
PHYSICAL REVIEW B 90, 155431 (2014)

Anharmonicity-assisted multiphonon transitions between distant levels
in semiconductor quantum dots

I. A. Dmitriev1,2,3,4 and R. A. Suris4

1Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
2Institut für Theorie der kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

3Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
4A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia

(Received 13 January 2014; revised manuscript received 30 August 2014; published 17 October 2014)

We calculate the multiphonon transition rate from the excited state of a single-occupied two-level quantum
dot. The electron interacts with certain optical phonon modes which in turn transfer the transition energy to the
bath of other phonon modes decoupled from the electron states. Our theory covers the previously unexplored
range of transition energies several times larger than the optical phonon energy and systematically studies the
role of quantum interference of the processes involving different virtual polaron states.
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I. INTRODUCTION

Recent proposals for optoelectronic implementations of
quantum dots (QDs), in particular, for quantum cascade lasers
(QCLs), rely on the possibility to efficiently control the
nonradiative decay in QDs which is absent in conventional
planar heterostructures [1–6]. The optical gain of conventional
QCLs in quantum well heterostructures [7,8] is limited
by inevitably fast electron transitions due to emission of
longitudinal optical (LO) phonons [9,10]. Indeed, in quantum
wells single-phonon transitions are inherently fast due to the
continuous energy spectrum of the carrier in-plane motion.
By contrast, in QDs with a discrete electronic spectrum
such single-phonon transitions would require a perfect match
between the level separation and the energy of nearly disper-
sionless LO phonons [11,12]. In fact, even in the resonant
conditions single-phonon transitions are not possible due
to avoided crossing of mixed states involving the electron
states and LO phonons [13–18]. Over the last decade it
was established both theoretically and experimentally that
the energy relaxation in QDs is rather due to multiphonon
processes which require the anharmonic decay of involved
LO phonons [19–27]. It was also demonstrated that quantum
confinement of carriers in quantum well QCLs by application
of a strong perpendicular magnetic field indeed improves the
laser characteristics; in particular, it enables a higher operation
temperature [28].

More specifically, in self-assembled QDs which are typ-
ically about 10 nm in size and have quantization energies
comparable to the Debye energy, there are severe phase-space
restrictions on the wave vectors q of phonons interacting with
electrons in QDs,

q � π/aQD � π/a0, (1.1)

where aQD ∼ 10 nm is the characteristic scale of the electron
wave function and a0 ∼ 0.5 nm the lattice constant. The condi-
tion (1.1) is particularly strong in QDs where, unlike quantum
wires or quantum wells, all three components of q should be
small [11]. As a result, (i) single-phonon transitions involving
acoustic phonons are only possible for transition energies
not exceeding a few meV; (ii) dispersion of relevant optical
phonon modes can be safely neglected; (iii) higher-order

processes involving direct electron-phonon couplings are also
suppressed due to the phase-space limitation (1.1). By contrast,
anharmonic phonon-phonon interaction is not restricted by
Eq. (1.1). It involves all phonon modes and remains strong [23]
[for instance, in GaAs the lifetime w(1) of the �-point LO
phonon is 7 ps at 77 K and 3.5 ps at 300 K]. This makes the
anharmonicity-assisted multiphonon transitions the dominant
channel of relaxation in QDs with level spacing exceeding
several meV.

So far, both experimental and theoretical studies of the
anharmonicity-assisted transitions in QDs have been concen-
trated on the region of transition energies close to the resonance
with the optical phonon energy. It was established [25–27]
that the transition probability factorizes in two parts, one
describing the anharmonic interaction of a �-point LO phonon
with the bath of other phonons, and the other the resonant
interaction of electronic states with certain LO modes either
single-occupied or not occupied by phonon. The electronic
part can be calculated, e.g., with the help of the Davydov
transformation method [26], while the anharmonicity factor
can be calculated numerically using the methods developed for
bulk semiconductors [29,30]. Existing theory reasonably well
reproduces experimental results for the region of transition
energies not far from the optical phonon energy [19–22]. In
this range, the energy relaxation rate is of the order of the LO
phonon lifetime w(1).

The main purpose of present work is to develop a
microscopic theory of electronic relaxation for a broader
range of transition energies (including the level separation of
several LO phonon energies) where in particular the Davydov
transformation method [26] is no longer applicable. In this
range of transition energies, powerful approaches developed
earlier for the description of multiphonon processes in impurity
centers in semiconductors [31–33] also do not provide reliable
results since the characteristic frequencies of the lattice and
electronic excitations are of the same order of magnitude.
Based on the adiabatic approximation, these methods are more
suitable for interband processes, for instance, for study of the
exciton dephasing and relaxation [34,35].

The paper is organized as follows. In Sec. II we introduce
the spectrum and wave functions of a 2-level QD coupled to
LO phonons. Section III introduces the anharmonicity which
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provides a coupling of the involved LO phonon modes to the
bath of lattice vibrations thus making the energy relaxation
possible. Our central results are obtained in Sec. IV where the
energy relaxation rates are calculated for transition energies
not too close to a multiple of the LO phonon energy (the
off-resonant relaxation). Here we systematically study the role
of quantum interference of the processes involving different
virtual polaron states. The energy relaxation in the vicinity
of resonances is addressed in Sec. V. In Sec. VI we discuss
the main results and illustrate them for a particular model of
anharmonic decay. A short summary is given in Sec. VII.

II. POLARON STATES IN A TWO-LEVEL SYSTEM

A. Electron-phonon interaction

We consider an electron in a two-level system (2LS)
represented by two orthogonal electron states |k〉 = |1〉, |2〉
with energies ε

(0)
k (we assume ε

(0)
2 > ε

(0)
1 ). The states are

coupled to dispersionless LO phonons of frequency �. In this
section we present the spectrum and wave functions of polaron
states in such a system in the absence of lattice anharmonicity.
The anharmonicity, which makes real transitions between the
polaron states possible, is introduced in Sec. III.

The Hamiltonian of the system H reads

H = He + ��

2

∑
q

[(x†
qxq + ∂†

q∂q)I + 2U (q)xq], (2.1)

He =
(

ε
(0)
1 0
0 ε

(0)
2

)
, U (q) =

(
u∗

11(q) u∗
12(q)

u∗
21(q) u∗

22(q)

)
. (2.2)

Here I is the identity matrix; the dimensionless operators xq

and ∂q are expressed in terms of the phonon creation and
annihilation operators b

†
q and bq as xq = (bq + b

†
−q)/

√
2 and

∂q = (b−q − b
†
q)/

√
2. It follows that xq = x

†
−q , ∂q = −∂

†
−q ,

and ∂qxp − xq∂p = δq,p. The Fröhlich coupling coefficients
ukl(q) = ulk(q) = u∗

kl(−q) are given by

ukl(q) = e

q

√
4π

V ε��

∫
d3r 	k(r) 	l(r) e−iqr, (2.3)

where ε is the effective permittivity of the media [we choose
a gauge where 	k(r) are real]. According to Eq. (2.3), the
electron in 2LS interacts with phonon modes with very small
wave vectors, see Eq. (1.1), which allows us to neglect the
optical phonon dispersion.

In Eq. (2.1), it is convenient to use the vector notation
x ≡ {xq}, ∇ ≡ {∂q}, ukl ≡ {ukl(q)}, with the scalar product
a · b ≡ ∑

q a
†
qbq . Denoting a2 ≡ a · a, we obtain the following

form of H̃ ≡ H/��:

H̃kk = εk + 1/2[(x + ukk)2 + ∇2], (2.4)

H̃12 = H̃21 = u12 · x, (2.5)

where uik · x = x · uik , and dimensionless

εk = ε
(0)
k /�� − u2

kk/2. (2.6)

We assume the polaron energy shift �� u2
kk/2 � e2/εaQD to

be small compared to ��.

