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Fresnel-like formulas for the reflection and transmission of surface
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The reflection and transmission coefficients of a surface phonon-polariton propagating along the surface
of a thin film of SiO2 and crossing the interface of two dielectric media are analytically determined. Based
on the expansion of the electrical and magnetic fields in terms of normal modes, explicit expressions for the
reflectivity and transmissivity of the radiation fields generated at the dielectric interface are also obtained.
Symmetrical and simple Fresnel-like formulas are derived for nanofilms. For the dielectric interfaces of air/BaF2

and air/Al2O3, it is shown that: (i) The polariton reflectivity (transmissivity) decreases (increases) as the film
thickness increases, while its radiation equivalent follows the opposite behavior. (ii) In the polariton and radiation
fields, the transmissivity is significantly more sensitive than the reflectivity to the changes on the permittivity
mismatch of the dielectric interface. For a 143-nm-thick film, the polariton transmissivity (reflectivity) changes
13.2% (1.9%), when this mismatch varies by 50%. (iii) The reflectivity and transmissivity of the radiation fields
are smaller than their polariton counterparts, which together account for around 82% of the total energy. The
proposed formalism accurately fulfills the principle of conservation of energy for describing the reflection and
transmission of both the polariton and radiation fields generated at a dielectric interface.
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I. INTRODUCTION

Surface phonon-polartions (SPPs) have been recently
proposed [1–3] as potential energy carriers to enhance
significantly the phonon heat transport in polar nanomaterials
with low thermal conductivity, as is the case of the amorphous
SiO2 and crystalline SiC. Many theoretical [4–7] and
experimental [8,9] studies have shown that the propagation
length of SPPs traveling along the interface of nanofilms can
be more than three orders of magnitude larger than the corre-
sponding phonon mean free path, which yields in turn a SPP
thermal conductivity comparable or higher than the phonon
counterpart. We have also shown that the thermal conductance
of polar nanowires due to SPPs is quantized and its value can
be comparable to the one of phonons at room temperature [10].
Furthermore, various research groups have shown that the
SPPs have promising applications on the thermal performance
of nanoscale devices [4,8,11], radiative heat transfer [12–15],
high-density infrared data storage [16], surface infrared
absorption [17], coherent thermal emission [18], and
photonics [19,20]. Given that SPPs are electromagnetic waves
that propagate along the interface between polar and dielectric
materials, their energy transport is expected to increase as
the material size is scaled down to nanoscales, due to the
predominance of the surface effects at these size scales [4,11].

SPP energy transport is determined by material permittiv-
ities and hence it can be modified by material discontinuities,
which can be present in optical/electronic integrated circuits
printed out on surfaces supporting the propagation of SPPs.
The study of the reflection and transmission of SPPs at these
discontinuities is thus of great practical interest and it has
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attracted considerable experimental [21–23] and theoreti-
cal [24–26] interest in recent years. By using Fourier transform
infrared spectroscopy, Chen et al. [21] measured the transmis-
sivity through a 1-μm-thick film of SiO2 deposited over a sub-
strate of a 500-μm-thick silicon wafer and showed that the min-
ima of the fraction of transmitted energy occur at the resonance
wavelengths of absorption. For the major resonance peak, they
found a fivefold increase in the transmission across a solid
film through a perforated film with a periodic array of circular
holes. These results are consistent with the numerical ones
obtained by Catrysse and Fan [24] for the transmission through
subwavelength hole arrays in a thin film of SiC, by means of a
three-dimensional (3D) finite-difference time domain method.
Similar experimental data were reported by Gall et al. [22]
and Marquier et al. [23] for the reflectivity and transmissivity
spectra in a SiC grating supporting the propagation of SPPs.
Furthermore, by placing infinitely conducting metallic planes
both above and below the propagation interface and making a
waveguidelike structure, Stegeman et al. [25–27] numerically
calculated the transmission and reflection coefficients for a sur-
face plasmon-polariton crossing a plane boundary at normal in-
cidence. They showed that these coefficients vary strongly with
the ratio between the separation distance of the metallic planes
and the polariton wavelength, such that the reflection (trans-
mission) coefficient tends to zero (unity) as this ratio increases.
Even though the formalism proposed by these latter authors is
rigorous and could also be extended for SPPs, their numerical
calculations are quite complicated and time consuming to
implement, as was mentioned by the same authors [27].

