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Excitation dependent Fano-like interference effects in plasmonic silver nanorods
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Surface plasmon resonances in metal nanoparticles are an emerging technology platform for nano-optics
applications from sensing to solar energy conversion. The electromagnetic near field associated with these
resonances arises from modes determined by the shape, size, and composition of the metal nanoparticle. When
coupled in the near field, multiple resonant modes can interact to give rise to interference effects offering
fine control of both the spectral response and spatial distribution of fields near the particle. Here, we present
an examination of experimental electron energy loss spectroscopy (EELS) of silver nanorod monomer surface
plasmon modes and present an explanation of observed spatial amplitude modulation of the Fabry-Pérot resonance
modes of these silver nanorods using electrodynamics simulations. For these simulations, we identify differences
in spectral peak symmetry in light scattering and electron spectroscopies (EELS and cathodoluminescence) and
analyze the distinct near-field responses of silver nanorods to plane-wave light and electron beam excitation in
terms of a coupled oscillator model. Effects of properties of the material and the incident field are evaluated,
and the spatially resolved EELS signals are shown to provide a signature for assessing Fano-like interference
effects in silver nanorods. These findings outline key considerations and challenges for interpreting electron
microscopy data on plasmonic nanoparticles for understanding nanoscale optics and for characterization and
design of photonic devices.
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I. INTRODUCTION

Near-field interference effects in plasmonic materials rep-
resent a promising mechanism for tuning optical responses
of metal nanoparticles for ultrasensitive detection [1]. Fano
resonances commonly give rise to asymmetric and narrow
linewidths, offering fine control for applications including
chemical and biological sensing [2–4], nanoscale measure-
ment [5,6], and optical switching [7,8]. While these interfer-
ence effects are routinely observed in far-field light scattering,
direct observation of the near-field response, particularly with
electron beam techniques, often does not offer straightforward
interpretation [9–13]. Here, we present an examination of
interfering resonances, or equivalently hybridized modes, in
silver nanorod monomers through a combined experimen-
tal, simulation, and modeling study of their signatures in
scanning transmission electron microscopy electron energy
loss spectroscopy (STEM-EELS). In order to understand the
experimental EELS results, EELS simulations are compared
with simulated cathodoluminescence (CL) and light scattering
using discrete dipole approximation (DDA) calculations for
both electron and plane-wave light excitations. The interfer-
ence effects observed with STEM-EELS in nanorod monomers
can in turn be used to improve the analysis of near-field
interactions among quasi-one-dimensional surface plasmon
resonances (SPRs) of metal nanoparticles.

SPRs in nanorods are of particular interest in applica-
tions where tunability and polarization sensitivity are critical
[14–16]. Nanorod modes observed in EELS [17–25],
CL [26,27], near field microscopy [28–32], and other mea-
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surements [33] have frequently been described as Fabry-
Pérot–like resonances [21,22,26,30], standing-wave patterns
of surface charge and the corresponding near fields. These are
characterized by intensity at antinodes in the standing-wave
pattern, recorded as peak intensities in maps and line profiles
along the plasmonic rod. Fabry-Pérot resonances have also
been reported in metallic strip antennas with film modes
determined by the width of the strip [34,35], although these
differ from rod modes in the azimuthal character of the surface
plasmon response and rod modes are reported with azimuthally
symmetric charge distributions [16,36,37]. The multipolar
series of longitudinal modes can be labeled by the number
of nodes (m = 1, 2, 3, . . .).

In the simplest case, a Fabry-Pérot resonance exhibits a
standing-wave pattern determined by an integer number of
wavelengths matched to the length of the rod with equal
amplitude at each antinode. Additional losses in such a
system give rise to a relative phase offset and broadening
of the response as a function of driving frequency. Several
reports have previously presented experimental near-field
maps exhibiting spatial modulation of the amplitude at the
antinodes along the rod length, particularly in multipolar res-
onances [21,22,26,28,38,39]. However, only a few comments
have been offered with limited explanation of the observed
effect. Qualitative comparisons of light scattered near-field
distributions, including their spatial amplitude modulation,
have been made, requiring the inclusion of multiple plane-
wave polarizations to reproduce the odd modes in light scat-
tering [22,38]. Recent theoretical and experimental [36,40,41]
work on plasmonic metal nanorods using far-field light
scattering has demonstrated that multipolar resonances in
nanorods interact in the near field, giving rise to Fano-like
interferences. We explain the observed amplitude modulation
in electron beam driven resonances in terms of the interference
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phenomena giving rise to Fano-like resonances in far-field
light scattering. The Fano-like line-shape asymmetry of light
scattering from rods, reported experimentally [36,40] and
observed in simulations here (Sec. IV) and elsewhere [36,41],
is not reproduced in EELS spectra of interfering modes and a
distinct line-shape asymmetry is observed in simulated CL
spectra. As shown by analyses of simulated responses to
electron excitation, the observed spatial amplitude modulation
in EELS and CL corresponds to mode hybridization among
electron-driven resonances of the same symmetry (i.e., modes
with an odd or even number of nodes, respectively). Moreover,
in contrast to light scattering [36], electron-excited nanorods
exhibit interference effects for both odd and even symmetry
modes. This distinction between electron beam and plane-
wave light excitation identifies that far-field signatures of
near-field interference depend on the incident driving field.
The model proposed for understanding the differences in
observations in electron spectroscopy and light scattering of
silver nanorods represents a general consideration for com-
parisons of electron- and light-driven plasmonic interference
phenomena.

Following an overview of methods in Sec. II, experimen-
tal EELS maps, associated spectra, and experimental and
simulated line profiles are examined in Sec. III. Section IV
presents a comparison of simulated light- and electron-excited
spectra and near fields. Observed differences (Sec. IV) are
subsequently analyzed by fitting simulations to a coupled
oscillator model in Sec. V and the results of the oscillator
model are applied to understand the spatial amplitudes of the
interfering modes. Parameters that tune the hybridization of the
longitudinal modes in silver nanorods are discussed in Sec. VI,
a fitting procedure to examine multiple mode interactions is
evaluated in Sec. VII, and a summary and conclusions are
offered in Sec. VIII.

II. METHODS

A. Sample preparation

The samples used in this work were acquired from
two different sources. For experiments conducted at the
University of Cambridge (Rod A in Fig. 1), transmission
electron microscope samples of silver nanorods, made by
polyol synthesis [42] (Nano Research Facility, Washington
University in St. Louis), were prepared by depositing drops of
a silver nanoparticle solution on a 30-nm-thick silicon nitride
membrane (Agar Scientific). For experiments conducted at
McMaster University (Rod B in Fig. 1), samples were prepared
as reported previously in Ref. [22].

B. Data acquisition

STEM-EELS spectrum imaging was performed on two
different FEI Titan electron microscopes. Experiments at the
University of Cambridge (Rod A in Fig. 1) were conducted
with an FEI Titan3 80-300 equipped with an X-FEG electron
source and Wien filter monochromator operated at 300 kV. The
system energy resolution was recorded at 0.18 eV full width
at half maximum (FWHM) in this configuration. Experiments
at McMaster University (Rod B in Fig. 1) were conducted as
previously reported in Ref. [22], likewise at 300 kV but with
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FIG. 1. (Color online) STEM-EELS maps for two silver
nanorods approximately 540 nm (Rod A) and 490 nm (Rod B) in
length. Longitudinal modes m = 2–6 are shown as well as transverse
(trans) and bulk excitations. Annular dark field (ADF) micrographs
are shown for reference. Rod A was prepared on a 30-nm-thick
silicon nitride membrane and Rod B was prepared on an ultrathin
carbon substrate (reprocessed from Ref. [22]). Maps were extracted
by non-negative matrix factorization (NMF) techniques. Scale bars
are 100 nm.

a system energy resolution of 0.09 eV FWHM at the time
of data acquisition. The large scan size required for the rods
leads to a small beam tilt across the field of view if the tilt-shift
purity is imperfect. This leads to a small beam “wobble” at the
entrance aperture of the spectrometer but this is minimized
by a post-specimen beam descan. Rod lengths were measured
from separately acquired annular dark field micrographs. Rod
A was measured at 536 nm and Rod B was measured at
494 nm. The approximate lengths are given to 10-nm precision
in Fig. 1 and Sec. II as calibration and micrograph measure-
ment error may account for a few percent error in lengths.

C. Spectral processing

Spectrum images were processed using the open-source
software HYPERSPY [43]. After spectra were aligned to the zero
loss peak (ZLP), the spectrum images were scaled to normalize
the Poisson noise [44] and factorized using a projected
non-negative matrix factorization (NMF) algorithm [45].
EELS maps were divided pixel by pixel by the component
corresponding to the ZLP. Similar results were obtained for
EELS maps divided pixel by pixel by the zero loss peak
intensity recorded in the original spectrum image [see also
Supplemental Material (SM) [46]].
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D. Simulations

DDA simulations were performed for electron beam ex-
citation using a customized version of e-DDA [47] updated
for compatibility with DDSCAT7.2 and DDSCAT7.3 [48,49].
DDA simulations were performed for light scattering with
DDSCAT7.2 [48,49]. In the DDA formulation, the EELS
signal is calculated according to [47,50]

�EELS = 1

π�2

N∑
j=1

Im
{
Einc

j · Pj

}
, (1)

where Einc
j is the incident electric field at dipole position j due

to the electron beam, Pj is the polarization of the dipole at
j due to the incident field and the induced field of the other
dipoles, and N is the total number of dipoles.

