The indices n and n’ running, respectively, over the
N, rows and N, columns of the matrix [" in Eq. (39) label the
pairs of bands of the form {|n, — 1),|n + 1, + 1)} that can host
p-h excitations created by the operators Eq. (38). It follows
that the dimensionality of f, N;, is equal to the number of such
pairs with at least one subband crossing the Fermi level. We

have
E E
F ‘| zl _1H, 40)
W, 2| we

Nt =Int|:

where Int[x] stands for the integer part of x.

The summation of the most singular contributions amounts
to solving the Dyson equation presented graphically in
Fig. 4(c). This procedure amounts to the random-phase
approximation used to study the dispersion relation of col-
lective modes in quasi-one-dimensional wires [33,34]. The
intersubband spin plasmons in quantum wells were studied
within a density-functional formalism [35,36].

The Dyson equation is solved in matrix form,

[w) = [T w) + W] (41)
The frequencies of the collective excitations, woy, satisfy
det[TT™" (weon) + W1 = 0. (42)
In expression (41), the polarization operator I1(w) is a diagonal
matrix, [,y (@) = 8 n(w),
dkde

I, (w) = n)

Gnr14+1(€ + 0.k)Gp —1(€,k),  (43)

155439-6
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where the Green function
Gral€.k) = {€ — [Ena(k) — EF] — Zp0} ™" (44)

contains the self-energy %, , calculated to first order in the
interaction,

N; kF
~ 1 /,47 , ’
Spa = Ve Y M 45)
m'=0
where the charge- and spin-interaction amplitudes combine
into a single combination,

V=V,-3V, (46)

and
M = f A€, (&)pu (E)p1(E)pr (£). (47

Note that the spin-up (-down) self-energy in Eq. (45) is
expressed via the Fermi momenta of the spin-down (-up)
fermions as required by the Pauli principle for the pointlike
interaction. Consistent with the approximations made, the
higher-order corrections to the self-energy as well as Green
functions off-diagonal in the subband index are omitted. The
vertex W matrix in Eq. (41) is expressed through the integrals
of the type (47) as

Wy = VO ML 48)

n,n'

The substitution of Eq. (44) into Eq. (43) followed by the
straightforward energy and momenta integrations yields

m! (krf,—l - k5+1,+1)
w—w.+ Ez — ErH—l,—H + Z:n,—l

The Fermi momenta in the numerator of Eq. (49) are given by
Eq. (36) for free fermions, as required by the consistency with
our approximations.

The explicit expression (49) allows us to reformulate
Eq. (42) as an eigenvalue problem amenable to numerical
analysis. Using Eq. (49), we write

Hn(w) =

(49)

M=K ' w—w+Ezs+3), (50)
where we have introduced the two diagonal matrices,
Rl = L1~ o D)
and
[l = (=Bt + St 1) - (52)
Equation (50) allows us to rewrite the condition Eq. (42) as
detlweon — we + Ez + 3 + WK1 = 0. (53)

Condition (53) implies that if A; are the eigenvalues of the
matrix ¥ + WK, the frequencies of the collective modes are
given by

Weoll = |a)c —Ez — )\'jl (54)

The expression (54) reduces the solution of Eq. (42) to the
eigenvalue problem.

Since both the self-energy 3 and the vertex function W
are proportional to V, it is clear that the frequencies of
eigenmodes, Eq. (54), are linear functions of V. This linearity

PHYSICAL REVIEW B 90, 155439 (2014)

is an artifact of the weak-coupling approximation, Vv < 1.
The results for the solution of the Eq. (53) are shown as a
function of the interaction strength in Figs. 5(a) and 5(b) for
Ez = —0.5w, and in Fig. 5(c) for E; = 0.1w,.