B. Polaron states in decoupled system

In the absence of coupling between the 2LS states, u12 = 0,
the Hamiltonian (2.4) in each state |k〉 yields the eigenstates
|k〉|νk〉 of the shifted harmonic oscillator,

H̃kk|νk〉 = εkν |νk〉, (2.7)

εkν = εk + ν + 1/2, (2.8)

|νk〉 = exp(u∗
kk · ∇)|ν〉. (2.9)

Here |ν〉 is an eigenstate of free-phonon Hamiltonian H̃ph =
(x2 + ∇2)/2 with total number of phonons ν. The translation
operator eu∗·∇x = (x + u)eu∗·∇ transforms Eq. (2.4) into H̃ph:
e−u∗

kk·∇H̃kke
u∗

kk·∇ = εk + H̃ph.
In each state |k〉 of the 2LS the electron interacts with a

definite single phonon mode. Indeed, in the absence of phonon
dispersion one can choose the phonon basis {α} such that for
all α 
= k the scalar product xα · ukk = 0 while xk · ukk 
= 0.
Explicitly, in the old q basis the displacement operator xk is
given by xk = ukk(ukk · x)/u2

kk , and the corresponding ∇k =
ukk(ukk · ∇)/u2

kk . In the α basis, the Hamiltonian naturally
divides into two parts, H̃kk = H̃

(k)
kk + H̃

(α 
=k)
ph , where H̃

(α 
=k)
ph

is the free-phonon Hamiltonian for all modes excluding α =
k, and H̃

(k)
kk = εk + (xk + ukk)2/2 − ∂2

k /2 describes interaction
of the electron in state k with the “phonon eigenmode” α = k.
Note that in this natural representation xk = x

†
k , ∂k = −∂

†
k , and

ukk ≡
√

u2
kk is a positive real number.

C. Hybridized polaron states

For u12 
= 0, the nondiagonal part (2.5) of the Hamiltonian
leads to hybridization of the polaron states |1〉|μ1〉 and |2〉|ν2〉.
Analogously to the case of two independent electronic levels,
one can specify a subspace X of phonon modes such that
only phonons from X interact with electron in 2LS [16]. In
addition to the two modes generated by u11 and u22 (on-site
interaction), in the case u12 
= 0 one more mode related to
the interlevel coupling appears, with displacement operator
x12 = u12(u12 · x)/u2

12.
In systems with a larger number of involved electronic

levels the number of couplings and associated phonon
modes increases accordingly; for a detailed discussion see
Refs. [16,17]. Concerning the inelastic relaxation process, the
minimal 2LS model introduced above enables us to perform
explicit analysis of the interference of multiphonon processes
involving different virtual states. Despite its fundamental
importance, the interference was not properly discussed in this
context before [25–27], partially in view of the complexity of
more realistic multilevel models of QDs; see discussion in
Sec. VI.

In Secs. IV–VI, we use several complementary approxi-
mation schemes to calculate the spectrum and wave functions
of the hybridized polaron states |	kν〉 which diagonalize the
Hamiltonian of the system “electron in 2LS + X phonons.”
In particular, when the separation of the electron states in
2LS is not too close to a multiple of �� and u2

12 � u2
kk , one

can treat the nondiagonal part (2.5) of the Hamiltonian as a
small perturbation. In this case, the spectral corrections are

155431-2



ANHARMONICITY-ASSISTED MULTIPHONON . . . PHYSICAL REVIEW B 90, 155431 (2014)

irrelevant, while the amplitudes are given by

|	kν〉 = |k〉|νk〉 + |k〉
∑

μ

|μk〉Akμkν, (2.10)

Akμkν = 〈μk| u12 · x |νk〉
εkν − εkμ

, (2.11)

where k = 1 (2) for k = 2 (1). The matrix elements Akμkν

in Eq. (2.11) are in general nonzero for |ν − μ| 
= 1 due
to different lattice distortions u11 and u22 in states |ν1〉 and
|ν2〉; see Eq. (2.9). In Eqs. (2.10) and (2.11), the on-site
interaction (2.9) is treated exactly (to all orders in ukk), while
the nondiagonal part (2.5) is taken into account to first order
only. In Sec. IV, the nonresonant coupling of polaronic states
will be considered both for u2

12 � u2
kk and u2

12 ∼ u2
11 ∼ u2

22.
Later on, in Sec. V, we address the behavior of the system in
the vicinity of resonances ε1 − ε2 � N .

Regardless of the approximation implemented for calcula-
tion of 	kν , there exists an orthonormal set of exact hybridized
polaron states, the eigenstates of the system “electron in 2LS
+ X phonons.” Relaxation in such system requires a coupling
to the thermal bath Q which is introduced in next section.

III. ANHARMONIC INTERACTION WITH A PHONON
BATH

The anharmonicity of the crystal makes real transitions
between the hybridized polaron states possible [23–27]. TheX
phonons have a final lifetime due to interaction with a thermal
bath of Q phonons. The latter consists of the LO phonon
modes {β} which do not couple to the electron subsystem,
uik · xβ ≡ 0, and of all optical and acoustic modes belonging
to other phonon branches.

The lowest-order anharmonic interaction is given by the
product of three displacement operators,

H (ah) = 23/2

3!

∑
1, 2, 3

V
(ah)

1, 2, 3x1x2x3, (3.1)

where indices n ≡ {ηn,qn} denote the phonon branch ηn and
wave vector qn of participating phonons, and operators xq =
2−1/2(aq + a

†
−q) as before. The transition probability between

the hybridized polaron states |i〉 and |f 〉 (with energies εi and
εf ) reads

Wi→f = 2π

�

∑
βi , βf

P (βi, T )|〈f |〈βf |H (ah)|βi〉|i〉|2

×δ
(
εi − εf + Eβi

− Eβf

)
. (3.2)

Here we perform the summation over final states of the
phonon bath {βf } and thermal average [with the Gibbs weight
P (βi, T )] over initial states {βi}. The delta function ensures
conservation of total energy in the system “polaron states”
+ “Q phonons.” The range of validity of the golden-rule
approximation (3.2) is discussed in Sec. V.

For any definite choice of the momenta of participating
Q phonons, the translational symmetry of H (ah) determines
a single term in the sum (3.1) entering the matrix element in
Eq. (3.2) such that the total momentum is conserved. In the
resulting expression, however, one can neglect the dependence

of |V (ah)|2 on the X -phonon momentum q ∼ π/aQD using
that V (ah) changes on a much larger scale π/a0  π/aQD; see
Eq. (1.1). As a result, the probability Wi→f can be represented
as

Wi→f = 2〈f |x|i〉2 w[(εi − εf )/��] , (3.3)

w(�) =
∑

s1,s2=±1

2π

�2�

∑
1, 2

∣∣V (ah)
1, 2,X

∣∣2

×N1N2δ[� − (s1ω1 + s2ω2)/�], (3.4)

where sk = +1 (−1) corresponds to emission (absorption) of
the Q phonon k of frequency ωk , and Nk = [exp(�ωk/T ) −
1]−1 + (sk + 1)/2 are the occupation factors of Q-phonon
modes. The square of the multiphonon transition matrix
element 〈f |x|i〉2 ≡ ∑

α |〈f |xα|i〉|2 does not depend on the
choice of the basis {α} in the space of X -phonon modes.