CL simulations were performed following Ref. [11] where
the CL signal is calculated according to

�CL = c|xS |2
4π2�2ω

∫
d�|E(xS,ω)|2, (2)

where the position vector xS determines the radius of the
spherical surface over which the integration is performed, � is
the solid angle, c is the speed of light in vacuum, and �ω is the
energy of the radiated light. Integration was performed using
a custom Python script to integrate the field E over a sphere of
radius 5 μm centered on the particle. More than 2000 points on
the spherical surface were included in the numerical integral
with even sampling in the azimuth angle and even sampling in
cos(θ ) where θ is the zenith angle. Convergence was confirmed
by also calculating �CL for more than 5000 points and for a
sphere at 10 μm from the center of the particle. The field
E was calculated using code from e-CL-DDA compatible
with DDSCAT7.1 [11]. Rod A was modeled to be 536 nm
long, from tip to tip, with a 17-nm radius and hemispherical
ends each with the same radius as the rod. For near field,
near-field phase, and line-shape analyses (Figs. 7 and 9), Rod
A was discretized with 1-nm dipole spacing, giving a total of
472 781 dipoles. For line profile simulation and dipole moment
analysis, rods were discretized with 2-nm dipole spacing due
to the large computational domains required. A comparison of
results for different discretization is given in the SM [46].
Spectral peak positions, near-field response, and near-field
phase were found to be consistent for both 1- and 2-nm dipole
spacings. A finite substrate extending 58 × 646 × 30 nm was
used for calculations on Rod A with a substrate. Rod A was
modeled with a total of 66 326 dipoles without a substrate and
206 826 dipoles with a substrate. Rod B was modeled to be
494 nm long with a 13-nm radius for a total of 36 136 dipoles
(2-nm dipole spacing). For simulations without a substrate,
an effective purely real ambient dielectric environment was
used, a common adjustment [51] justified for rods where the
effect of a substrate primarily red-shifts mode energies. The
ambient constant refractive index was set to 1.337 for Rod A
and to 1.190 for Rod B to match mode energies to experimental
data. These two effective ambient refractive indices reflect the
different substrates (silicon nitride and carbon, respectively)
in the experimental setups for Rods A and B. Dipole moments
were calculated following methods outlined in Ref. [52].
Dielectric functions were taken from Ref. [53] for silver and

Ref. [54] for silicon nitride. For analysis of damping, Drude
model dielectric functions were calculated of the form reported
in Ref. [55].

Instrumental broadening effects were also taken into
consideration, modeled as a convolution of finely stepped
simulations (0.01 eV step) with a Gaussian function. In EELS,
electrons are emitted from the gun with a finite-energy spread,
observed in the width of the EELS signature of electrons
passing through the sample with little or no energy loss (the
ZLP) [56]. This intrinsic width of the ZLP gives rise to an
experimental broadening of the energy loss spectrum [56].
Although the experimental ZLP is not truly Gaussian, the ZLP
is often described in terms of its full width at half maximum
(FWHM) [57,58] and a Gaussian function can adequately
model the major contributions to ZLP broadening [13].

E. Fitting procedures

As the NMF decomposition describes energy-dependent
peaks associated with the STEM-EELS maps, DDA sim-
ulations were performed with fine energy steps over an
extended energy range and peak fitting routines were used
to extract peak amplitudes for comparison with results from
NMF processing of the experimental data. Peak fitting was
not used for experimental data as the assumption that the
ZLP is approximately Gaussian is particularly inaccurate in
describing the ZLP tail (broadening effects described above
are not as sensitive to the tail). No ZLP tail is present
in simulated spectra and the simulated plasmon resonance
peaks were relatively well described by Lorentzian functions,
and so peak fitting was performed for DDA simulations to
describe the resonance peaks. Peak fitting of simulated spectra
was performed using HYPERSPY [43]. Peaks were fitted to
Lorentzian functions or Voigt functions in cases where ZLP
broadening was accounted for by using a convolution of Gaus-
sian and Lorentzian functions (see also SM) [46]. Extended
coupled oscillator (ECO) model fitting (Sec. V) was likewise
performed using HYPERSPY with model equations following
Ref. [51]. For ECO model fitting, the dipole moment spectra
were first normalized using a single oscillator model for the
lowest-energy resonance such that the incident field amplitude
E0 = 1.0 (units follow Ref. [51]). The resonance frequencies
ω1,2 were fixed according to fits of the simulated EELS spectra.
The resulting ECO model spectra for the decomposed phase
response of the interacting modes captured in the displacement
amplitude coefficient Re{C1,2} and far-field scattering were
calculated using custom scripts in MATLAB. Fitting of Eqs. (12)
and (14) was performed in MATLAB using the Curve Fitting
Toolbox.

III. EXPERIMENTAL OBSERVATIONS

Higher-order multipolar longitudinal resonances in silver
nanorods exhibiting spatial amplitude modulation appear at
visible light energies for rods approximately 500 nm in length.
Figure 1 presents STEM-EELS maps of such modes for
a 540-nm-long rod on a 30-nm silicon nitride membrane
substrate (Rod A) and a 490-nm long rod on an ultrathin
carbon film (Rod B). These maps were prepared by NMF
of the experimental data set into two positive matrices, the
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maps and associated spectral components [43,45]. An NMF
decomposition approach was applied recently to EELS mea-
surements of hybridized SPRs in silver nanocubes [12]. Similar
multivariate statistical modal decomposition approaches have
also been applied independently to the analysis of modes of
silver nanorods [38] and silver cubes [13]. Spectral decompo-
sition importantly separates overlapping spectral features and
does not presuppose any particular line shape. Notably, the
components identified by NMF processing correspond to those
already observed in energy-filtered data sets (see in particular
Ref. [22] and Fig. 6) but with enhanced signal to noise. In
EELS, electrons losing negligible or no energy while passing
through the sample appear as a ZLP in the energy loss spectrum
and give rise to spectral broadening and a spectral tail at low
energy losses, including visible light energies. STEM-EELS
of Rod A was acquired with a ZLP of approximately 180
meV FWHM whereas for Rod B, STEM-EELS was acquired
with a ZLP of approximately 90 meV FWHM. In order to
account for differences in the ZLP tail intensity for electrons
passing through the silver particle and those passing outside
the nanorod, these maps were additionally divided by the
component map associated with the tail of the ZLP. To clarify
the effects of this procedure, the unprocessed NMF results
are included in the SM alongside results obtained by dividing
the component maps by the ZLP at each pixel in the original
spectrum image [46]. Accounting for varying ZLP intensity is
crucial for reproducing a signal for comparison with simulated
energy loss probabilities (see also Ref. [12]).

A common feature in all multipolar modes is the low
intensities recorded at the rod ends where the energy loss signal
(i.e., the EELS probability) is weak because the local fields are
predominantly perpendicular to the electron trajectory. The
EELS probability, in contrast, is related to the component of
the field parallel to the trajectory as given by [59]

�EELS = q

π�ω

∫
dt Re{eiωtv · Eind}, (3)

where the integral is with respect to time t , q is the charge
on the electron, �ω is the energy loss in terms of angular
frequency ω, and v and Eind are the electron velocity and
induced electric field vectors, respectively. The notation and
units follow Ref. [59].

The spectral signatures associated with each of the maps in
Fig. 1 are presented in Fig. 2 for a single-electron trajectory
at the rod tip (4 nm offset) where all longitudinal resonances
are excited. The transverse (trans) and bulk excitations are
very weakly excited for the selected trajectory. Figure 2
demonstrates that the component maps in Fig. 1 correspond to
separate peaks in the spectrum. These peaks exhibit a dominant
amplitude at the particular energies noted in Fig. 1. Moreover,
the unprocessed data (blue dots) are well reconstructed by
the NMF decomposition but with significantly reduced noise
(black solid line). The effect of the ZLP is pronounced in Fig. 2
as the peaks are barely visible as modulations of the ZLP tail
particularly for Rod A acquired with a broader ZLP than for
Rod B. The NMF decomposition approach makes use of the
entire spectrum image and accounts for the Poissonian noise
present in the data allowing for feature extraction even at pixels
where the signals are weak.
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FIG. 2. (Color online) NMF spectral components for (a) Rod A
and (b) Rod B weighted according to the value for a single pixel in
the STEM-EELS maps in Fig. 1 at the position indicated by the blue
marker in the inset (4 nm offset from rod tip, see also Fig. 3). The
unprocessed spectrum (blue dots) is shown together with the spectral
components for the zero loss peak (gray solid line), the longitudinal
resonances m = 2–6 (Rod A) and m = 1–6 (Rod B), transverse
(trans) mode excitations, and the silver bulk plasmon. The sum of the
spectral components is also presented (solid black line). Scale bars are
100 nm.

For direct comparison of the experimentally observed
plasmon resonance modes with simulations in Figs. 3 and 4 and
in subsequent sections, it is critical that the experimental data
are processed to determine the energy loss probability. Such
processing requires the separation of the ZLP and division
by the varying ZLP intensity as noted for Fig. 1. The NMF
decomposition approach achieves this necessary separation
with minimal bias and without assumptions on the shape
of the ZLP or resonance peaks. Alternative approaches such
as peak fitting and ZLP subtraction [22,60] make significant
assumptions about the spectral shape of the ZLP and of the
resonance peaks.
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FIG. 3. (Color online) Comparison of experimental and simulated line profiles. (a), (b) STEM-EELS maps and line profiles (4 nm from
rod side) of modal components m = 4 and 5 for (a) Rod A and (b) Rod B. Extracted experimental line profiles are compared with simulated
line profiles calculated by DDA methods. Simulations on Rod A included a 30-nm-thick silicon nitride membrane. Simulations on Rod B
were performed using an effective ambient medium due to uncertainties in the dielectric properties of the experimental carbon membrane grid.
(c) The coordinate system, positions of the line profiles, and coordinate selected for phase analysis (Ey) are shown for reference. Scale bars are
100 nm.

The ZLP shape does not match perfectly with what might
be expected for a smoothly varying ZLP tail, and in particular
minor modulations of the spectral dependence at or close to
energies coinciding with surface plasmon peaks are visible
in the ZLP components in Fig. 2. These modulations can be
attributed to the numerical nature of the NMF approach and
represent minor deviations from an ideal ZLP at these energy
channels. The magnitudes of the modulations are small relative
to both the spectral intensity of the surface plasmon peaks
and the ZLP. In the context of the intensity maps of each of
these components, taking into account the entire peak, these
imperfections in the decomposition will contribute very little to
the mapped EELS probability, contributing to the background
in the EELS maps due to residual intensity from the ZLP
(Figs. 3 and 4). The intensity modulation in particular is not
affected as the spectral components are fixed for all pixels in
the map and it is the modal surface plasmon peak amplitude
divided by the ZLP amplitude plotted in Figs. 3 and 4.

Figure 3 presents maps for modes m = 4 and 5 and
corresponding line profiles (4 nm from the rod side) from
experimental data and from DDA simulations [47–49] for
an incident electron with 300-keV primary energy. Modes
m = 4 and 5 are the lowest-order resonances where amplitude
modulation is observable. For these modes, the intensity
at antinodes in the energy loss map decreases towards the

center of the rod. This is not a characteristic expected for
a Fabry-Pérot resonance with equal amplitude throughout
the standing wave. This amplitude modulation has been
documented elsewhere and is observed in rods of varying
lengths [21].