(a) 2 “W”"!_!!!!E!u;;ssz_ T
145
éb '-o-
S 13 Ni=5

B 0.25 05 0.75 1
147,
S

0o L144
"'..... ©®%0000es. 900000
oo

1.5

FIG. 5. (Color online) The dotted (blue) lines show the spectrum
of collective modes that are superpositions of p-h excitations between
the subbands |n + 1, + 1) and |n, — 1) as a function of the interaction
parameter Vv = (V, = 3V,)v. The solid (red) line is the frequency
of the spin-sloshing mode as given by Eq. (56) obtained for the
weakly interacting Fermi liquid. The horizontal dashed lines indicate
the noninteracting excitation energy in units of ., |w. — Ez|/w,.
The parameters used are (arb. units) Er =50, m = 1 and (a) Ez =
—0.5w., o, = 10, giving N, =5 according to Eq. (40); (b) E,
—0.5w,, w. = 1, resulting in N, = 50 modes; (c) E; = 0.1w,, o, =
5, giving N, = 10 modes. The spin-sloshing mode corresponds to the
lowest energy mode of collective excitations.
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A. Comparison of the results obtained in Fermi liquid and by
perturbation theory

Here we compare the results obtained in Secs. II C and III.
We limit the discussion to the weak interaction, V,v,V,v < 1,
when both approaches are applicable.

To be able to use the results Egs. (29) and (30), we have
to find the expressions for the Fermi liquid parameters for the
microscopic Hamiltonian specified by Eqgs. (31) and (1). To
leading orderin V,, ;, the only nonzero Fermi liquid parameters
read

Fo=—-Go= 3V, (55)

where the combination V is defined by Eq. (46). See Appendix
A for a derivation of Eq. (55). To leading order in the
interaction, the Fermi liquid parameters in Eq. (55) are
position-independent. In general this is not the case, and a
different procedure combing the phenomenology with the
measurements is required, as proposed in the context of trapped
Fermi gases [37].

With the approximation (55), the result (29) takes the form

4—Vv V212 2—Vv
~E, 7 |p2 _ 22 (56
OB o /24(2—VU)2+‘”‘2+VV (56)

The expression (56) is shown in Fig. 5 along with the numerical
solutions for poles of Eq. (39). The agreement between the
Fermi-liquid result (29) and the perturbation theory is naturally
achieved in the regime of weak interactions, Vv < 1. The
comparison between Figs. 5(a) and 5(b) indicates that the two
approaches are found to agree already for five occupied pairs
of subbands.

As the expression Eq. (56) is valid for Vv < 1, we expand
it and obtain the result (3). Equations (3) and (56) demonstrate
the absence of the Kohn theorem for the spin-sloshing mode
explicitly. The frequency w; of the spin-sloshing mode shifts
due to the interactions by a finite amount, Vv(E/4 + w./2).

B. Interaction-induced shift of the BSR

The spin-sloshing mode becomes soft for the special
Zeeman splitting E7 such that ws(E%) = 0. Solving Eq. (3)
for E% to leading order in the interaction, we obtain

EL ~ w1 —3Vv/4). (57)

Equivalently, this expression follows from the expansion of
the result (30) in Vv using Eq. (55). The expression (57) is
the value of the Zeeman splitting at which the spin-sloshing
mode has zero energy. It has been obtained within the Fermi
liquid with parameters evaluated for the weak and short-range
interaction, Eq. (1).

To relate Eq. (57) to the interaction-induced renormaliza-
tion of the BSR, we compare the spin-sloshing mode frequency
given by Eq. (56) or Eq. (3) to the spectrum of the rest of the p-h
excitations in the regime w, ~ Ez. The results are presented
in Fig. 6.