Owing to the smallness of momentum of the X -phonons,
the probability (3.3) factorizes into two parts. While w(�)
depends on the bath degrees of freedom and on the transition
energy �, the square of the multiphonon matrix element
〈f |x|i〉2 does not depend on the bath degrees of freedom and
carries all relevant information about the polaronic system.
The rate of anharmonic decay w(�) describes the process of
X -phonon decay with the energy � being transferred to the
phonon bath. In particular, w(1) is the decay rate of the �-point
LO phonon in the bulk, which was extensively studied both
experimentally and theoretically and is known for the majority
of semiconductors (see Refs. [29,30] and references therein).
The methods developed for calculations of w(1) can be
generalized for evaluation of w(�), which, in general, can have
nonzero values in the broad interval −2 � � � 2. Depending
on �, different channels of anharmonic interaction can become
dominant making the calculation of w(�) a nontrivial task.
For GaAs, this problem was recently addressed in several
works (see Refs. [21,27]) but comprehensive analysis similar
to Refs. [29,30] is still lacking. In certain situations, 4-phonon
interaction can become relevant. Evidently, such interaction
can be treated on the same footing as the 3-phonon one (3.1).
The resulting rate contains the same multiphonon matrix
element 〈f |x|i〉2 while the corresponding w(�) is nonzero
in a larger interval |�| � 3. In this work, we focus on the
calculation of the multiphonon matrix element 〈f |x|i〉2. The
results are illustrated in Sec. VI using a phenomenological
form of w(�) for a particular LA-LA channel of LO 3-phonon
relaxation.

IV. ENERGY RELAXATION AND ELECTRON TRANSFER
AWAY FROM RESONANCES

In this section we calculate the multiphonon matrix element
〈f |x|i〉2 in Eq. (3.3), using the perturbative approxima-
tion (2.10) for the hybridized polaron states |i〉 and |f 〉. The
results obtained in this way are valid for transition energies �

not too close to an integer and for small interlevel coupling
u2

12 � u2
kk . In next subsection we calculate 〈f |x|i〉2 under

the simplifying assumption that all phonon modes in the
subspaceX coincide. The general multimode result is obtained
in Sec. IV B and implemented for several specific regimes
of energy relaxation in Sec. IV C. In Sec. IV D we discuss
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modification of results for u2
12 ∼ u2

11 ∼ u2
22. The resonant

regimes in the vicinity of integer � are considered separately
in Sec. V.

A. Single-mode approximation

Using Eq. (2.10) for the hybridized polaron states |f 〉 =
|	1μ〉 and |i〉 = |	2ν〉, we represent the matrix element 〈f |x|i〉
as a sum over intermediate virtual states |k〉|χk〉:

〈	1μ|x|	2ν〉 =
∑

χ

〈μ1|x|χ1〉〈χ1|u12 · x|ν2〉
�χ−ν

−
∑
χ

〈μ1|u12 · x|χ2〉〈χ2|x|ν2〉
�μ−χ

. (4.1)

Here we introduced

�μ−ν = ε2ν − ε1μ = E − (μ − ν), (4.2)

where E = (ε(0)
2 − ε

(0)
1 )/�� + (u2

22 − u2
11)/2 is the energy

shift between two polaronic ladders in units ��.
Now we assume that all three displacement operators x1,

x2, and x12 of the subspace X correspond to a single phonon
mode. That is, uik · x ≡ uikx, where x = (b + b†)/

√
2 is the

displacement operator of this single mode, and uik =
√

u2
ik .

Using Eq. (2.9), we have

〈μk|x|νk〉 = 〈μ|e−ukk∂xeukk∂ |ν〉
= 〈μ|x − ukk|ν〉

= −ukkδμ,ν +
√

μ

2
δμ,ν+1 +

√
ν

2
δν,μ+1, (4.3)

where uik · ∇ ≡ uik∂ and ∂ = (b − b†)/
√

2. Correspondingly,
the sum in Eq. (4.1) consists of six terms which we group
in pairs with equal energy denominators as illustrated in
Figs. 1(a)–1(c),

〈	1μ|x|	2ν〉 = Ra + Rb + Rc. (4.4)

For brevity, in Fig. 1 and below we use notation (k,ν) for the
states |k〉|νk〉 defined by Eq. (2.10).

The contribution Ra includes processes involving virtual
states (1,μ) and (2,ν) [Fig. 1(a)]. The corresponding pair of
terms enter Eq. (4.1) with the denominator �μ−ν and produce

Ra = u12u−
�μ−ν

〈μ|x̃|ν〉. (4.5)

Here u− ≡ u22 − u11 and

〈μ|x̃|ν〉 = 〈μ|e−u11∂xeu22∂ |ν〉 ≡ 〈μ1|x|ν2〉. (4.6)

Similarly, both virtual states (1,μ − 1) and (2,ν + 1) enter
Eq. (4.1) with the denominator �μ−ν−1 [Fig. 1(a)] and yield

Rb = u12/
√

2

�μ−ν−1
〈μ|b†x̃ − x̃b†|ν〉. (4.7)

The remaining virtual states (1,μ + 1) and (2,ν − 1) yield

Rc = u12/
√

2

�μ−ν+1
〈μ|bx̃ − x̃b|ν〉. (4.8)

Using the commutation relations xx̃ − x̃x = −u−x̃ and
∂x̃ − x̃∂ = exp(u−∂) in the sum and difference of the matrix

FIG. 1. (a)–(c) Graphical representation of six processes entering
the multiphonon matrix element (4.1). Wavy arrows denote the in-
traladder couplings originating from the anharmonic interaction (3.3),
while straight arrows denote the interladder couplings due to the off-
diagonal electron-phonon interaction (2.5). Six processes (2,ν) →
(1,μ) are grouped into three pairs (a)–(c) each with different energy
denominator; see Eqs. (4.5)–(4.8). Due to destructive interference,
the contributions (4.5)–(4.8) are of the same order in Fröhlich
couplings uik despite individual terms in Eq. (4.1) being of different
order. (d) Illustration of allowed multiphonon transitions entering
the sum (4.24) for E = 2.75 (straight arrows). In this case, |�M | ≡
|E − M| < 2 for M = 1,2,3,4; rare transitions to the intermediate
states (1,M) trigger fast intraladder relaxation (4.23) to the ground
state (1,0) (wavy arrows). Direct transition to the ground state is
impossible since the energy E = 2.75 cannot be transferred to the
phonon bath in a single 3-phonon collision.

elements entering Eqs. (4.7) and (4.8), we obtain

2�μ−ν−1Rb = −u12〈μ|u−x̃ + eu−∂ |ν〉, (4.9)

2�μ−ν+1Rc = −u12〈μ|u−x̃ − eu−∂ |ν〉. (4.10)

Equations (4.4), (4.5), (4.9), and (4.10) yield

〈	1μ|x|	2ν〉 = u12

�2
μ−ν − 1

〈μ|e−u11∂

[
1 + u11 − u22

�μ−ν

x

]
eu22∂ |ν〉.

(4.11)

Now we expand exponentials eukk∂ in powers of ∂ = (b −
b†)/

√
2 and obtain, to leading order in uik � 1 for each μ

and ν,

〈	1μ|x|	2ν〉 = u12(u11 − u22)|μ−ν|

�2
μ−ν − 1

(
1 + μ − ν

�μ−ν

)
Cμν,

(4.12)

where the combinatorial coefficient Cμν is expressed in terms
of n ≡ min{μ,ν} and N = |μ − ν| as

Cμν = 1

N !

√
(n + N )!

2Nn!
. (4.13)

Equation (4.12) demonstrates the important role of quantum
interference between the pairs of processes (a)–(c) illustrated
in Fig. 1: while individual terms entering Eq. (4.1) are of dif-
ferent order in uik � 1, the interference leads to cancellation
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of the leading terms. For instance, from Eq. (4.1) one could
naively expect 〈	12|x|	20〉 to be O(u12) since 〈μk|x|νl〉 are
O(1) for |μ − ν| = 1. In fact, the leading contributions cancel,
see Eq. (4.7), yielding 〈	12|x|	20〉 of order O(u12u

2
−) as in

Eq. (4.12). As a result of destructive interference, all three
pairs (a), (b), and (c) yield contributions of equal order in uik;
see Eq. (4.12).