The DDA simulated line profiles in Fig. 3 match the
experimental profiles well, reproducing the same observed
spatial amplitude modulation. For Rod A, DDA simulations
were performed including a finite silicon nitride substrate. For
Rod B, an effective ambient dielectric medium was used to
model the ultrathin carbon film substrate as in other nanorod
studies [51] (see also SM [46]). By comparing two similar
rods on different substrates and examined with different
instruments, the experimental data and simulations indicate
that the observed amplitude modulation is not uniquely
determined by the composition of the substrate or particular
properties of the data acquisition (e.g., microscope energy
resolution). Further simulations describing the effects of the
substrate and experimental energy resolution are included in
the SM [46].

Figure 4 presents a comparison of the m = 6 mode for Rods
A and B. Mode m = 6 was at the noise level for Rod A and
no meaningful line profile could be extracted for trajectories
at 4-nm offset from the side of the rod. For Rod B, the spatial
intensity maps and line profiles for m = 6 identify a more
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FIG. 4. (Color online) STEM-EELS maps of mode m = 6 for (a)
Rod A and (b) Rod B and (c) the corresponding line experimental
and simulated line profiles for Rod B.

subtle modulation of intensity along the rod axis, specifically
the local intensity maximum visible at the center of Rod B for
mode m = 6 [Figs. 4(b) and 4(c)].

Rod B exhibits a partial spatial asymmetry in the intensity
pattern for mode m = 6, as previously noted in initial reports
on this rod [22]. The dielectric environment was not constant
for this sample as the lacey carbon support visible in the
upper right corner [Figs. 3(b) and 4(b)] demonstrates a local
modification, expected to impact more significantly the more
sensitive higher-order modes [55]. Because the experimental
intensities at antinodes (intensity maxima) were systematically
brighter for the left-hand side of Rod B for all modes, the
simulated line profiles were vertically scaled to the consistent
intensities at the center and right-hand side of the rod in the
experimental data. Figure 4(b) highlights the experimental
observation of a local maximum of EELS intensity at the center
of the rod with a global maximum near the ends. That is, in
the EELS map, the antinode at the center appears brighter than
the two immediately adjacent. This observation is consistent
with the DDA simulations [Fig. 4(c)]. The DDA simulation
of the line profile does not appear to match as well as for
modes m = 4 and 6. However, the point of comparison is the
relative intensity of the antinodes; the differences between the
DDA simulated line profile and the experimentally extracted
line profile are (1) a translation offset and (2) an asymmetric
intensity distribution from left to right. The spatial amplitude
modulation pattern in the experiment is in fact quite similar to
the simulated line profile in that the central antinode is brighter
than the two adjacent antinodes.

The spectral signatures (Fig. 2) associated with each of
the mode maps presented in Figs. 1 and 3 and 4 provide
additional information about the energy dependence of the
modes. Figure 5 presents the individual NMF spectral factors
for modes m = 4 and 5 for Rod A and m = 4–6 for Rod
B. The peaks for mode m = 4 are quite symmetric. The
spectral factors for modes m = 5 and 6 exhibit asymmetric
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FIG. 5. (Color online) Extracted NMF spectral factors for modes
m = 4 and 5 (Rod A) and m = 4–6 (Rod B).

tails at higher energies as well as minor “satellite” peaks at
lower energies. These “satellite” peaks do not correspond to
additional resonance mode signatures at lower energies, but
contribute to a small background intensity (Fig. 2) attributed
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FIG. 6. (Color online) Images filtered around 0.02 eV windows
extracted from the STEM-EELS data cube for Rod A at energies in
the vicinity of the m = 5 longitudinal resonance. The color table is
on a single scale for all energies.

to imperfect numerical separation by NMF processing. From
the NMF decomposition alone it is not possible to determine
whether the spectral line shapes purely represent physical
effects or are the result of incomplete separation of overlapping
spectral features. From our experience of applying NMF to
EELS data sets, we find in general that the algorithm produces
spatial distribution maps with few artifacts but spectral factors
that exhibit side peaks and imperfect line shapes. Previous
analyses of these and other rods indicate highly symmetric
peak shapes for summed spectra across the entire spectrum
image [22] or from selected areas of the spectrum image [21].

To further clarify the effects of NMF processing, maps
extracted from the STEM-EELS data cube with an energy
window of 0.02 eV near the m = 5 resonance are presented
for Rod A in Fig. 6. The ZLP was first aligned at each pixel,
but otherwise no processing was performed on these energy-
filtered maps. The overall intensity decreases from 1.92 to
2.00 eV due to the decreasing background intensity of the
ZLP. The signal distribution along the rod at these energies is
otherwise very similar to m = 5 recovered in NMF processing.
These maps have not been divided by the ZLP intensity and
so the intensities inside the rod are low. The consistency of
the amplitude modulation observed in the experimental data
acquired on Rod A for energies below and above the resonance
energy at 1.96 eV is also consistent with DDA simulations
which exhibit symmetric peaks (see also Sec. IV).

The consistent spatial amplitude modulation observed in
NMF decomposition (Fig. 1), energy-filtered maps (Fig. 6),
and reported previously for Rod B [22], and for other rods [21]
in energy-filtered maps indicates the spatial amplitude mod-
ulation is intrinsic to the EELS response of silver rods and
is not introduced by processing methods. In fact, the NMF
decomposition demonstrates that the effect is not simply due
to spectral overlap of modes as the decomposition substantially
reduces such overlap relative to energy-filtered mapping. Ulti-
mately, the close correspondence between the experimental

and the DDA simulated line profiles establishes that the
DDA simulations describe the experimental system well,
enabling additional investigation of the simulated responses
in Secs. IV–VI.

The experimental data presented here describe a series of
Fabry-Pérot-like modes that, however, exhibit an unexpected
spatial amplitude modulation. This spatial amplitude modu-
lation is consistently observed across the resonance in the
energy spectrum (Figs. 5 and 6). These observations prompt a
more detailed analysis of the simulated electron excitations to
understand the origins of the spatial amplitude modulation and
to examine the reported Fano-like resonance (equivalently, the
mode hybridization effects) expected in such nanorods [41].

IV. COMPARISON OF SIMULATED LIGHT SCATTERING,
EELS, AND CL SPECTRA

Fano-like interference effects give rise to spectral signatures
commonly in the form of asymmetric peaks due to destructive
and constructive interference effects in the near field. This
section compares spectra for light and electron excitation
and the associated near fields. The simulations presented
here build on experimental results and simulations reported
previously for light scattering [36,40] and CL [26] of similar
plasmonic nanorods. These DDA simulations, validated by
comparison with experiment in Sec. III, serve to identify
similarities and differences in spectral and near-field responses
to light and electron beam excitation prompted by apparent
contradictions in the experimental results to date. Along
with the subsequent sections, these simulations present a
comprehensive computational analysis of the origin of the
observed experimental amplitude modulation in EELS.

In light scattering, the interference of longitudinal reso-
nances in silver nanorods has recently been explored theo-
retically [41] and observed experimentally [36,40]. Modes
are often classified as “bright” for odd modes exhibiting
antisymmetric character about the central mirror plane of a
rod and “dark” for even modes exhibiting symmetry about
the same mirror plane [19]. In light scattering, odd modes
interact in the near field with each other and a dipolar
continuum due to the illuminating field giving rise to Fano-like
resonances [36,41]. Figures 7(a) and 7(c) present DDA light
scattering simulations for Rod A without a substrate with a
single incident electric field polarization parallel to the long
axis of the rod. The asymmetric far-field scattering profile
in Fig. 7(c) is consistent with a Fano-like resonance. The
“bright” and “dark” modes of a nanorod are distinguished by
their symmetry about the central mirror plane perpendicular
to the rod axis, and the symmetry is not modified by such
factors as the substrate when the symmetry of the rod changes
from D∞h to C2v . The substrate in this system does not play a
symmetry-breaking role, and so the Fano-like resonance effect
is present without a substrate.

Fano-like near-field interference effects, or alternately
mode hybridization, requires an examination of the relative
phases of the interacting modes [13]. In this section, we first
examine the spectral line shape, phase, and near-field ampli-
tude as a function of energy for light and electron excitation
of these silver nanorods. The relative phase relationships are
subsequently decomposed in Sec. V. Here, the phase of the
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FIG. 7. (Color online) Spectra and phase relationships for (a), (c) plane-wave light and (b), (d) electron beam excitation for Rod A (no
substrate) simulated by DDA. (a) The light absorption (Qabs) and (c) scattering (Qsca) efficiencies are plotted for plane-wave light excitation.
(b) The EELS and (d) CL responses are plotted for electron beam excitation. The electron beam was positioned 4 nm from the tip of the rod,
and the phase here refers to the phase of the induced field along the axis of the rod (y axis) at the same offset as the electron trajectory and even
with the xy-mirror plane (point marked Ey in Fig. 3). Black squares denote simulated data points connected by a cubic spline (red solid line).

surface plasmon is taken as the phase of the scattered near-field
component Ey parallel to the axis of the rod. The phase of Ey is
plotted for a coordinate in the plane containing the long axis of
the nanorod, offset from the tip by 4 nm as for the line profiles
in Fig. 3, the same position as the electron trajectory in electron
simulations. When the surface plasmon charge-density wave
is in phase with the incident plane-wave polarization, the
phase of Ey is approximately 0 radians (dashed line). The
surface plasmon charge density wave is completely out of
phase at π radians. The phase of Ey is approximately π/2
at the resonance energy. In Figs. 7(a) and 7(c), the surface
plasmon charge-density wave is in phase with the incident
plane wave at energies preceding the resonance and is out of
phase for energies above resonance. The far-field absorption
spectrum is also plotted for reference in Fig. 7(a). Absorption
is an incoherent effect and so does not track with the phase
of the surface plasmon response, but provides a marker of the
resonance energies [61].

The response of the silver nanorod to far-field light
excitation, typical of Fano-resonant systems [1], can be
understood in terms of the response of coupled oscillators [62].

It is a general property of a single oscillator that it will
respond in phase with a driving force at frequencies (energies)
below its resonant frequency, and it will respond out of
phase with the force when it is driven past its resonant
frequency [62,63]. In a coupled oscillator system, an additional
case arises in which the lower-frequency oscillator is out of
phase at frequencies that drive the higher-frequency oscillator
in phase. Consequently, at frequencies for which the two
oscillators are out of phase relative to each other, destructive
interference results. For frequencies exceeding the resonance
of the higher-frequency oscillator, both oscillators are out of
phase with the incident plane wave and in phase with each
other, giving rise to constructive interference. The transition
from destructive to constructive interference gives rise to
an asymmetric spectral line shape. This description applies
to classical Fano-resonance systems observed in numerous
plasmonic particle ensembles [10,51] and in some isolated
particles such as a cube on a substrate [55].