Figure 6 shows how the p-h excitations involving the pairs
of subbands of the form |n + 1, + 1) and |n, — 1) change their
energy with interaction for £, = w,. Atno interaction, all such
pairs are zero-energy excitations, which is the condition for
the onset of the BSR. It follows that even for a number of p-h
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FIG. 6. (Color online) The dotted (blue) lines show the spectrum
of p-h excitations between the subbands |n 4+ 1, 4+ 1) and |n, — 1)
as a function of the interaction parameter Vv = (V, = 3V,)v. The
solid (red) line is the frequency of the spin-sloshing mode as given
by Eq. (56). (a) At E; = w,., the system is at resonance and goes
off resonance at finite interaction. (b) At E; = 0.9w, the resonance
is achieved for Vv = 40/3 &~ 1.33, as follows from Eq. (2). The
horizontal dashed lines indicate the noninteracting excitation energy
|w. — Ez|/w.. The parameters used are (arb. units) Er = 50,m =1,
o, = 1 corresponding to N, = 50. The spin-sloshing mode follows
the continuum.

excitations as large as N; = 50, the interaction causes the same
energy shift for all the p-h excitations. In other words, the p-h
pairs stay degenerate even in the presence of interaction. The
spin-sloshing mode has the same energy as the individual p-h
pairs. The reason for this is the vanishing of the polarization
operator, Eq. (49), for k[ _, — k[, . As is evident from
Fig. 6, all the solutions follow the spin sloshing mode given
by the Fermi-liquid expression (56). The spin-sloshing mode
is strongly coupled to the p-h continuum and is a short-lived
excitation.

Importantly, the expression (56) obtained within the Fermi
liquid for its energy is at the same time the energy of the
p-h excitations between subband |n + 1, + 1) and subband
|n, — 1). It follows that the condition for the BSR is the
vanishing of w., which occurs at E; = E%, with E% given
by Eq. (57). Then, the BSR renormalization due to interaction
takes the form of Eq. (2). The result (2) is illustrated in Fig. 6,
where we set Ez = 0.9w. and the noninteracting system is
off-resonance. Yet due to the renormalization Eq. (2), the
system is at resonance for Vv = 40/3 ~ 1.33 as the relevant
continuum of p-h pairs becomes soft.
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IV. CONCLUSIONS

To conclude, we studied the effect of electron interaction on
the collective and p-h excitations in a laterally confined two-
dimensional Fermi gas. The spectrum of confined electrons
splits into subbands of transverse quantization. We focused on
the transversal excitations across the channel controlled by the
subband separation energy scale.

When the Zeeman splitting is tuned to the subband
separation, a special type of resonance, namely the BSR, is
detected in the dc transport measurements of Refs. [15,38].
Hence we analyzed the class of collective modes adiabatically
connected to the spin-flip intersubband p-h excitations, which
become soft at the BSR. The BSR measurements of [15] probe
the individual p-h excitations. We showed, however, relying on
the perturbation theory, that for a weak, short-range interaction
and sufficiently close to the BSR, such p-h excitations are
indistinguishable from the collective spin-sloshing mode.
Therefore, finding the frequency of the collective spin-sloshing
mode at the same time allows us to determine the shift of the
BSR caused by interactions.

To meet this goal, we applied the Fermi liquid theory to
identify and analyze the spin-sloshing mode. It combines the
features of two other more familiar collective excitations.
The first is the density oscillations across the channel, with
amplitude vanishing at the center of the channel, and it is
referred to as sloshing, or the Kohn mode. The second is the
collective spin-precession mode in the presence of Zeeman
splitting.

The spin-sloshing mode is the collective spin precession
with an amplitude growing linearly away from the center
of the channel; see Fig. 3. We demonstrated that the Kohn
theorem does not apply to it, and we found its frequency
renormalization due to a weak and short-range interaction.

Finally, by combining the above results, we obtained the
physical picture of the interaction effect on the BSR. We start
by setting the Zeeman splitting to the subband separation in
a Fermi gas. Then the spin-flip intersubband p-h excitations
have zero energy, and the system is at resonance. When a
weak interaction is turned on, these p-h excitations remain
degenerate, with their common energy becoming nonzero.
Hence, the interaction detunes the resonance. To tune it back,
the Zeeman splitting must be adjusted accordingly. It follows
that the resonant magnetic field is modified by interactions. To
quantify this statement, we used the analytical expression for
the energy of a spin-sloshing mode that was obtained within
the Fermi liquid theory.