B. General case

Using the procedure described above for the single-mode
case, the vector matrix element (4.1) can be transformed to the
following form [compare to Eqs. (4.4)–(4.8)]:

〈	1μ|x|	2ν〉 = 〈μ| u−J

�μ−ν

+ �μ−ν[x,J ] + [∇,J ]

�2
μ−ν − 1

|ν〉, (4.14)

where the scalar operator J is given by

J = e−u∗
11·∇u12 · x eu∗

22·∇. (4.15)

This operator form of the matrix element is valid for any choice
of the basis in the X -phonon subspace.

Generally, vectors uik form a linearly independent family,
which corresponds to a 3D X -phonon subspace. A convenient
X -phonon basis can be constructed using the following
orthogonal set of their linear combinations:

u− = u22 − u11, (4.16)

u12,⊥ = u12 − u12,‖, (4.17)

uout = u+ − u+,‖ − u+,⊥. (4.18)

Here the subscript ‖ (⊥) denotes the component of a given
vector which is parallel (perpendicular) to u− and lies in the
plane formed by vectors u− and u12. The vector uout is formed
by the out-of-plane component (4.18) of u+ = u22 + u11 such
that (uout · u−) = (uout · u12) = 0. Using the orthonormal set
{e‖ = u−/u−, e⊥ = u12,⊥/u12,⊥, eout = uout/uout}, we repre-
sent the X -phonon operators as x = ∑

xα = ∑
eα(eα · x) and

∇ = ∑
∂α = ∑

eα(eα · ∇), α = {‖,⊥, out}.
The X -phonon basis (4.16)–(4.18) is chosen such that

the resulting out-of-plane mode is irrelevant. In fact, it can
be neglected by putting u+ = 0 from the very beginning.
Indeed, physical observables should not change under uniform
distortion of the lattice ukk → ukk + δ as long as the number
of electrons in QD is conserved [16]. Therefore, a variation
of u+ should not modify the rate of interlevel transitions in
2LS. In the basis (4.16)–(4.18), the operator (4.15) entering
Eqs. (4.14) reads

J = eu−∂‖ (u12,‖x‖ + u12,⊥x⊥ − u12 · u22). (4.19)

The commutators [xout,J ] = [∂out,J ] = 0. Taking into account
that uout · u12 = 0, one obtains 〈	1μ|xout|	2ν〉 = 0. The occu-
pation of the out-of-plane mode does not change also in other
components of the multiphonon matrix element. Therefore,
the out-of-plane mode can be disregarded as expected.

The initial problem is thus reduced to diagonalization
of a 2LS interacting with two harmonic oscillators. Corre-
spondingly, the mixed polaronic states 	kν = 	kν‖ν⊥ are now
characterized by the level index k and by two occupation

numbers {ν‖,ν⊥}. As before, ν = ν‖ + ν⊥ denotes the sum
of occupation numbers of the relevant X -phonon modes.

Using commutation relations [∇,J ] = u12e
u−∂‖ and

[x,J ] = −u−J , Eq. (4.14) can be rewritten as

〈	1μ|x|	2ν〉 = u12〈μ|eu−∂‖ |ν〉
�2

μ−ν − 1
− u−〈μ|J |ν〉

�μ−ν

(
�2

μ−ν − 1
) . (4.20)

This expression generalizes Eq. (4.11) obtained in the single-
mode approximation.

Inspection of Eq. (4.20) gives the following selection rules
for the multiphonon transitions:

(1) the change of the occupation number of the first mode
μ‖ − ν‖ can be arbitrary;

(2) the occupation number of the second mode may not
change or changes by 1, μ⊥ − ν⊥ = 0,±1.

Interestingly, since x⊥ enters the last term only in Eq. (4.20),
the anharmonic interaction with the second mode does not
result in change of its occupation number. This number may
change only due to anharmonic interaction with the first mode.

Our goal is to calculate the square of the matrix element
〈f |x|i〉2 = ∑

α |〈	1μ|xα|	2ν〉|2 to the leading order in uik �
1. Expanding, as previously, the exponential eu−∂‖ in powers
of ∂‖, we obtain for the transitions with μ⊥ = ν⊥ (in this case
μ − ν = μ‖ − ν‖)

〈	1μ‖ν⊥|x|	2ν‖ν⊥〉2

= u2N
− (n + N )!

2Nn!(N !)2
(
�2

μ−ν − 1
)2

[
u2

12,⊥+u2
12,‖

(
1 + μ − ν

�μ−ν

)2]
.

(4.21)

In the case u12,⊥ = 0 this expression reduces to Eq. (4.12).
For transitions with μ⊥ = ν⊥ ± 1, the result reads (in this
case μ − ν = μ‖ − ν‖ ± 1)

〈	1μ‖ν⊥±1|x|	2ν‖ν⊥〉2

= max{ν⊥ ± 1,ν⊥} (n + N )!

2N+1n!(N !)2

u2
12,⊥u

2(N+1)
−

�2
μ−ν

(
�2

μ−ν − 1
)2 .

(4.22)

In Eqs. (4.21) and (4.22), N = |μ‖ − ν‖| and n ≡ min{μ‖,ν‖}.

C. Energy relaxation

The expression for the transition probability (3.3) together
with the matrix elements (4.21) and (4.22) describes the
elementary scattering acts between polaron states of different
ladders, |	1μ〉 ↔ |	2ν〉. In addition, it is necessary to con-
sider the anharmonicity-induced intraladder transitions. Using
Eq. (3.3) and disregarding the interladder interaction (2.5),
|	kν〉 � |k〉|νk〉, for the intraladder transitions we have [see
Eq. (4.3)]

2|〈	kμ|xα|	kν〉|2 �
∑
±

min{μα,να}δμα,να±1.

This yields the expected result for the transition rate between
the neighboring ladder states,

W(k,να)→(k,να∓1) = (να + 1/2 ± 1/2)w(±1), (4.23)
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corresponding to creation or annihilation of a phonon in a
given X mode α.

We consider now the energy relaxation of an electron,
initially occupying the ground state of the upper polaronic
ladder, |i〉 = |	2,0〉, to the ground state of the second ladder,
|f 〉 = |	1,0〉. For large energy separation, E = ε2 − ε1 > 2
[see Eq. (4.2)], the relaxation necessarily takes place in several
steps: relatively slow interladder transition |	2,0〉 → |	1,M〉
to an intermediate state |	1,M〉, M > 0, triggers fast M-step
relaxation |	1,M〉 → |	1,0〉 within the second ladder; see
Fig. 1(d). The total energy relaxation rate �0 = W(2,0)→(1,0)

is controlled by the slowest transitions and is given by the
sum of probabilities of all possible interladder processes
|	2,0〉 → |	1,M〉.

Using Eqs. (3.3), (4.21), and (4.22), we obtain

�0 =
∑
M

�
(M)
0

=
∑
M

2w(�M )[〈	1, M, 0|x|	2, 0, 0〉2

+〈	1, M−1, 1|x|	2, 0, 0〉2]

=
∑
M

w(�M )u2M
−

2M−1M!
(
�2

M − 1
)2

×
[
u2

12,⊥

(
1 + M

�2
M

)
+ u2

12,‖

(
1 + M

�M

)2]
, (4.24)

where the transition energies �M = E − M , see Eq. (4.2), and
the sum is over M in the stripe |�M | < 2 where w(�M ) 
= 0.
The interladder processes entering Eq. (4.24) are illustrated in
Fig. 1(d) for E = 2.75. In this case, direct transition |	2,0〉 →
|	1,0〉 to the ground state is impossible.

Despite four terms corresponding to different M in
Eq. (4.24) being of different order in small parameter u−,
any of these terms can be important since the anharmonic
decay rate w(�M ) for different M may differ significantly. In
particular, assuming 1 < E < 2, the M = 1 term is important
for specific ranges of E where w(E) � w(E − 1)u2

−. Despite
u2

− � 1 being small, for such ranges accounting for the leading
M = 0 term only [25–27] is insufficient even in the range
0 < E < 2 and small temperature T � ��, where the direct
M = 0 transition |	2,0〉 → |	1,0〉 to the ground state of the
second ladder generally prevails.