The oscillator model serves to explain the observations in
the light scattering simulation, but this description seemingly
does not explain the observed EELS response presented in
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Fig. 7(c) as the EELS response exhibits relatively symmetric
peak shapes. As in light scattering [Fig. 7(a)], for electron
excitation [Fig. 7(b)] the phase (dashed line) is ca. 0 radians
preceding resonances and rises across the resonances. This
similar phase behavior indicates that the electron-driven
surface plasmon exhibits similar phase response characteristics
as the surface plasmon driven by far-field light excitation. Ad-
ditional peaks are observed in the EELS case as both “bright”
and “dark” modes are excited by the electron beam [21,22]. In
the EELS case depicted in Fig. 7(b), the phase response differs
from Fig. 7(a) in that the phase remains less than π/2 radians
and so Re{Ey} does not change sign. This lack of a change in
the sign of Re{Ey}, suggesting incomplete phase inversion, is
a local response phenomenon in EELS and has been discussed
in previous reports as local phase pinning [10,11]. When the
trajectory is displaced further from the rod (22 nm), phase
changes greater than π/2 radians are observed, but the EELS
peaks remain symmetric (see SM [46]). The phase inversion
character of the electron-driven surface plasmon is typical of an
oscillator model, but the expected destructive and constructive
interference effects are not readily observed in the spectral
EELS signal.

Given that the observation of a Fano line shape can depend
strongly on how the response of the system is recorded (i.e.,
Qabs versus Qsca in light scattering), additional simulations
were carried out for electron excitation with detection in
the far field (CL). CL measures the electromagnetic fields
radiated into the far field due to electron beam excitation. A
simulated CL spectrum for the same incident trajectory 4 nm
from the rod tip is presented in Fig. 7(d). The CL signal in
fact does exhibit an asymmetric line shape [highlighted by
blue arrows in Fig. 7(d), see also Sec. VI and discussion of
Fano parameter fitting for CL spectra], not apparent in the
EELS signal. Comparisons can be drawn between the EELS
signal and the extinction cross section and between CL and
the light scattering cross section [64]. In the DDA formalism,
the EELS signal is calculated as the extinction of the incident
field of the electron at a particular frequency [47,50]. The
extinction cross section is determined from the summation of
the absorption and scattering components [48], and so the
symmetry of the EELS peak relative to the CL peak can
be attributed to the relatively high contribution of dissipative
(absorptive) losses in the silver nanorod compared to radiative
(scattering) losses captured in the CL signal. The asymmetry
in the CL signal confirms that a Fano-like resonance effect is
present in electron beam excitation similar to that recorded in
light scattering. By energy conservation, any electron-induced
CL signal corresponds to an energy loss signal as EELS
includes both radiative and nonradiative energy losses in the
system. The electron excitation and the EELS signal therefore
include features of a similar mode hybridization and near-field
interference effect, although the spectral signature is not
readily observable in EELS.

However, the CL signal differs in key ways from the
light scattering spectrum [Fig. 8(a)]. Specifically, the low-
energy onset of the CL peak is more gradual, exhibiting
a positive slope at lower energies, than in light scattering.
The light scattering peak exhibits a relatively sharp onset
as expected for pronounced destructive interference effects
at energies just below the resonance energy. Different mode
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FIG. 8. (Color online) Simulated (a) CL and Qsca spectra for Rod
A. The electron beam was positioned 4 nm from the tip of the rod
(point marked Ey in Fig. 2). Black squares depict simulated data
points connected by a cubic spline (solid lines). (b) Simulated EELS
and CL line profile for Rod A (no substrate) at 1.98 eV (m = 5) and
4 nm from the side of the rod.

hybridization is required to account for the onset as the
transition from destructive to constructive interference occurs
at a lower energy in CL than in the light scattering spectrum.
Furthermore, the CL spectrum exhibits slight asymmetry in
peaks for both odd and even modes, in contrast to recent light
scattering experiments and simulations [36]. The asymmetry in
the CL signal confirms that the electron beam excites coupled
modes, and that mode coupling, though producing a distinct
spectral response compared to light scattering, is present in
electron excitation.

Verellen et al. have recently reported that light excitation
results in no interference for even modes due to a symmetry
mismatch with the plane-wave-induced dipolar continuum
background [36]. For electron excitation, however, the il-
luminating field is not dipolar, and consequently detection
of the interaction between series of modes of even and
odd symmetry is possible as identified in the simulated CL
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FIG. 9. (Color online) Near-field distributions in a plane 40 nm above Rod A (no substrate) for (left) plane-wave light and (right) electron
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z | are shown for each

energy. White circles indicate key points of comparison at 1.90 and 2.02 eV. Intensities were rescaled for each image to highlight relative
intensities at each energy. The rod shape is illustrated by a dotted white outline.

spectra. Modal interaction is still restricted by symmetry
to modes of the same symmetry (i.e., m = 1,3,5, . . . and
m = 2,4,6, . . . can interact) as near-field interference effects
are linked to spatial and spectral overlap [41] and modes of
different symmetry exhibit minimal spatial overlap and, like
a sum of sine and cosine functions [36], will not exhibit
spatial amplitude “beating” modulation. It is, moreover, a
similar symmetry mismatch with the incident dipolar field
of plane-wave excitation that precludes the detection of mode
hybridization and associated interference phenomena in the
far field in light scattering [36]. Mode hybridization in the
near field between even modes is in principle similar to
hybridization of odd modes, and the asymmetric far-field
spectra for electron excitation captured in the simulated CL
spectra confirm this effect. These observations encourage
additional investigation of the hybridization of even modes
and their associated near fields when driven by plane-wave
light excitation. Such studies are beyond the scope of this
examination of electron-driven modes where simulations do
exhibit asymmetric line shapes in the far field (CL spectra)
indicative of mode hybridization and Fano-like interference
effects for both even and odd modes in silver nanorods.

The different responses of the silver nanorod recorded for
electron beam and light excitation, including the consistency
of the CL spectral asymmetry for both odd and even modes and
the lower-energy onset of radiative processes detected by CL,
suggests a significant difference in the underlying near-field
interaction of interfering modes and their detection in the
far field. These differences contrast with reports identifying
similarities in EELS and light scattering of Fano-resonant
cubes [13] and present a distinct case from multiparticle
systems where the spatial separation of interacting modes
allows for unique interference effects due to the electron
position [11].

The simulated CL signal also exhibits nearly identical
amplitude modulation in a line profile along the rod [Fig. 8(b)].

The ends of the rod give rise to more signal in CL than
EELS, consistent with the relative insensitivity of EELS to the
fields at the rod tips which are predominantly perpendicular to
the electron trajectory whereas CL signals record the fields
radiated into the far field in all directions. In both cases,
there is also a geometric effect in the line profiles in that
the straight-line selection of trajectories for the line profile
(Fig. 3) results in greater displacements from the rod surface
in the line profile near the tip. Consequently, the low signal
at the ends of the line profile is also due to the greater
distance from the electron trajectory to the rod surface at
trajectories in the vicinity of the rod tip than for trajectories
along the rod side. As a purely radiative signal, the amplitude
modulation observed in CL, and its close correspondence
to that in EELS [Fig. 8(b)], indicates the spatial amplitude
modulation is independent of the particular detection scheme
and is likely related to the spatial near-field distribution of
the mode or modes excited in the rod. Experimental work as
well as light scattering and CL simulations on similar silver
nanorods have been reported previously by Gómez-Medina
et al. [26]. Here, we employ CL simulations as a tool to
further analyze the electron-excited response of the silver
nanorods examined with EELS in Sec. III to understand
the radiative and nonradiative contributions to the EELS
signal. The work by Gómez-Medina et al. corroborates the
simulations in Figs. 7 and 8, likewise presenting both the
asymmetric line shape and the spatial amplitude modulation in
CL [26]. Section V presents additional analyses to understand
the origin of these effects due to the hybridization of rod
modes.

For the case of odd modes, direct comparison of the re-
spective near-field responses to plane-wave light and electron
excitation is possible. The light- and electron-induced near
fields at three energies spanning the m = 5 resonance are
presented in Fig. 9. The energies 1.90, 1.96, and 2.02 eV
were selected to correspond to energies just below, on, and
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above the resonance energy at 1.96 eV. Changes in the near-
field amplitude distribution are apparent across the resonance
energy.

The field amplitude at the tips in all cases is relatively weak
in Fig. 9 as the field is plotted at a plane above the rod, and
the curvature at the rod ends results in a greater distance to
the plane at the tips. For plane-wave light excitation (Fig. 9,
left), white circles emphasize where the near-field intensity
at the tips changes across the Fano-like resonance from 1.90
to 2.02 eV. The near field is symmetric from one end of the
rod to the other. At 1.90 eV, there is destructive interference,
resulting in a pronounced decrease in the near-field intensity
at the rod tips. At 2.02 eV, there is constructive interference
and enhanced signal at the rod tips. In contrast, for electron
beam excitation, white circles indicate similar relative near-
field intensities above and below the resonance energy, but
appearing on opposite ends of the rods for fields above and
below the resonance energy. The switch in location of this near-
field intensity can be attributed to the noted phase changes in
Fig. 7. The electron trajectory is 4 nm from the left tip in these
near-field plots. For the electron beam excitation, asymmetry
from left to right appears due to the decay of the driving
field as a function of distance from the electron trajectory. In
Fig. 9, the scattered field is plotted; in the case of the electron
beam, the incident field exhibits high intensity at the trajectory
(marked with a cross). At 1.90 eV, the total field is strong at
the tip near the electron trajectory and the scattered field is
strong at the opposite end where the incident field is weaker.
At 2.02 eV, the phase flips to opposing the incident field of
the electron and the scattered field is therefore intense at the
electron beam trajectory acting back on the incident field. The
energy dependence of the near field is dissimilar to that for
plane-wave light excitation as there is no clear damping of the
net dipole moment. At 1.90 and 2.02 eV, there is no apparent
cancellation of the electron-induced fields at the rod tips. In
contrast, for light excitation the field amplitude at the rod
tips is negligible at 1.90 eV, consistent with the destructive
interference visible at 1.90 eV in the plane-wave excited near
field.