In our analysis, we assumed that the confining potential
was parabolic with the equidistantly separated subbands; see
Eq. (35). Although the realistic confining potential is never
strictly harmonic, the deviation from the parabolic potential
profile is in many cases small. If we take the nonparabolic
part of the confining potential in the form §V,(z) = (/4)z%,
then the continuum of the p-h excitations is split due to the
variation of the level shift 8 E,q(ky) & (n|dVyp|n) with the
subband index n. The anharmonicity effect is negligible pro-
vided the energy shift due to the interactions, w.(V,—3VJ)v,
Eq. (3), exceeds the typical value of § E,,(k,). This gives the
upper bound, € < (mw?/2Ef)*w.m(V,—3V,), as we estimate
(%) ~ QEp/mad).

PHYSICAL REVIEW B 90, 155439 (2014)

In summary, the interaction-induced shift of the BSR is
obtained by tracing the frequency renormalization of the
collective spin-sloshing mode. The shift of the BSR is a
consequence of the nonexistence of the Kohn theorem for
this mode.
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APPENDIX A: FERMI LIQUID AMPLITUDES TO FIRST
ORDER IN THE INTERACTION

Consider the interaction of the form Eq. (1). As this
interaction is pointlike, the scattering amplitudes have no
angular dependence,

F?p/ =Vp[6a,35y6 - (Sotyaﬂ&] + Vs[aaﬂayé - 60{86;/,3]7 (Al)

where the superscript w is introduced as the ladder diagrams
we considered in Sec. III are taken in the limit of zero total
momentum of p-h pairs. The momenta and spin indices used in
Eq. (A1) are defined in Fig. 7. Both density and spin interaction
channels contribute to the scattering amplitude via the direct
and exchange interaction processes, as shown in Fig. 4(a).
The amplitude in Eq. (A1) is directly related to the functions
fpp and g, entering the phenomenological relation (17) [32],

UF;P' = fpp/(sa,g(syg + 8pp O apOys- (AZ)

For short-range interaction, and to first order in the interaction,
fpp = Foand g, = Go. Furthermore, using the identity

Basdpy = 50ap0ys + 58apdys (A3)

to rewrite Eq. (A1) in the form of Eq. (A2), we arrive at
Eq. (55) of the main text.

APPENDIX B: SLOSHING AND SPIN-PRECESSION
MODES: PERTURBATION THEORY ANALYSIS

Here we demonstrate the consistency of the perturbation
theory with the variants of the Kohn theorem for the sloshing
mode and the spin-precession mode. We stress that although
the perturbation theory holds for weak interaction, the can-
cellation between the self-energy and vertex corrections holds
exactly in every order of perturbation theory. Such cancellation
provides us with a test of the numerical calculations.

P P’
a~\\__75
By \/fy

p P

FIG. 7. The definition of quasiparticle momenta and spin indices
of the scattering amplitude, Eq. (A1).

155439-9



A.IQBAL AND M. KHODAS

FIG. 8. (Color online) The three lowest energy subbands are
|0, + 1), |0, — 1), and |1, + 1). The spin polarization is denoted by
straight thin (red) arrows. Only the |0, 4 1) crosses the Fermi level,
Er. The sloshing mode is the superposition of p-h excitations from
|0, + 1) to |1, 4+ 1) subbands as indicated by a round thick (blue)
arrow.

1. Sloshing mode

Here we demonstrate the Kohn theorem for the sloshing
mode in the presence of Zeeman splitting and electron-electron
interaction, Eq. (1). The relevant p-h excitations are formed by
the spin-conserving transition between the adjacent subbands.
The electron and hole comprising such a pair reside at
subbands |n, = 1) and |n + 1, £ 1), respectively.