Equation (4.24) correctly describes the energy relaxation
at temperatures T � ��. At such low T , two terms corre-
sponding to �M < 0 can be safely neglected as in this case
the anharmonic decay requires the absorption of bath phonons
and, therefore, is exponentially suppressed; see Eq. (3.3). At
higher temperature, apart from importance of the �M < 0
terms, the intraladder transitions lead to fast thermalization
within the states of the upper ladder before the transition to the
lower ladder takes place (unless strong hybridization of states
of different ladders occurs in the vicinity of resonances; see
Sec. V). Accordingly, the expression (4.24) should be modified
to include nonzero thermal occupation of excited states |	2,n〉,

which yields

�T =
∞∑

n=0

exp(−n��/T )

1 − exp(−��/T )
�n,

�n =
∑
M

�(M)
n

(4.25)

=
∑
M

2w(�M )
n∑

k=0

∑
l=0,±1

×〈	1, M+n−k−l, k+l|x|	2, n−k, k〉2,

where the matrix elements are given by Eqs. (4.21) and (4.22).
The above results generalize the theory developed

previously for the same mechanism of relaxation. In
Refs. [13,16,23–27] only the case of relatively small energy
separation E < 2 was considered and only processes, corre-
sponding to M = 0 in Eq. (4.24), were discussed. The leading
term of Eq. (4.24),

�
(0)
0 = 2w(E)u2

12

(E2 − 1)2
, (4.26)

provides the 2LS version of the results of these works
away from the resonance E = 1. Here the only relevant
phonon mode is that generated by u12; thus, only the com-
bination u2

12,⊥ + u2
12,‖ = u2

12 enters the result. Accordingly,
the lowest-order contribution (4.26) reproduces Eq. (4.12)
obtained within the single-mode approximation. Modifications
of Eq. (4.26) in the resonant case, which was the main emphasis
of Refs. [13,16,23–27], are considered in Sec. V.

Next-order terms in electron-phonon interaction become
important when w(E) � w(E − 1)u2

−. For M = 1, Eq. (4.24)
yields a correction to Eq. (4.26) of fourth order in ukl which is
relevant for energy separation in the interval E ≡ �1 + 1 < 3:

�
(1)
0 = w(�1)u2

−
�2

1

(
�2

1 − 1
)2

[
u2

12

(
�2

1 + 1
) + 2�1u

2
12,‖

]
. (4.27)

While the above expressions (4.26) and (4.27) for M = 0,1
are applicable for u12 ∼ u−, in general the expansion in
Eqs. (4.24) and (4.25) is legitimate only for u12 � u− as
all terms O(uk

12) with k > 2 are neglected. As we show
next, higher-order corrections O(uk

12), k > 2, to �n become
relevant starting from transitions with M = 2. In particular,
full expression for the contribution �

(2)
0 in Eq. (4.24) contains

a correction ∝u6
12; see Eq. (4.31) below.

D. Hybridized polaronic states and energy relaxation
for u12 ∼ |u11 − u22|

The above results were obtained for the weak-coupling
regime, u12 � |u11 − u22|. In this limit, it is sufficient to retain
the first-order terms O(u12) in the multiphonon matrix element
〈	1μ|x|	2ν〉. In the case u12 ∼ |u11 − u22| one needs to take
into account higher-order terms. The exact solution (2.9) for
the polaronic states of isolated levels is not particularly useful
in this case, and one needs to apply ordinary high-order
perturbation theory to approximate the mixed polaronic states
	kμ. Alternatively, using numerical methods [16–18] it is not
difficult to calculate the matrix element 〈	1μ|x|	2ν〉 to any
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desired order in the electron-phonon coupling, as the problem
reduces to diagonalization of the system consisting of 2LS
coupled to two oscillators (4.16) and (4.17).

Here we perform an analytical treatment, and therefore
restrict ourselves to the simplest case of third-order corrections
O(u3

12). To this end, we put u11 = u22 = 0, and calculate
	kμ up to order O(u3

12). [Since u12 represents the interlevel
interaction in Eq. (2.2), only odd powers of u12 can appear
in the interlevel matrix element 〈	1μ|x|	2ν〉. Also, as we
put u11 = u22 = 0, the only relevant X -phonon mode is that
generated by u12.] The resulting matrix element (where we
keep terms ∝u3

12 only) is given by

〈	1μ|x|	2ν〉 = u12u
2
12Xμν,

Xμν =
∑
lmk

xμlxlmxmkxkν

{
1

�ν−k

[
δmν

�2
ν−l

+
(

1

�ν−l

− 1

�l−μ

)(
1 − δνm

ν − m
− δνm

2�ν−k

)]
− 1

�l−μ

[
δmμ

�2
k−μ

+
(

1

�k−μ

− 1

�ν−k

)
×

(
1 − δmμ

m − μ
− δmμ

2�l−μ

)]}
. (4.28)

Here xμν = 〈μ|x|ν〉 = δμ,ν+1
√

μ/2 + δν,μ+1
√

ν/2. Similar to
the case considered in two preceding subsections, terms
corresponding to the maximal possible change of phonon
occupation number (|ν − μ| = 4 in this particular case) cancel
out due to destructive interference. As a result, nonzero
〈	1ν+4|x|	2ν〉 appears at order u5

12 or u3
12u

2
kk , with cor-

responding relaxation rate proportional to the tenth power
of electron-phonon coupling. In view of ukl � 1, the case
|ν − μ| � 4 is barely important for applications.

Corrections of order u3
12 to the terms with M = |ν − μ| < 2

in Eqs. (4.21) and (4.22) can be neglected; see Eqs. (4.26)
and (4.27). Equation (4.28) with μ = 2 and ν = 0 provides
a correction O(u6

12) to �
(2)
0 entering Eq. (4.24). The matrix

element (4.28) is written in the single-mode basis produced
by u12. In the basis (4.16)–(4.18) it generates three matrix
elements,

〈	1,2,0|x|	2,0,0〉 = u12u
2
12,‖X20,

〈	1,1,1|x|	2,0,0〉 = −
√

2u12u12,‖u12,⊥X20, (4.29)

〈	1,0,2|x|	2,0,0〉 = u12u
2
12,⊥X20,

which should be added to the corresponding matrix elements
in Eq. (4.24). Here X20 is given by Eq. (4.28),

X20 =
√

2

�1

(
1

�2
1

+ 1

�2
1 − 1

+ 2

�2
1 − 4

)
. (4.30)

The resulting full expression for �
(2)
0 valid for u12 ∼ u− � 1

reads (�2 = E − 2 = �1 − 1)

�
(2)
0 = 2w(�2)

{
u2

12u
4
12,⊥X2

20 + 2u4
12,‖u

2
12,⊥X2

20

+
[

u12,⊥u2
−

2�2
(
�2

2 − 1
) −

√
2u12,‖u2

12,⊥X20

]2

FIG. 2. Graphical representation of the matrix element
〈	1,2|x|	2,0〉, Eq. (4.28), illustrating 12 quantum paths connecting
states (2,0) and (1,2) via different intermediate virtual states for
E = 5/2. The vertical distance between the states (n,k) and (m,l)
represents their energy separation in units ��.