Direct interpretation of the near-field response to electron
beam excitation is not straightforward given two contributions
to the spatial amplitude: (1) the incident field decay as a
function of distance from the electron trajectory and (2) the
induced polarization acting back on the particle. In DDA terms,
there are contributions to the total amplitude modulation in
the electron excitation case from the spatial modulation of
the incident field and from the induced (scattered) electric
field. Here, only the scattered field is presented, but its
response depends on the incident driving field. It is possible
to compare maps of the EELS signal with light scattered
fields because an EELS map can be related to potentials in
the vicinity of a particle [65] or a photonic local density
of states, at least for systems that exhibit approximate two
dimensionality and translational invariance along the elec-
tron trajectory [66]. The comparison of induced near fields
presented here suggests a distinct near-field response of the
nanorod to the two excitations and begins to illustrate differ-
ences in the spectral signals. These differences are explained
more fully in terms of the dipole moment along the rod in
Sec. V.

V. EXTENDED COUPLED OSCILLATOR
(ECO) MODELING

The near-field response can be captured more quantitatively
by examining the net dipole moment along the rod axis.
The dipole moment represents the response of the system to
excitation separately from a particular detection scheme. This
section serves (1) to identify differences in the rod response
to light and electron excitation in order to explain the noted
differences in spectral line shape in light scattering, CL, and
EELS (Sec. IV) by decomposition of the total response into the
contributions of the interacting longitudinal modes of the silver
rod and (2) to assess the expected spatial amplitude modulation
for the hybridized modes observed in electron excitation.

Figures 10(a) and 10(b) present the net dipole moment
along the rod axis (y axis) as a function of energy for both
light scattering and electron beam excitation for the first
two odd modes m = 1 and 3. The relative polarization of
the m = 3 mode stands out as a pronounced difference. For
light scattering, the m = 3 mode is only weakly polarized.
The difference in relative polarization is even more striking
at the m = 5 resonance [Figs. 11(a) and 11(b)]. Moreover,
for light excitation the dipole moment approaches zero just
before the m = 5 resonance. This energy dependence for light
excitation is again consistent with destructive interference
below the resonance energy and less radiation into the far field
at energies below resonance. For electron beam excitation,
the m = 5 mode is more strongly polarized and exhibits a
nearly equal positive dipole moment below the resonance
energy and negative dipole moment above the resonance
energy [Fig. 11(b)]. These differences in the energy-dependent
net dipole moment specifically underscore that the near-field
interactions between the series of longitudinal modes in
the nanorod differ depending on the excitation. The distinct
relative excitation of modes for light and electron excitation
is consistent with previous work identifying different rela-
tive weighting factors for surface plasmon modes of metal
nanospheres [67] though the analysis here examines different
relative polarizations for coupled modes.

Reconciliation of these differences for light and electron
excitation, and the relatively more symmetric line shape in CL
relative to Qsca, is possible by considering the ECO model for
Fano resonances in systems where both modes are driven by
an external force [51,63]. Coupled oscillator modeling is an
analogous approach to other strategies for decomposing the
relative phase contributions of the modes including methods
such as projecting the polarization response onto a vector basis
as recently proposed by Iberi et al. [13]. Coupled oscillator
modeling is particularly well suited to the case of the rod as no
expectation of the vector basis is required and the fitting results
can be directly related to an expected scattering spectrum.
Once the relative phases of interacting modes are determined,
a simple Fabry-Pérot model for the spatial distribution can
be applied, similar to the Fano-resonance analysis using
oscillator modeling and spatial field distributions reported by
Lovera et al. [51].

Figure 10(c) depicts this model for a two-oscillator system,
each with a resonant frequency ω1,2 coupled by a spring system
described by the constant g [51]. For a two-oscillator system,
the equations of motion can be written in terms of the normal
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FIG. 10. (Color online) ECO model fitting of the dipole moment data from DDA simulations for Rod A. In each left panel, the dipole
moment Ptot along the y axis of the rod is plotted as well as best-fit net dipole moment Ptot for the ECO model [Eq.(5)]. In the middle panels,
the real coefficients for the two oscillators are plotted, and the signs of the coefficients are highlighted at the higher-energy resonance. The
right panels show the corresponding scattering spectrum calculated from the ECO model |C1 + C2|2 for (a) light scattering (m = 1, m = 3),
(b) EELS (m = 1, m = 3). (c) Illustration of the two-oscillator model with resonant frequencies ω1,2. The oscillators are coupled by a set of
springs described by the constant g [Eq. (5) is written in normal coordinates], the coefficients C1,2 describe the displacement and phase of the
oscillators, and the arrows indicate the driving force acting on each oscillator. (d) Comparison of scattering line shape at the m = 3 resonance.

modes of the system as [51]

ẍ1 + γ1ẋ1 + ω2
1x1 + gx2 = 0.5

...
P tot + α1Eext,

(4)
ẍ2 + γ2ẋ2 + ω2

2x2 + gx1 = 0.5
...
P tot + α2Eext,

where dot notation is used to represent first, second, and third
derivatives with respect to time, x1,2 are the displacements
in normal coordinates (i.e., the sum and difference of the
displacements of the individual oscillators), γ1,2 are damping

parameters, α1,2 are the polarizabilities, and Eext is the driving
field. Subscripts denote each of the two oscillators. The total
dipole moment Ptot is given as [51]

Ptot = P1 + P2 = α1x1 + α2x2. (5)

For a driving force of the form Eext = E0e
iωt , solutions exist

of the form x1,2 = C1,2(ω)eiωt [51]. The complex coefficients
C1,2 are calculated from Eq. (4), and the signs of the real parts
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FIG. 11. (Color online) ECO model fitting of the dipole moment data from DDA simulations for (a) light scattering and (b) electron
excitation of Rod A (m = 3, m = 5). In the left panel, the dipole moment Ptot along the y axis of the rod is plotted as well as best-fit net
dipole moment Ptot for the ECO model [Eq. (5)]. In the middle panel, the real coefficients for the two oscillators are plotted, and the signs of
the coefficients are highlighted at the higher-energy resonance in the right panel. (c) Hybridization diagram for interacting Fabry-Pérot basis
modes ϕm and the resulting hybridized mode ψm at the m = 5 resonance. (d) Comparison of the spatial amplitude modulation in the simulated
EELS line profile and the spatial amplitude determined from a linear combination of Fabry-Pérot modes multiplied by the coefficients C1 and
C2 extracted by ECO model fitting in (a).

of C1,2 indicate whether the oscillator modes are in or out
of phase at a particular energy [51]. Notation and units are
adopted here from Ref. [51].

This model resembles the case of the nanorod where
sequential modes of the same symmetry are driven by either
light or a passing electron. In this work, the total dipole
moment rather than the scattering spectrum was fitted to
the ECO model. Equation (5) was therefore fitted to the net
dipole moment as shown in Figs. 10(a) and 10(b). To fit

the equations for a two-oscillator model, the lowest-energy
interacting modes were first selected for comparison (m =
1,m = 3) (Fig. 10). The two-oscillator model is best suited to
the first two modes of the series since the ECO model describes
systems where the lower-energy resonance is not already
coupled to a separate oscillator. For higher-energy modes, the
lower-energy mode interaction may not be negligible (e.g.,
for m = 3 and 5, m = 1 may have a significant effect on
m = 3).
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TABLE I. Fitting parameters for ECO modeling of light scattering
and EELS (m = 1, m = 3). Relative units are indicated in terms of
energy units (eV) following Ref. [51].

Light scattering EELS
Parameter (m = 1, m = 3) (m = 1, m = 3)

E0 1.0 1.0
ω1 (eV) 0.450 0.450
ω2 (eV) 1.34 1.34
g (eV2) −4.41 × 10−4 −9.29 × 10−4

γ1 (eV) 0.0293 0.0291
γ2 (eV) −4.41 × 10−3 −0.0401
α1 (eV−1) 0.153 0.153
α2 (eV−1) 0.0531 0.0914

Figure 10 shows the best fits of Eq. (5) (Ptot) to the
simulated dipole moments as well as the corresponding
energy-dependent coefficients C1,2 and the calculated scat-
tering spectrum |C1 + C2|2 [51,63]. The corresponding fit
parameters are presented in Table I. Units in Table I follow
the convention in Ref. [51]. In accordance with the noted
higher relative polarization of the m = 3 resonance for electron
excitation, the polarizability is nearly twice that for light
excitation at m = 3. The associated damping parameter also
changes slightly, and the magnitude of the coupling constant g

increases. The negative sign for damping can be attributed
to the formulation of Eq. (4) in normal coordinates; the
underlying damping parameters of the individual oscillators
are physically positive, but the combined damping parameter
of the normal coordinate, taken as the difference of the
oscillator positions, allows for negative values. The coupling
constant g can also be negative as reported previously [51],
suggestive of repulsive interactions. The signs for these
parameters for light scattering and electron excitation are the
same, indicating consistency between the two excitations.

Specifically, negative γ values (Table I) do not immediately
appear to be physical. However, when the equations of motion
are written in normal coordinates as for the ECO model (x1 =
z1 + z2 and x2 = z1 − z2 where z1,2 is the displacement of the
individual oscillators), the damping constants likewise become
defined in terms of the sum and difference of the oscillators,
specifically the sum and difference of the first derivatives:

γ1 = �1ẋ1 + �2ẋ2

ẋ1 + ẋ2
,

(6)

γ2 = �1ẋ1 − �2ẋ2

ẋ1 − ẋ2
,

where �1,2 here refer to the internal damping parameters for
the individual oscillators. Consequently, γ2 will be negative for
small �2 and ẋ2 > ẋ1 or large �2 and ẋ2 < ẋ1. Negative values
are physically possible in this formulation. Further, γ1 was
allowed to remain negative for the m = 3 mode for the (m = 3,
m = 5) coupling (see Table II) as its value should remain
close to the γ2 value for the (m = 1, m = 3) coupling [i.e.,
γ EELS(m = 3) ≈ −0.04 and γ Light(m = 3) ≈ −4 × 10−3].

In the application of the ECO model to the case of electron
excitation, in keeping with relative differences in modal
weighting factors for light and electron excitation [67], the

TABLE II. Fitting parameters for ECO modeling of light scatter-
ing and EELS (m = 3, m = 5). Relative units are indicated in terms
of energy units (eV) following Ref. [51].

Light Scattering EELS
Parameter (m = 3, m = 5) (m = 3, m = 5)

E0 1.0 1.0
ω1 (eV) 1.34 1.34
ω2 (eV) 1.98 1.98
g (eV2) 0.140 0.140
γ1 (eV) −4.07 × 10−3 −0.0377
γ2 (eV) −0.0543 −0.0581
α1 (eV−1) 0.0550 0.0859
α2 (eV−1) 0.00970 0.0423

polarizability α can be considered an effective polarizability
αeff = αelαin where the intrinsic, unvarying polarizability αin

due to the mode and material is modified by the particular
responsivity to the electron beam excitation αel .