In this paper, we analytically determine the reflection and
transmission coefficients of a SPP propagating along the
surface of a thin film of SiO2 and crossing the interface of two
dielectric media. Based on the expansion of the electrical and
magnetic fields in terms of normal modes, explicit expressions
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for the reflection and transmission coefficients of the radiation
fields generated at the dielectric interface are also derived. It is
shown that these latter fields are indispensable for satisfying
the boundary conditions and the principle of conservation of
energy. Our results provide clear physical insights on how the
SPP and radiation energy depends on the permittivity of the
dielectric media as well as on the permittivity and thickness of
the thin film.

II. FORMULATION OF THE PROBLEM AND
NORMAL MODES

Let us consider a layered system supporting the propagation
of a SPP, as shown in Fig. 1. The thin film of thickness
d and permittivity ε1(ω) is a polar material (as SiO2 and
SiC) deposited over a metallic substrate, which limits the
generation of radiation modes at the vertical interface of the
semi-infinite dielectric media of permittivities ε2 and ε3 [25].
When the incident SPP propagating along the interface 1–2
arrives to the vertical interface z = 0, it is partially reflected
backward and transmitted to the interface 1–3. In general, the
incident SPP can also be partially reflected and transmitted as
electromagnetic radiation, which is predicted by the Maxwell
equations and is required to satisfy the boundary conditions
at z = 0, as shown below. The problem consists in finding
the reflection and transmission coefficients of both the SPP
and radiation electromagnetic fields, which will allow us
to quantify the distribution of energy in the reflected and
transmitted SPP, as well as in the radiation losses. By analogy
with the problems involving waveguides, the electrical and
magnetic fields for the SPP and radiation fields in each region
of the system shown in Fig. 1 can be expressed in terms
of the corresponding modes in absence of the discontinuity
at z = 0 (ε2 = ε3). By solving the Maxwell equations under
the transverse magnetic polarization, which is required for
the existence of the incident SPP [4], it can be shown that the
nonzero components of these fields are given by [28]

E(n)
x = β

ωε
H (n)

y , (1a)

E(n)
z = 1

iωεn

∂H (n)
y

∂x
, (1b)

∂2H (n)
y

∂x2
− p2

nH
(n)
y = 0, (1c)

z

x

d

FIG. 1. (Color online) SPP and radiation modes generated by an
incident SPP at a dielectric interface. The metallic substrate of the film
of thickness d is used to diminish the radiation modes and enhance
the SPP energy transport.

where β and pn are the in-plane and transverse wave vectors,
respectively, and they are related by p2

n = β2 − εnk
2
0, k0 =

ω/c, ω is the excitation frequency, c is the speed of light
in vacuum, εn is the permittivity of the medium n = 1,2,
and i = √−1 is the imaginary unit. The electrical (E(n)

x,z) and
magnetic (H (n)

y ) components depend on the coordinate z and
time t through their common factor exp[i(ωt − βz)], which is
omitted in Eqs. (1a)–(1c) and will be suppressed hereafter. For
ε3 = ε2, Eq. (1c) establishes that the magnetic field inside the
film (H (1)

y ) and the semi-infinite medium (H (2)
y ) are given by

H (1)
y = A cosh[p1(x + d)], (2a)

H (2)
y = Bep2x + Ce−p2x, (2b)

where H (1)
y has been chosen in such a way that the associated

electrical field E(1)
x satisfies the boundary condition E(1)

x (x =
−d) = 0, which is imposed by the metallic substrate [29]. The
parameters A, B, and C are determined by the excitation source
and the boundary conditions H (1)

y = H (2)
y and E(1)

z = E(2)
z at

the interface x = 0. These latter relations yield

B + C = A cosh(p1d), (3a)

B − C = Aα21 sinh(p1d), (3b)

where α21 = ε2p1/ε1p2. Equations (1)–(3) are valid for both
the SPP and radiation fields, which are going to be analyzed
separately, as follows.

A. SPP modes

These modes are defined by the exponential decay
[Re(p2) > 0] of the fields as they travel away from the interface
x = 0. This condition requires that B = 0, for which Eqs. (3a)
and (3b) yield the following dispersion relation

p2

ε2
+ p1

ε1
tanh(p1d) = 0. (4)

According to Eqs. (2) and (3a), the transverse magnetic field
[h(x) = Hy] can be conveniently written as

h(x) = NS

{
cosh[p1(x + d)], −d < x < 0
cosh(p1d)e−p2x, x > 0 , (5)

where NS = A for the SPP modes, and the transverse electrical
field is given by e(x) = (β/ωε)h(x) [see Eq. (1a)]. Equa-
tion (5) thus defines one SPP mode for each pair (p1,p2)
of transverse wave vectors that satisfy the dispersion relation
in Eq. (4). According to the Appendix A, these modes are
orthogonal and they satisfy the normalization condition∫ ∞