+
[

u12,‖u2
−

23/2
(
�2

2 − 1
)(

1 + 2

�2

)
+ u3

12,‖X20

]2

+
[

u12,⊥u2
−

23/2
(
�2

2 − 1
) + u2

12,‖u12,⊥X20

]2}
. (4.31)

Below we discuss the part of this expression which remains in
the limit u− → 0,

�
(2)
0 |u−=0 = 2w(�2)u6

12X
2
20. (4.32)

It can be easily obtained from Eq. (4.28) in the original single-
mode representation generated by u12. Figure 2 illustrates
interference of the amplitudes involving different intermediate
phonon states which enter the corresponding matrix element
〈	1ν+2|x|	2ν〉. Three out of four matrix elements xμν entering
Eq. (4.28) arise from the interlevel interaction u12 · x which
leads both to a change of the electronic index and the phonon
occupation number. The remaining xμν originates from the
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anharmonic interaction which changes the phonon occupation
number but not the electronic index. Depending on the order
of these operators, 4 groups of quantum paths appear in
Fig. 2. Each group consists of 3 paths connecting different
intermediate phonon states.

V. ENERGY RELAXATION IN VICINITY OF
RESONANCES

In the previous section we developed a systematic approach
to multiphonon transitions using perturbation theory, which
relies on smallness of both the couplings between levels of
two polaronic ladders and the anharmonic interaction with
respect to separation between the levels. This approach should
be modified in vicinity of resonances, where certain energy de-
nominators entering Eqs. (4.24)–(4.26) become close to zero.
What kind of modification is required depends on the relation
between the tunnel couplings of resonant levels t� and the an-
harmonic decay rate w. In the limiting case t�  w, Sec. V A,
one should take into account the avoided crossing of resonant
levels while the anharmonic interaction can still be treated
perturbatively using the golden-rule approximation (3.3). Due
to the avoided crossing, the separation of levels entering
Eqs. (4.24)–(4.26) near the resonance is of order t�. Accord-
ingly, the relaxation rate is roughly w since it is determined by
the weak anharmonic decay of strongly coupled states. In the
opposite limit t�  w, Sec. V B, fast intraladder transitions
suppress the coherent interladder dynamics, and the relaxation
rate at the resonance becomes of the order of t2�2/w.

A. Strong-coupling regime, t� � w

We consider the vicinity of the resonance E = K with in-
teger K � 1 at low temperature, T � ��. Near the resonance
the energy relaxation is dominated by the term M = K − 1
in Eq. (4.24), corresponding to �M � 1. Indeed, the terms
M = K ± 2 (�M � ∓2) are irrelevant as the corresponding
energy denominators do not vanish at the resonance. The
term M = K does not lead to energy relaxation. Finally, the
processes M = K + 1 are exponentially suppressed since for
�K+1 � −1 they require absorption of large energy from the
bath, w(−1) = exp(−��/T )w(1).

The main term M = K − 1 is dominated by processes
involving coupling of the level |l〉 = |φ2,0,0〉 to degenerate
levels |r‖〉 = |φ1,K, 0〉 and |r⊥〉 = |φ1, K−1, 1〉, as illustrated
in Fig. 3(a). Neglecting the irrelevant off-resonant processes
[shown in Figs. 3(c) and 3(d)], we rewrite Eq. (4.24) in the
vicinity of E = K as

�0|w(1), t‖, t⊥�|�K |�1 = Kw(1 + �K )
t2

�2
K

, (5.1)

where

t2 = |t‖|2 + |t⊥|2 (5.2)

represents the tunnel couplings between the resonant states,

t‖ = 〈l|u12 · x|r‖〉 = uK−1
− u12,‖

√
K!

2K/2(K − 1)!
,

(5.3)

t⊥ = 〈l|u12 · x|r⊥〉 = uK−1
− u12,⊥

√
(K − 1)!

2K/2(K − 1)!
.

( , K)

(a)

(c)

(b)

(d)

( , K ) ( , K )

( , K)

( , K )

( , K)

( , K )

•

•

•

•

•

FIG. 3. Resonant coupling of the polaron states (2,0) and (1,K)
[panel (a)] leads to their mixing and splitting [panel (b)]. Note that
(1,K) includes several degenerate states, in particular, |r‖〉 = |φ1, K, 0〉
and |r⊥〉 = |φ1, K−1, 1〉. Panels (c) and (d) illustrate two off-resonant
terms in Eq. (4.24) for M = K − 1 which can be ignored in the
vicinity of the resonance.

Provided w(1) � t� (the opposite limit is considered in
Sec. V B), at |�K | � t one should take into account strong
mixing and splitting of the resonant states. Let εs and 	̃s =
Csl|l〉 + Cs‖|r‖〉 + Cs⊥|r⊥〉 be eigenvalues and normalized
eigenvectors of the corresponding tunneling Hamiltonian,⎛⎝�K − εs t‖ t⊥

t∗‖ −εs 0
t∗⊥ 0 −εs

⎞⎠ ⎛⎝Csl

Cs‖
Cs⊥

⎞⎠ = 0. (5.4)

The rate of anharmonicity-induced transitions from 	̃s to the
low-lying states |φ1, K−1, 0〉 and |φ1, K−2, 1〉 (not modified near
the resonance) is given by Eq. (3.3),

�̃s = 2w(1 + εs)
[
C2

s‖ 〈φ1, K−1, 0|x|r‖〉2

+C2
s⊥ 〈φ1, K−1, 0|x|r⊥〉2 + C2

s⊥ 〈φ1, K−2, 1|x|r⊥〉2
]

= Kw(1 + εs)
[
C2

s‖ + C2
s⊥

]
. (5.5)

Among the eigenstates 	̃s , the one with zero eigenvalue ε0 = 0
is decoupled from the left ladder state |l〉. The decay of the
corresponding eigenstate,

	̃0 = t−1(t⊥|r‖〉 − t‖|r⊥〉), (5.6)

represents the rate of intraladder relaxation,

�̃0 = Kw(1), (5.7)

and does not change across the resonance.
The left ladder state |l〉 couples to the combination |r〉 =

t−1(t∗‖ |r‖〉 + t∗⊥|r⊥〉) of the right ladder states yielding two
remaining eigenstates of Eq. (5.4),

	̃± = ε±|l〉 + t |r〉
(ε2± + t2)1/2

, (5.8)

with eigenenergies

ε± = �K/2 ±
√

�2
K/4 + t2; (5.9)

155431-8



ANHARMONICITY-ASSISTED MULTIPHONON . . . PHYSICAL REVIEW B 90, 155431 (2014)

see Figs. 3(a) and 3(b). It is worth recalling here that the
polaron shifts u2

kk/2 are already included in the definition of
�K ; see Eq. (4.2).

According to Eq. (5.5), the energy relaxation rate from the
states 	̃± reads

�̃± = Kw(1 + ε±)
t2

ε2± + t2
. (5.10)

Similar results for the lowest-order resonance K = 1 were
obtained in Refs. [26,27].

Exactly at the resonance �K = 0, Eq. (5.9) yields ε± = ±t ;
relaxation rates (5.10) reach the maximal value

�̃± = Kw(1 ± t)/2. (5.11)

This result has a simple physical interpretation: Exactly at the
resonance, the electron spends on average half of its time in
the right-ladder states, where it can decay to the lower states
with the rate Kw(1 ± t); see also Refs. [25,27].

At large positive detuning from the resonance, t � �K �
1, the states 	̃+ and 	̃− evolve correspondingly into |l〉 and
|r〉. Accordingly, the rate �̃+ transforms into its asymptotic
form (5.1), while �̃− transforms into the rate of intraladder
transitions (5.7). At large negative detuning the behavior is the
same up to interchange of indices + and −.

B. Incoherent resonant tunneling, t� � w

The theory presented above is valid for t�  w(1). In
typical self-organized QDs this condition is usually met for
K = 1 [26,27]. In the vicinity of higher-order resonances,
the opposite condition t� � w(1) is satisfied starting from
some K since t ∝ u

2(K−1)
− with u− � 1. When t� � w(1),

Eq. (5.1) correctly describes the energy relaxation for �K

in the region w(1)/� � �K � 1. At smaller detuning the
golden-rule approximation (3.3) fails, and Eq. (5.1) should be
modified in the following way:

�0 = Kw(1 + �K )
t2

�2
K + [ Kw(1)/2� ]2

. (5.12)

Below we obtain this result by solving the equation

i(∂τ + G)ρ = [H,ρ] (5.13)

for the density matrix ρ reduced to two resonant states |1〉 = |l〉
and |2〉 = |r〉, specified in the previous subsection.