As a result of these fits, the coefficient C1 approaches and
even assumes slightly positive values at energies just below the
m = 3 resonance. This effect is even more pronounced for C1

in the (m = 3,m = 5) system, where the lower-energy mode
coefficient C1 assumes positive values at energies just below
the m = 5 resonance [Fig. 11(b), right panel]. In contrast, for
light scattering, the coefficient C1 remains negative at the m =
5 resonance energy [Fig. 11(a)], consistent with the asymmetry
noted in the net dipole moment. In the light scattering case,
there is destructive interference between C1 and C2 just below
the resonance energy and constructive interference above the
resonance energy. For electron excitation, there is a significant
reduction in destructive interference [Fig. 10(b)] or even
constructive interference [Fig. 11(a)] below the resonance
energy. The significantly more symmetric peak shape recorded
in EELS and CL is consistent with the ECO model fitting, sug-
gesting a change in the characteristic destructive interference
signature just below resonance [Fig. 10(d)].

For electron excitation, the peak shape at the m = 3 reso-
nance is relatively symmetric, allowing the further application
of the ECO model to the m = 3 and 5 resonances [Fig. 11(b)].
The quality of the fit for modes m = 3 and 5 (Fig. 11) is
reduced relative to Fig. 10 as the system is only partially
described by the ECO model in this case (m = 1 not included
in the fit), particularly in the case of light excitation where
the m = 3 resonance is more strongly affected by the m = 1
mode. Fitting results are presented in Table II. For additional
interacting modes, the system of equations cannot be written
simply in terms of normal coordinates, precluding fitting
with fixed resonance energies. The two-oscillator ECO model,
however, is retained here for its intuitive analysis and to assist
in multiparameter fitting. It provides a useful semiquantitative
interpretation of the difference between light scattering and
EELS and helps to identify the underlying physical differences
in the observed near-field response characteristics of the
nanorod to light and electron beam excitation.

According to these ECO modeling results, the spectral
peaks in electron excitation of m = 5 correspond to the
in-phase summation of longitudinal Fabry-Pérot modes above
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and below resonance. That is, the spatial amplitude modulation
should be well described as a linear combination of the
spatially defined Fabry-Pérot modes as in other hybridized
Fano-resonant single particles [12,55]. As suggested by López-
Tejeira et al., the Fabry-Pérot modes can be written as basis
functions given by [41]

ϕn(x) = sin (nkx), (7)

where ϕn is the spatial distribution of the surface charge (or
real part of the normal component of the electric field) as
a function of position x, k is the spatial frequency given as
k = π/Leff where Leff is the effective length of the rod, and n

is an integer given as n = m + 1. The interaction of two modes
is then given as

ψm(x) = anϕn + an−2ϕn−2, (8)

where now ψm is the hybridized mode corresponding to the
observed mode m and an is an amplitude coefficient. Applying
a similar approach as in Ref. [51], the coefficients C1 and C2

from ECO model fitting can be applied as the coefficients an

and an−2. Then, the real part, in keeping with the consideration
of the real part of the electric field as a measure of the surface
charge [41,51], becomes

ψm(x) = Re{C1}ϕn + Re{C2}ϕn−2. (9)

The results of this analysis for the m = 3 and 5 modes
is schematically represented in Fig. 11(c) (for m = 5, n =
6, n − 2 = 4). This approach adheres to the principles of
surface plasmon mode hybridization schemes [68], in that
there are two spectral features that are effectively “bonding”
and “antibonding” modes. At the m = 3 energy, Re{C1} and
Re{C2} have opposite signs and the result is the lower energy
or “bonding” state. At the m = 5 energy, Re{C1} and Re{C2}
have the same sign and the result is the higher energy or
“antibonding” state. Figure 11(c) presents a comparison of
the spatial amplitude at an energy just below the m = 5
resonance, an energy typically characterized in Fano-resonant
systems by destructive interference and Re{C1} and Re{C2}
with opposite signs. In the electron-excited case, however, the
ECO model fitting results show Re{C1} and Re{C2} have the
same sign [Fig. 11(b)]. Moreover, a direct comparison of the
spatial amplitude modulation determined from the ECO model
applied to Fabry-Pérot basis functions [Fig. 11(d), red solid
line] and the EELS line profile [Fig. 11(d), black squares]
shows remarkable agreement between the spatial amplitude
along the rod length. The rod tips are excluded in this analysis
as the EELS signal is weak and the distance from the tip
to the next antinode is foreshortened. In the line profile, the
electron trajectory is further from the rod surface due to the
curvature of the rod tips (see also Secs. III and IV) and
additionally the surface charges and associated fields curve
three dimensionally at the rod tips resulting in the observed
shortening in the spacing between the antinodes at the tip when
projecting onto a two-dimensional space as in the case of the
EELS signal [xy space in Fig. 3(c)]. The hybridization scheme
in Fig. 11(c) for the “bonding” configuration also suggests the
tips may be damped due to the hybridization at the m = 3
resonance. However, this hybridization does not account for
the contribution of the m = 1 resonance on the m = 3 spatial
distribution which would enhance the intensity at the tips.

Section VII examines a more flexible analysis to account for
the interaction of more than two modes.

In this analysis, the spatial amplitude modulation appears
to be fully explained by the ECO modeling results. While
other contributing effects cannot immediately be ruled out,
the phase analysis from the ECO model suggests that for any
approximately sinusoidal basis set, amplitude modulation will
be introduced by the hybridization present in the electron-
excited rod and observed in the CL spectra [Fig. 7(d)] and
dipole moments (Figs. 10 and 11) determined by DDA
simulations. Notably, the ECO model fitting was performed
for an electron trajectory at the rod tip, where all modes are
excited. The spatial dependence of the EELS signal, however,
is well described at least in the quasistatic approximation
in terms of charges associated with the eigenmodes of the
nanoparticle [37,69]

�(R0,ω) = 4

πv2

∑
i

Im[−gi(ω)]

∣∣∣∣
∮

ds σ i(s)e−is‖(ω/v)

× K0

(
ω|R0 − s⊥|

v

)∣∣∣∣
2

, (10)

where here R0 is the position vector defining the electron
trajectory, Im{−gi(ω)} gives a frequency-dependent spectral
intensity associated with the eigenmode i, σ i are the surface
charges, and s defines the particle boundary with components
parallel and perpendicular to the electron trajectory, and K0 is
the modified Bessel function of the second kind.

In the framework of the modal decomposition [37], the
unhybridized basis modes ϕn should be considered as a
description in a different basis than that of the eigenmodes.
Boudarham and Kociak have reported quasistatic calculations
for the electromagnetic local density of states (EMLDOS) of
a rod exhibiting spatial amplitude modulation of the signal
in rods with dissipative dielectric functions [37]. The near
fields associated with the eigencharges already exhibit spatial
amplitude modulation, suggesting the eigenmodes may be the
hybridized modes considered here. Recent analysis of Fano
resonances in silver cubes [13] suggests that Fano-resonance
phase analysis requires the appropriate basis, and in the
case of these silver rods the Fabry-Pérot modes given in
Eq. (7) appear to be suited for the phase analysis necessary to
explain the line shapes of CL and light scattering and for the
spatial amplitude modulation observed in CL and EELS. The
eigenmode description suggests orthogonal modes [37], and
Eq. (10) does not allow for coherent summation of eigenmodes
as the sum is taken outside the squared modulus and given that
Im[−gi(ω)] must be positive if each contribution to the sum
gives a positive probability.

The silver nanorods examined here exhibit interference
signatures in CL, suggesting coherent summation of modes.
Additionally, the spatial amplitude modulation signatures
are present in experimental and simulated data before and
after processing to separate the effects of spectral overlap
(incoherent summation) by NMF decomposition of experi-
mental results or peak fitting of simulated spectra [46]. As
such, the unhybridized modes do not appear to represent an
orthogonal basis as enumerated in the quasistatic equations.
The hybridized modes ψm may provide such a basis. The
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differences identified between light and electron excitation
suggest that the particular incident field plays a role in
hybridization, and so retardation effects may also need to be
included to fully explain the results of the DDA simulations
and EELS experiments (see also Sec. VI). Critically, even
if operating on a different basis, Eq. (10) establishes a
qualitative connection between the surface charges and the
expected spatially varying EELS signal. Equation (10) gives
this connection between complex surface charges and the
EELS signal as the squared modulus of a surface integral
over the charges and terms related to the exciting electron
beam with the sum over eigenmodes taken outside the squared
modulus. The appearance of hybridization effects in electron
spectra (CL spectra in particular) invites further investigation
to account for interference effects in analytical expressions
describing the quasistatic or fully retarded cases.

Here, in keeping with the charge analyses in Refs. [41,51],
ψm is defined as in Eq. (9) and |ψm|2 is plotted in Figs. 11(c)
and 11(d). The phases of the interfering modes determined
from ECO model fitting and their application to the Fabry-
Pérot modes identified in Eq. (7) and Ref. [41] describe the ob-
served spatial amplitude modulation in EELS simulations and
experiments and indicate that spatial amplitude modulation is
a signature of mode hybridization under electron excitation
marked in the spectral domain by asymmetric line shapes
in CL.

VI. TUNING NANOROD MODE HYBRIDIZATION

In order to further elaborate the connection between the
observed Fano-like resonance in the spectral domain and
the spatial amplitude observed in EELS simulations and
experiments, the tuning of these two observables was examined
by exploring the effect of internal damping and the incident
electron beam energy. These parameters alter the spectral
overlap of the interacting modes and modify the incident field,
respectively, and as such should (following the explanations
offered in Sec. V) change the signatures of hybridization of
longitudinal rod modes in the spectral and spatial domains.
The line shape of individual peaks can be analyzed in terms of
the Fano line shape [1]

I (E) = (q� + E − Eres)2

(E − Eres)2 + �2
, (11)

where I is the signal intensity as a function of energy E, �

describes the width of the peak, Eres is the resonance energy,
and q is the Fano parameter. The Fano or asymmetry parameter
q determines both the intensity and the asymmetry of the
peak [1,70]. As the parameter q varies from 0 to 1, the line
shape evolves from a dip on resonance to an asymmetric peak,
and as the parameter varies from 1 to ∞ the peak tends toward
a symmetric Lorentzian line shape [70]. Here, we modify the
Fano line shape to account for any background in the CL signal
with a simple linear background across the width of the peak:

ICL(E) = (qCL� + E − Eres)2

(E − Eres)2 + �2
+ (aE + b), (12)

where now ICL is the CL intensity as a function of energy E

and a and b give the slope and offset of a linear and incoherent
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FIG. 12. (Color online) (a) EELS line profiles along Rod A
(4 nm offset) with varying internal damping parameter � calculated
with a Drude model dielectric function. (b) Far-field light scattering
spectra for zero internal damping and a best-fit Drude model dielectric
function for silver. (c) Near fields at planes (c) 40 nm above the rod
on resonance with the m = 5 mode at 1.97 eV for these simulations.

background. The high quality of the fit of Eq. (12) to simulated
CL spectra is depicted in the inset of Fig. 13(a).