The most trivial is the situation with only the very lowest
subband |0, 4+ 1) occupied; see Fig. 8. As only spin-up
species are present, the short-range interaction is ineffective for
fermions, and the Kohn theorem is trivially satisfied. Techni-
cally, the contributions from the direct and exchange processes
to both the self-energy and the vertex corrections cancel. The
situation is less trivial for a large number of occupied levels.
In all cases, the sloshing mode can be identified as the one not
renormalized by interactions; see Fig. 9.

2. Spin-precession mode

Here we make another generalization of the procedure
developed in Sec. III to describe the effect of interactions
on intraband spin-flip transitions. We start with the illustration
of the Kohn theorem for the simplest case of two subbands
occupied with Fermi momenta k§ _, and kj . ,; see Fig. 10. It
is sufficient to focus on a single type of p-h excitations from
subband |0, + 1) to subband |0, — 1).

In this case, the proper generalization of the [ matrix
introduced in Eq. (39) has a single element,

o) = [T )+ W], (B1)

where for the polarization operator describing the excitations
of p-h pairs shown in Fig. 10, we have

(kg = k51)

w—Ez — %01+ Zo 41

M(w) = (B2)

PHYSICAL REVIEW B 90, 155439 (2014)

Vv

FIG. 9. (Color online) The dotted (blue) lines show the spectrum
of collective modes that are the superpositions of p-h excitations
between the subbands |n + 1, & 1) and |n, & 1) as a function of the
interaction parameter Vv = (V, —3V;)v. The parameters used are
(arb. units) Er = 50,m =1, E; = 0.5w,, and o, = 1 corresponding
to N; = 50. The horizontal dotted line at w/w, = 1 demonstrates the
Kohn theorem for the sloshing mode.

instead of Eq. (49). The Fermi momenta and the self-energies
entering Eq. (B2) are defined by Eqs. (36) and (45), respec-
tively. Instead of Eq. (48), we have for the scattering vertex,

W= Ve Mgy (B3)

It follow from Eq. (B2) that

(Lo, 41 — Xo,-1)
kg 41

N w=Ez)= (B4)

F
- kO,—l

4

FIG. 10. (Color online) The same three lowest energy subbands,
|0, + 1), |0, — 1), and |1, 4+ 1) as in Fig. 8. The spin polarization
is denoted by straight thin (red) arrows. The subbands |0, + 1) and
|0, — 1) cross the Fermi level, Er. The spin-precession mode is the
superposition of p-h excitations from |0, 4 1) to |0, — 1) subbands
as indicated by a round thick (blue) arrow.
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FIG. 11. (Color online) The dotted (blue) lines show the spec-
trum of collective modes that are the superpositions of p-h excitations
between the subbands |n, 4+ 1) and |n, — 1) as a function of the
interaction parameter Vv = (V, —3V,)v. The parameters used are
(arb. units) Er = 50,m = 1, E; = 0.5w,, and o, = 1 corresponding
to N; = 50. The horizontal dotted line at w/w, = (w. — Ez)/w. =
0.5w, demonstrates the Kohn theorem for spin-precession mode.
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Equation (45) gives

K
Sor = Ve O:IMg;g. (BS)

Combining Egs. (B1), (B3), (B4), and (BS5), we obtain

I''"(w=E;) =0, (B6)

which signifies the presence of the collective mode with
unrenormalized frequency, Ez, as expected.

The outlined derivation is easily generalized to an arbitrary
number of occupied subbands. The condition analogous to
Eq. (42) leads to the spectrum of excitation shown in Fig. 11.
The spin-precession mode is identifiable as the one not
renormalized by interactions. An essentially similar approach
has been used for the calculation of the spin-wave dispersion
in quantizing a magnetic field with unequal occupation of
Zeeman split Landau levels (see Ref. [39]).
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