Here H is the reduced form of the tunneling Hamilto-
nian (5.4),

H =
(

�K t

t 0

)
, (5.14)

and τ is the dimensionless time (in units of �−1). The
relaxation matrix

G =
(

0 γnd

γnd γ

)
(5.15)

accounts for the anharmonic decay of optical phonons in the
state |r〉, given by γ = Kw(1)/�, and for the decoherence
associated with this anharmonic decay, γnd = γ /2. The phys-
ical reason for γnd being twice smaller than γd is the same
as in Eq. (5.11) above. The quantity γnd describes the rate of

FIG. 4. Diagrammatic illustration of the relation γ = 2γnd be-
tween the longitudinal [γ , panel (a)] and the transverse [γnd , panel
(b)] relaxation rate in the situation when the state 1 is everlasting,
while the state 2 decays with probability γ to the third state 3. Panel
(c): An equivalent description in terms of incoherent tunneling is
applicable when the level width γ exceeds the Rabi frequency t .

decay of the Rabi oscillations between two resonant states. The
polaron can escape from one of these states with probability γ

while the other state in the absence of tunneling is everlasting.
Diagrams for ρ12 and ρ22, illustrating the relation γnd = γ /2,
are sketched in Figs. 4(a) and 4(b).

Imposing the initial condition ρ11(τ = 0) = 1 and using the
Laplace transform of the density matrix equation (5.13),

i(s + G)ρ(s) = [H,ρ(s)] + |1〉〈1|, (5.16)

one obtains a general solution in the form

ρ11 = [ s + γ + t̃2(s) ]D−1(s),

ρ22 = t̃2(s) D−1(s),
(5.17)

t̃2(s) = 2t2(s + γnd )

(s + γnd )2 + �2
K

,

D(s) = s[ s + γ ] + t̃2(s)[ 2s + γ ].

Equation (5.17) is valid for arbitrary relation between �K , t ,
and γ . It describes incoherent dynamics of a system driven
by the interplay of Rabi oscillations and anharmonic decay.
The notion of the energy relaxation rate is not well defined
at t ∼ γ as the decay is not exponential. The exponential law
is restored at γ  t . In this case, ρ22 � ρ11 at all times due
to the rapid decay of the state |r〉; the solution (5.17) can be
approximated as

ρ11(s) = (s + α)−1, α = 2t2γnd

γ 2
nd + �2

K

. (5.18)

Equation (5.18) yields ρ11(τ ) = exp(−ατ ). Using γnd =
γ /2 = Kw(1)/2� we see that the decay rate α� =
Kw(1)t2/(γ 2

nd + �2
K ) coincides with the expression (5.12)

[�K in the argument of w in Eq. (5.12) is important only
away from the resonance, for |�K |  γ ].

The same result can be obtained by considering the
tunneling from a discrete level |l〉 to a strongly broadened level
|r〉 with the density of states ν(ε) = −π−1Im(ε + iγ /2)−1; see
Fig. 4(c). In the state |r〉 the polaron immediately relaxes to the
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lower energy states. The tunneling rate W = 2π�|t |2ν(�K )
obtained in this way coincides with the inelastic scattering
rate (5.12).

Using the above approach, we now estimate the high-T
incoherent tunneling rate. At T 
= 0, the n-phonon state |i,n〉
of the ladder i can decay into either of the neighboring
states |i,n ± 1〉 by emitting (−) or absorbing (+) the bath
phonons; the probability of the escape is γn = nw(1) + (n +
1)w(−1). At T = 0 the rate w(−1) = 0 and we return to
the result above. Considering now two resonant levels |i,n〉
and |f,m〉 of different ladders whose mutual coupling |t | �
γn,m is small compared to their width, we obtain for the
tunneling rate W (�) = 2π�|t |2 ∫

dενn(ε)νm(ε + �), where
νk(ε) = −π−1Im(ε + iγk/2)−1. The result can be expressed as
W = 2π�|t |2ν̃(�) with ν̃(�) = γ̄ /π (�2 + γ̄ 2). The effective
transverse relaxation rate, γ̄ = (γn + γm)/2, determines the
width of resonances in Eq. (4.25) in the incoherent tunneling
regime; see Sec. VI.

VI. ILLUSTRATION AND DISCUSSION OF RESULTS

Here we first illustrate our results for a specific channel
of anharmonic interaction and then discuss their qualitative
features and possible generalizations. For illustration we use
a phenomenological description of the anharmonic channel
where the X phonon decays into two longitudinal acoustic
(LA) phonons. Namely, we introduce the function w(�),
defined in Eq. (3.4), in the form

w(�) = w0(1)F̃ (�)[1 − exp(�/2T )]−2. (6.1)

Here F̃ (�) = F (�)/F (1), while the function F is

F (�) = �4(|�| − �max)2

10−2�2
max + (|�| − �max)2

(6.2)

for |�| < �max and zero otherwise. In Eq. (6.1), w0(1) =
w(1)|T =0 is the value of anharmonic decay of the LO phonon
in the bulk material at zero temperature (as before, we measure
all energies in units of LO phonon energy). The dimensionless
function F̃ (�) describes the T = 0 dependence of anharmonic
matrix elements and of the available phase space on the
energy �/2 of emitted LA phonons, and the last factor in
Eq. (6.1) originates from the thermal factors Nk in Eq. (3.4).
The T -dependence takes into account that in the chosen
channel two LA phonons with equal energy |�|/2 and opposite
momenta are either emitted (� > 0) or absorbed (� < 0); see
Fig. 5. The dependence (6.2) is chosen on phenomenological
grounds. It assumes that w(�) ∝ �4 at � � 1, [27] and that
the maximal value of the transferred energy �max is twice the
maximal energy of the LA phonon. The angular dispersion
of the spectrum of acoustic modes near the boundary of the
Brillouin zone is modeled via the 10% dispersion of �max.

For numerical estimates we take the parameters typical
for self-organized QDs in a GaAs matrix [13,14,16,19–27].
We take u2

12,⊥ = u2
12,‖ = u2

− = 0.01 for the coupling with
X -phonon modes, w0(1) = 0.002 � = (9 ps)−1 for the T = 0
anharmonic decay rate of the LO phonon in bulk GaAs [30],
�� = 36 meV for the LO phonon energy, and �ωmax =
27 meV for the maximal energy of LA phonon, which gives
�max = 54/36 in Eq. (6.2).

FIG. 5. (Color online) The anharmonic decay rate w(�),
Eq. (6.1) [in units of w0(1)], vs the energy � transferred to the bath
(in units of the LO phonon energy ��) for T = 0 (lower line) and
T = 300 K (upper line).