Figure 12 presents EELS and light scattering simulations
for varied damping parameter � for a Drude model dielectric
function. This Drude model dielectric function matches the
Johnson and Christy data [53] for � ≈ 0.02 [55]. For the
EELS signals [Fig. 12(a)], the spatial amplitude modulation
increases with additional internal damping. For reduced
internal damping, the spatial amplitude modulation remains
unchanged. Simultaneously, the asymmetry parameter for the
CL signal qCL decreases from 3.94 to 1.43 with increased
damping, corresponding to a significant increase in the peak
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asymmetry, and increases slightly to 4.98 for reduced damping.
While it appears that the absence of a change in the spatial
amplitude modulation for reduced damping may contrast with
the change in the peak asymmetry, comparison with light
scattering simulations [Figs. 12(b) and 12(c)] suggests that
the spatial amplitude modulation in both light scattering and
EELS may be at a limiting case for internal damping in the
case of the particular simulated rod (Rod A). In fact, light
scattering simulations for � = 0, not feasible for electron
excitation due to slow numerical convergence, confirm that
even with no internal damping, the far-field scattering spectrum
exhibits an asymmetric line shape [Fig. 12(b)]. Moreover,
the light scattered near field [Fig. 12(c)] shows imperceptible
differences from � = 0 to 0.02. Increased damping (� = 0.20)
results in noticeable changes to the near field in light scattering
as for the EELS line profiles. As discussed in Sec. V, the
phase relationships and relative mode polarization differ for
light and electron excitation, but the qualitative comparison
here emphasizes similarity in the damping dependence. In
the case of Rod A, the damping dependence suggests that
increasing the peak widths increases the coupling between
the modes, resulting in more asymmetric line shapes in CL
and light scattering. In the spatial domain, increased damping
and increased coupling correspond to an increased modulation
of the antinode intensity for EELS and light scattering. In
the simulations here, the peak widths are due to intrinsic
internal damping properties of the material and are not due
to experimental broadening due to the finite width of the ZLP
which contributes to incoherent blurring of the spectra only
(see also SM [46]). It is clear from the line-shape analysis that
the interference effects approach a limiting case as a function of
internal damping as the � tends toward 0; the spatial amplitude
modulation likewise reaches a limiting case although there is
not a linear correspondence between the spectral and spatial
effects. It should be noted that the scaling of the Fano parameter
is also nonlinear, in that symmetric Lorentzian peaks are
recovered only in the limit as q tends to ∞ for Eq. (11). The
increase in q from 3.94 to 4.98 for smaller internal damping
parameter � reflects a relatively less significant change in
peak asymmetry than the decrease to 1.43 for greater internal
damping. Radiative damping is still present with no internal
damping, and so likely explains the persistence of interference
between the modes at � = 0. Additional simulations on
higher-order modes with reduced radiative damping exhibit
less spatial amplitude modulation [46].

In principle, removing damping effects altogether might
present a test case to examine these near-field interference
effects in silver rods. However, in order to remove damping en-
tirely, the peak widths would simultaneously tend toward zero,
limiting the feasibility for numerical calculations scanning the
energy spectrum. The asymmetry in the CL and light scattering
peaks even at very low damping suggests that interference
effects are still present for narrow and spectrally resolved peaks
in this system. The ECO model fitting (Sec. V) highlights that
coupled oscillators with resonances separated significantly in
energy can still act on each other, suggesting spectral linewidth
may not be a simple predictor of mode interaction.

The damping dependence demonstrates that the spatial
amplitude modulation and spectral asymmetry for electron
and light excitation is not purely a geometric effect due to

the shape of the rod. The damping dependence, however,
does not on its own rule out dissipation in the rod as
an independent source of the spatial amplitude modulation.
Consequently, separate simulations were carried out to tune
the hybridization of the rod modes by altering the exciting
field only. With electron excitation, the incident field can be
tuned readily by adjusting the incident beam energy. In the
frequency domain, the electric field components of the incident
electron are given in terms of modified Bessel functions
with arguments inversely proportional to the electron velocity
(1/vel) [59]. At lower incident electron energies and lower
incident electron velocities, the arguments of the modified
Bessel functions increase and consequently the fields exhibit a
more localized spatial distribution at lower electron energies.
Figure 13(a) presents a series of CL simulations for Rod A (no
substrate) for 80, 200, and 300 keV energies corresponding
to typical accelerating voltages in STEM-EELS experiments.
The intensity of modes m = 4–6 increases as the incident
electron energy is reduced. These results are consistent with the
energy dependence of higher-order modes in spheres [71]; the
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FIG. 13. (Color online) (a) CL spectra for Rod A (no substrate)
for 80, 200, and 300 keV incident electron beam energies. The inset
shows example fitting of each peak (m = 4–6) using Eq. (12) for the
300 kV CL spectrum. (b) The Fano parameter qCL determined by
fitting Eq. (12) to the spectra in (a) for modes m = 4–6.
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lower-energy electron couples more efficiently to higher-order
modes because its field is more local and therefore matches
the higher spatial frequencies required to couple to multipolar
modes. Figure 13(b) shows the associated values of qCL

determined by fitting the spectra in Fig. 13(a) to Eq. (12).
The concomitant changes in incident electron energy and
the Fano parameter qCL highlight that when the relative
polarization of modes in a coupled system changes so too
does the observed line shape. In the ECO model (Sec. V),
greater polarization of the higher-energy mode for electron
excitation relative to plane-wave light corresponds to reduced
asymmetry in the scattering spectrum [Figs. 10(a) and 10(b),
right panels]. In Fig. 13, as the electron energy is reduced,
these higher-order modes are excited more intensely and the
spectral line shapes become more symmetric (qCL is higher
for lower incident electron energies). This tunability of the
CL line shape with electron energy underscores the excitation
dependence of the Fano-like resonance signature in these
rods.

To correlate the effect of the incident electron energy on
the spatial amplitude modulation observed in EELS, a simple
phenomenological measure is given by the contrast CEELS:

CEELS = Imax − Imin

Imax + Imin
, (13)

where Imax refers to the simulated EELS signal at the antinode
(the peak in the line profile) with the greatest intensity and Imin

refers to the simulated EELS signal at the antinode with the
lowest intensity, excluding the tips in the line profile where the
signal is low for all modes.

Table III presents this antinode contrast and compares the
effect of incident electron energy on qCL and on CEELS. The
correlation between electron energy and antinode contrast
is consistent for each of the three modes, with antinode
contrast increasing as the Fano parameter qCL decreases and
the line-shape asymmetry increases from 80 to 300 keV
incident electron energy. The particular values of CEELS are
not directly comparable between the different modes as they
describe antinodes at different positions along the rod. In this
system, the changes in line-shape asymmetry directly describe
a modification of the interaction of interfering modes, and the
reduced antinode contrast at lower incident electron energies
corresponds to increasingly equal intensity at all antinodes

TABLE III. Comparison of the CL Fano parameter qCL and EELS
antinode contrast CEELS for incident electron energies of 80, 200, and
300 keV and modes m = 4–6 (Rod A).

Mode Electron energy (keV) qCL CEELS

80 5.72 0.0058
m = 4 200 5.10 0.059

300 4.85 0.10

80 3.52 −0.0032
m = 5 200 3.11 0.033

300 2.95 0.051

80 2.58 0.020
m = 6 200 2.27 0.071

300 2.14 0.11

along the rod. Moreover, this consistent decrease in antinode
contrast at lower incident electron energies for each mode
matches experimental observations carried out on longer rods
at 80 keV where minimal spatial amplitude modulation was
observed [25]. The CL simulations function as a tool for
assessing the changes to the Fano-like interference effects as
a result of mode hybridization in these silver rods, and the
parameter qCL appears to be a consistent predictor of changes
in the simulated EELS antinode contrast CEELS.

Taken together, the tunability of the line-shape asymmetry
and concomitant changes in spatial amplitude modulation
present a strong case for identifying the spatial amplitude
modulation as a signature of the Fano-like interference effect
in the longitudinal modes of these silver nanorods. Damping
properties of the rod are not modified when changing the
electron energy, and so internal damping of the surface plas-
mon does not explain the increasingly equal spatial intensity
Fabry-Pérot patterns observed at lower electron energies. In
fact, the contrast even changes sign (i.e., the antinode positions
corresponding to Imax and Imin are reversed) for m = 5 at
80 keV (Table III). Such a change in contrast is consistent
with the hybridization model, explained as a change of the
relative weighting factors of the contributing modes such
as an increasing role of m = 7 and higher-order modes in
the hybridization scheme. Geometric properties of the rod
or material properties (damping) do not explain both the
damping and the electron energy dependencies observed for
the spatial amplitude modulation, whereas the Fano parameter
and associated trends in line-shape asymmetry explain the
associated changes in spatial amplitude modulation for the
nanorods examined here.

The length of the rod provides yet a further tunable
parameter, and for longer rods, size effects lead to greater
spectral separation of the modes as the modes red-shift
to lower energies. For the same mode m, the interacting
modes are separated more in energy for longer rods, and this
greater energy separation should reduce the magnitude of the
interference effect. Spatial amplitude modulation does in fact
decrease for the same mode m (see SM [46]), consistent with
the expected reduction in coupling between the interfering
modes for increased rod length. This section is limited in
scope to a perturbative examination of the effects of changes
to material properties and the exciting field on simulated
CL line-shape asymmetries and EELS spatial amplitude
modulation for the silver rods examined in Secs. III–V.
More extensive studies of different rod lengths, materials,
and incident electron energies both through simulation and
experimental observation alongside further experimental work
investigating the CL line shape and correlated light and
electron studies will be required to fully describe the Fano-like
interference effects in nanorods more generally. Cumulatively,
considering the spatial amplitude modulation determined from
the ECO model (Sec. V, Fig. 11) as well as the consistent
trends in tuning the damping and electron beam excitation, the
spatial amplitude modulation in EELS represents a signature
of the Fano-like interference in the silver nanorods examined
here. Other effects, as yet not explained, might contribute as
well, but the interference effects observed for electron beam
excitation by CL describe a near-field spatial interference
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FIG. 14. (Color online) Simulated line profiles for Rod A (black
squares) and results of fitting Eq. (14) to the simulated profiles
(red lines). Equation (14), a sum of sine functions, describes the
relative contributions of interfering modes present in the EELS signal
(excluding the rod tips) for (a) m = 4, (b) m = 5, and (c) m = 6.

pattern reproduced in the spatial amplitude modulation of the
EELS signal.

VII. SPATIAL AMPLITUDE MODULATION FITTING

In previous examinations of near-field interference in light
scattering of nanorods, relative contributions of the various
modes were estimated by fitting fields near the rod, a proxy
variable for surface charge density, to a sum of sinusoidal
basis functions [41] (see also Sec. V). The ECO model
approach in Sec. V, however, is largely limited to examining
the interaction of two modes. In electron excitation, the higher-
order multipolar resonances are excited more strongly than in
light scattering (see also Figs. 10 and 11) and there is no general
reason to believe that only a single mode contributes to the
interference effects observed in light scattering and in electron-
excited spectra. In light scattering, the higher-order modes are
excited weakly and the Fano-like resonance appears to be
well described by interaction with the next lower-energy odd
mode only [36,41]. To explore possible contributions of other
modes beyond the ECO model, Eq. (10) can be generalized
as a sum over additional modes and fit to EELS line profiles.
Such an approach, while not as analytical as the decomposition
offered by the ECO model, is more flexible and offers a means
to understand the relative contributions of the interfering
Fabry-Pérot modes of the silver nanorods examined here.

In a similar approach to Ref. [41] and extending Eq. (10)
as a sum over several modes gives

�(x) =
[

m+1∑
n

an sin[nk(x − b)]

]2

+ y0, (14)

where the spatial frequency is likewise k = π/Leff where Leff

is the effective length of the rod, x is the position along the rod,
b is an offset to center the sinusoid at the middle of the rod (x =
0), y0 is an offset on the intensity axis due to any background,
and n is incremented such that only corresponding odd or even
sinusoids from the two preceding modes are included in the
summation (e.g., for m = 6, n = {3,5,7}, and nm = m + 1 =
7). Only two lower-order resonances of the same symmetry
are considered to avoid overfitting [in total, no more than
three sinusoids in Eq. (14)]; lower-energy resonances are more
highly excited and thus contribute predominantly to the ob-
served amplitude modulation. Additional higher-order modes
could be included, but these were not required in a minimal
fitting procedure for modes m = 4-6 for Rods A and B.

The results of fitting Eq. (14) to the simulated line profiles
are shown in Fig. 14. The rod tips are excluded from this
fitting procedure as the signal at the tips is low due to

TABLE IV. Mode coefficients an [Eq. (14)] corresponding to
simulated line profiles plotted in Fig. 14 as well as results for Rod B
(not shown). Relative contributions have been normalized to sum to
unity.

nm nm − 2 nm − 4

m = 4 0.955 0.045
Rod A m = 5 0.965 0.035 ∼0

m = 6 0.870 0.081 0.049

m = 4 0.947 0.053
Rod B m = 5 0.950 0.050 ∼0

m = 6 0.821 0.122 0.051
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FIG. 15. (Color online) Experimental line profiles (dashed black
line) and results of fitting Eq. (14) to the experimental line profiles
(solid red lines) for Rod A (a) m = 4, (b) m = 5 and Rod B (c)
m = 4, (d) m = 5, (e) m = 6. Equation (14), a sum of sine functions,
describes the relative contributions of interfering modes present in
the EELS signal (excluding the rod tips).

TABLE V. Mode coefficients an [Eq. (14)] corresponding to
experimental line profiles plotted in Fig. 15. Relative contributions
have been normalized to sum to unity.

nm nm − 2 nm − 4

m = 4 0.758 0.242
Rod A m = 5 0.848 0.152 ∼0

m = 4 0.851 0.149
Rod B m = 5 0.850 0.150 ∼0

m = 6 0.600 0.234 0.167

various geometric factors (“end effects”) discussed in Secs. III
and IV. The remarkably good fit further corroborates the
mode hybridization suggested by the ECO model. While
Eq. (14) cannot capture in a quantitative way the interaction
of the Fabry-Pérot modes, the dependence of EELS on surface
charges enables the fit using Eq. (14) to offer a signal
proportional to the relative contributions of those modes; these
are shown in Table IV. Fitting results show consistent modal
contributions for Rods A and B, with Rod B exhibiting higher
coefficients for the lower-energy nm − 2 mode, consistent with
its shorter length. As a shorter rod in a lower refractive index
environment, the Rod B modes are more closely spaced in
energy and are expected to be more strongly coupled. The
fitting results match this expectation in the simulated rods.
Moreover, the relative contributions are of the order of a few
percent, consistent with the relative magnitudes of C1 and C2

in the dipole moment fitting results (Table I, Fig. 11).
Notably, for the m = 6 mode, both the m = 2 and 4

modes are necessarily included to reproduce the amplitude
modulation (see also Figs. 4 and 15) [46]. As all of these
modes have the same symmetry, multiple mode orders can
interact. Modes of different symmetry do not interact with
each other in light scattering studies even when “dark” modes
are excited with inclined incident plane waves [36,41]. The
observed amplitude modulation in EELS is likewise consistent
with only modes of the same symmetry interacting. The
majority of analyses presented here have specifically involved
“bright” modes as they more readily lend themselves to
dipole moment analysis, but the nature of the interaction for
electron-driven resonances is not fundamentally different as
both “bright” and “dark” modes give rise to asymmetric CL
line shapes [Figs. 7(d) and 14(a)] and amplitude modulation is
observed for both symmetries. The inclusion of mode m = 2
in fitting Eq. (14) to the m = 6 resonance is also justified in
considering the role of any background continuum as proposed
for light scattering analyses [36]. The illuminating field of
a swift electron exhibits mirror plane symmetry [59] and,
consequently, a continuum background excitation in the rod
will exhibit a charge distribution similar to the m = 2 mode in
order to maintain charge neutrality in the rod.

Experimental line profiles are likewise suited to fitting to
Eq. (14), and similar trends in modal contributions are ob-
served. Results for fitting Eq. (14) to experimental line profiles
are presented in Fig. 15. However, additional experimental
factors including damping due to oxidation, carbon contami-
nation during electron beam exposure, substrate effects, signal
noise, and the inhomogeneous local dielectric environment for
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Rod B alter the relative contributions of the modes (Table V).
The fitting results for simulated line profiles (Fig. 14) are
presented as a self-consistent set with ECO model fitting
results presented in Figs. 10 and 11. The spatial modulation
fitting presented in this section serves to highlight features
consistent with the interaction of more than two Fabry-Pérot
modes in silver nanorods and to provide a simple tool for the
assessment of the contributing modes in experimental data first
presented in Sec. III.

VIII. SUMMARY

The plasmonic modes of silver nanorods with multipo-
lar excitations at visible light energies were examined by
analyzing experimental EELS maps using a decomposition
approach (NMF) to separate the spectral and spatial fea-
tures. These silver nanorods exhibited modes characteristic
of Fabry-Pérot–like standing waves along the long axis of
the rod, although significant modulation of the EELS signal
at antinodes in the standing-wave pattern were noted. Line
profiles were extracted from experimental maps and were
found to be in good agreement with DDA simulations.

To understand the observed spatial amplitude modulation
in the experimental and simulated EELS line profiles,
DDA simulations for light scattering, EELS, and CL
were carried out. Light scattering simulations exhibited a
Fano-like resonance in the spectral domain, consistent with
previous reports on plasmonic nanorods [36,41]. For the
electron-excited spectra, CL likewise exhibited a Fano-like
asymmetry confirming interference effects for electron
excitation. The CL spectra, however, exhibit distinct spectral
asymmetry relative to light scattering spectra, particularly in
the observation of asymmetric spectral peaks for both odd and
even modes. ECO model fitting of the energy-dependent dipole
moment for light and electron excitation revealed differences
in the hybridization of the longitudinal rod modes for light and
electron excitation. Application of the modal phase analysis by
the ECO model to a simple Fabry-Pérot model for the spatial
distribution of the longitudinal modes reproduced the observed
spatial amplitude modulation in EELS and CL signals.

Additional examination of the spatial amplitude modulation
and the CL peak asymmetry for internal damping and electron
beam energy demonstrated systematic trends in changes to
the interference signature in the CL spectra and the spatial
amplitude modulation, attributed to changes to the relative
coupling and polarization of the interfering longitudinal
modes. A simple fitting procedure was reported to further
probe the interaction of multiple resonances and was applied
to qualitatively assess the relative modal contributions in
experimental EELS line profiles.

The demonstrated difference in recorded interference in
EELS and light scattering serves as motivation to study
differences in other Fano-resonant plasmonic nanoparticle
systems for electron and light spectroscopies. The particular
amplitude modulation patterns analyzed here are potentially
representative of a class of quasi-one-dimensional multipolar
modes, and related systems such as modes in kinked wires [25],
asymmetric rods [72], and higher-order modes of nanopar-
ticle and nanohole edges [73,74] are suitable candidates
for similar hybridization effects. This work also informs
further development and evaluation of SPR sensors and
devices derived from metal nanorods using other excitations
such as shaped near-field excitation [75] or unconventional
polarization [76]. Efforts to couple quantum dots [77,78] or
absorptive layers [79] in the near field of nanorods will benefit
from consideration of local field enhancement at antinodes as
a function of location on the nanorod. Understanding these
single-particle interference effects enables improved electron
beam characterization of plasmonic near fields and makes
available conceptual building blocks for more sophisticated
plasmonic systems and devices.
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[26] R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. Garcı́a
de Abajo, New J. Phys. 10, 105009 (2008).

[27] T. Coenen, E. J. R. Vesseur, and A. Polman, ACS Nano 6, 1742
(2012).

[28] J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P.
Goudonnet, Phys. Rev. B 60, 9061 (1999).

[29] K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122,
154701 (2005).

[30] J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl,
C. Etrich, T. Pertsch, F. Lederer, and K. Kern, Nano Lett. 9,
2372 (2009).

[31] A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N.
Xia, and M. B. Raschke, Nano Lett. 9, 2553 (2009).

[32] J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl,
C. Etrich, and K. Kern, Nano Lett. 10, 3596 (2010).

[33] L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev,
G. Lerondel, P.-M. Adam, and P. Royer, Nano Lett. 8, 935
(2008).

[34] E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and
M. L. Brongersma, Nano Lett. 11, 4265 (2011).

[35] E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma,
Opt. Express 16, 16529 (2008).
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