The inelastic relaxation rate at T = 0 is illustrated in
Fig. 6 where we interpolate the results obtained using different
methods away and close to the resonances E � 1,2,3, . . . . The
dashed lines represent the off-resonant results (4.26), (4.27),
and (4.31), where E is given by Eq. (4.2). As expected from
Eq. (4.24), outside the resonances the rate falls approximately
as �(E + 1)/�(E) ∼ u2 = 10−2 with the increase of the
transition energy by the LO phonon energy. This behavior
is the result of quantum interference between processes
involving different virtual polaron states, as detailed in
Sec. IV. The situation near the maxima E � 1,2,3, . . . is
quite different. For our choice of parameters, the anticrossing
2t1 = √

2|u12| = 0.2 of levels at E � 1 is two orders of
magnitude larger than their width γnd = w0(1)/2� = 0.001.
Accordingly, the energy relaxation rate (4.26) is modified as
described in Sec. V A. In particular, it takes the maximal value
�̃± � w0(1 ± t1)/2 at E = 1 ± t ; see Eq. (5.11). Note that
the values w(1 + t) and w(1 − t) for such a large t ∼ 0.1
can be appreciably different [27]. Near E � 2 the splitting

FIG. 6. (Color online) The inelastic relaxation rate [in units of
w0(1)] vs the separation E of the lowest polaron levels in two ladders
(in units of LO phonon energy) for T = 0. The dashed lines illustrate
the off-resonant results (4.26), (4.27), and (4.31) where E is given by
Eq. (4.2). Solid line: the anticrossing of the resonant levels near E = 1
and E = 2, Sec. V A, and the anharmonicity-induced broadening of
levels near E = 3, Sec. V B, are taken into account.
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FIG. 7. (Color online) Contributions �(M)
n of different channels

to the inelastic relaxation rate �T , Eq. (4.25), at T = 300 K as a
function of the level separation E. Different curves correspond to
n = 0,1,2 (from top to bottom) and to M = 0 (curves peaked at
E ∼ 1) and M = 1 (peaked at E ∼ 2 and E ∼ 0). The corrections to
Eq. (4.25) near E = 2 due to anharmonicity-induced broadening of
levels, Sec. V B, are taken into account.

of resonant levels 2t2 =
√

(u2
12,⊥ + 2u2

12,‖)u2
− � 0.016 is still

larger than γnd = 2w0(1)/2� = 0.002. The gap 2t2 in the
spectrum is quite small compared to 2t1, and the maximal
values of the inelastic rate in two branches are practically the
same, �̃+ � �̃− � w0(1). Finally, at E � 3 the anticrossing
becomes smaller than γnd = 3w0(1)/2�, and the results of
Sec. V B for the incoherent tunneling regime apply.

The temperature evolution of the relaxation rate is illus-
trated in Figs. 7 and 8. As discussed in Sec. IV C, at finite
temperature one should take into account the nonzero thermal
occupation of excited states in the upper polaron ladder since
the intraladder thermalization is generally much faster than
the multiphonon interladder transitions. The contribution �n

of these excited states to the inelastic relaxation (4.25) is
shown in Fig. 7 for zero-, one-, and two-phonon occupation of
the initial polaron state (n = 0,1,2). For each channel n, the
contributions of M = 0 (peaked near E = 1) and of M = 1
(peaked near E = 2 and E = 0) in Eq. (4.25) are shown
separately. Note that the nonzero contribution of the M = 1
term at E < 1 appears at T 
= 0 only. It is associated with
the possibility to take energy from the phonon bath at T > 0
which leads to a finite w(�) for � < 0; see Fig. 5. Apart from

FIG. 8. (Color online) The inelastic relaxation rate �T [in units
of w0(1)] vs the level separation E for T = 0 K, 300 K, and 1000 K
(from bottom to top).

that, at elevated temperature the rate of anharmonicity-induced
intraladder transitions also increases, so that at T = 300 K
the anticrossing of levels near the resonance E = 2 becomes
smaller than the broadening of the polaron levels; see Sec. V B.
As a result, with increasing T the relaxation rate �T at
E ∼ 2 first grows, since in the strong-coupling regime �(M)

n ∝
w(�M ), see Sec. V B, and then diminishes, since in the
incoherent tunneling regime �(M)

n ∝ w−1 in the vicinity of
resonances. This behavior is clearly seen in Fig. 8. Similarly,
near E = 1 the rate grows with T since the system remains in
the strong-coupling regime, while near E = 3 the rate grows
outside the peak and decreases at the peak position since here
the system remains in the incoherent tunneling regime at all T .

On a more general level, it is seen that the perturbative
approach of Sec. IV (represented by dashed lines in Fig. 6)
is applicable almost everywhere away from the resonance
E ∼ 1, addressed in earlier studies of anharmonic relaxation
[25–27]. As detailed above, the most interesting feature of
higher resonances E ∼ K for K > 1 is the crossover from the
strong-coupling regime of E ∼ 1 to the incoherent tunneling
regime with increasing K or temperature which leads, in
particular, to a nonmonotonic T dependence of the E ∼ 2
peak in Fig. 8.

The theory presented in this work assumes two nondegen-
erate levels while most existing theoretical works (aimed on
explanation of experimental data for a particular system of
self-organized QDs [14,15,19–22]) consider a 3-level model
of QD involving two nearly degenerate excited p-type states
on top of single s-type ground state [25–27]. For the 2-level
system, we find relatively compact expressions which enable
a qualitative analysis of the relevance of particular channels of
relaxation in various regimes for more complex systems. Apart
from that, the perturbative approach of Sec. IV demonstrates
explicitly the significance of destructive interference between
multiphonon processes involving different intermediate virtual
states which was not properly discussed in this context before.
We also mention that our 2-level model is directly applicable to
transitions between states of coupled quantum dots in QCL [5]
or to quantum dashes [6]. For 3 or more levels a complete
analytic study similar to that in Sec. IV does not appear
reasonable. At the same time, calculation of the multiphonon
matrix elements entering Eq. (3.3) using numerical methods
developed previously in the studies of polaron spectrum (see
Refs. [16–18] and references therein) appears feasible and
desirable.

It would be interesting to systematically study w(�) in a
broad interval of � and T both for 3-phonon and 4-phonon
anharmonic interactions which would require generalization
of numerical techniques developed in Refs. [29,30]. The first
steps in this direction were performed in Refs. [21,22,26,27]
which proved the importance of various channels of LO
3-phonon anharmonic relaxation including LA-TA, LA-TO,
and TA-LO channels [27] in addition to the LA-LA channel
illustrated above. More detailed study may discover additional
sharp features in w(�) detectable in experiment. Such features
may originate from unusual channels of anharmonic interac-
tions such as coupling of three �-point optical phonons which
never play a role in the decay of bulk phonons studied before.
In this respect, 2-level QD systems with level separation
adjustable, for instance, by external voltage [5] or magnetic
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field [28] may serve as a sensitive detector for a rich variety of
anharmonic interactions.

VII. CONCLUSION

We calculated the multiphonon energy relaxation in a
single-occupied two-level quantum dot, where the electron
interacts with certain optical phonon modes which decay
and transfer the transition energy to the lattice. Our theory
includes the previously unexplored range of transition energies
several times larger than the optical phonon energy and
systematically studies the role of quantum interference of the
processes involving different virtual polaron states. Analytic

results are obtained both for the perturbative off-resonant
regime and for the resonant regime, which can be coherent
or incoherent depending on the electron-phonon and anhar-
monic coupling strengths, the order of the resonance, and
temperature.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs-
gemeinschaft, by the Russian Foundation for Basic Research,
and by the Program on Fundamental Research in Nanotech-
nology and Nanomaterials of the Presidium of the Russian
Academy of Sciences.

[1] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
[2] R. A. Suris, in Future Trends in Microelectronics, NATO ASI

Series E, Vol. 323, edited by S. Luryi, J. Xu, and A. Zaslavsky
(Kluwer, Dordrect, 1996), p. 197.

[3] N. S. Wingreen and C. A. Stafford, IEEE J. Quantum Electron.
33, 1170 (1997).

[4] Chia-Fu Hsu, Jeong-Seok O, P. Zory, and D. Botez, IEEE J. Sel.
Top. Quantum Electron. 6, 491 (2000).

[5] I. A. Dmitriev and R. A. Suris, Phys. Status Solidi (a) 202, 987
(2005); ,Physica E 40, 2007 (2008).

[6] V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck,
F. Gramm, and J. Faist, Appl. Phys. Lett. 101, 261113 (2012).

[7] Jerome Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L.
Hutchinson, and A. Y. Cho, Science 264, 553 (1994).

[8] R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707
(1971).
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