−d

e(x)h∗(x)dx = 1, (6a)

N2
S = 2ωε1

βdγ
, (6b)

γ = 1 + sinh(2p1d)

2p1d
+ ε1

ε2

cosh2(p1d)

p2d
, (6c)

where the * stands for the complex conjugate of h(x).
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B. Radiation modes

The electrical and magnetic fields of these modes are not
spatially damped along the x direction and therefore they are
defined by Re(p2) = 0. In this case, the transverse wave vector

p2 can be defined as p2 = −ik, where k > 0 is the radiation
wave vector along the transverse x direction. Based on Eqs. (2)
and (3) and by analogy with the SPP modes, the radiation
modes can be defined as follows

h(x,k) = NR

{
cosh[p1(x + d)], −d < x < 0
cosh(p1d) cos(kx) + ξ sinh(p1d) sin(kx), x > 0 , (7)

where NR = A for the radiation modes, ξ = ε2p1/ε1k, and
β2 = ε2k

2
0 − k2 = p2

1 + ε1k
2
0. The corresponding electrical

field is given by e(x,k) = (β/ωε)h(x,k), as before. These
radiation modes are also orthogonal and they are normalized
by the following condition (Appendix A)∫ ∞

−d

e(x,k)h∗(x,k′)dx = δ(k − k′), (8a)

N2
R = 2ωε2

πβ(k)γR

, (8b)

γR = | cosh[p1(k)d]|2
+ |ξ sinh[p1(k)d]|2. (8c)

We can now use the previous SPP and radiation modes to ex-
press the electrical and magnetic fields involved in the system
shown in Fig. 1. Let e<

0 (x) and h<
0 (x) [e>

0 (x) and h>
0 (x)] be the

transverse components of the electrical and magnetic fields
of the incident (transmitted) SPP, respectively and e<(x,k)
and h<(x,k) [e>(x,k) and h>(x,k)] be the corresponding
electromagnetic fields of the backward (forward) radiation
modes. The transverse components of the total electromagnetic
fields in the regions z < 0 (E<

x ,H<
y ) and z > 0 (E>

x ,H>
y ) can

then be expressed as follows [30]:

E<
x (x,z) = e<

0 (x)(e−izβ< − reizβ<

)

−
∫ ∞

0
rR(k)e<(x,k)eizβ<

R dk, (9a)

H<
y (x,z) = h<

0 (x)(e−izβ< + reizβ<

)

+
∫ ∞

0
rR(k)h<(x,k)eizβ<

R dk, (9b)

E>
x (x,z) = τe>

0 (x)e−izβ>

+
∫ ∞

0
τR(k)e>(x,k)e−izβ>

R dk, (9c)

H>
y (x,z) = τh>

0 (x)e−izβ<

+
∫ ∞

0
τR(k)h>(x,k)e−izβ<

R dk, (9d)

where r and τ (rR and τR) are the reflection and transmission
coefficients of the SPP (radiation) fields, respectively, and
β< and β> (β<

R and β>
R ) are the SPP (radiation) wave

vectors along the propagation direction, for z < 0 and z >

0, respectively. The continuity of the tangential electrical
[E<

x (x,0) = E>
x (x,0)] and magnetic [H<

y (x,0) = H>
y (x,0)]

fields at the dielectric interface z = 0 yields

(1 − r)e<
0 (x) −

∫ ∞

0
rR(k)e<(x,k)dk

= τe>
0 (x) +

∫ ∞

0
τR(k)e>(x,k)dk, (10a)

(1 + r)h<
0 (x) +

∫ ∞

0
rR(k)h<(x,k)dk

= τh>
0 (x) +

∫ ∞

0
τR(k)h>(x,k)dk. (10b)

Note that in absence of the radiation terms, Eqs. (10a)
and (10b) cannot be satisfied because of the transverse
wave vectors in the region z < 0 are different than the
corresponding ones in z > 0. It is therefore clear that the
presence of the radiation modes are indispensable to satisfy
these boundary conditions. This mode matching approach was
previously applied to numerically determine the reflection
and transmission coefficients of surface plasmon-polaritons
at dielectric interfaces [31,32]. To eliminate the dependence
on the variable x and to solve Eqs. (10a) and (10b) for the
coefficients r , τ , rR , and τR , it is convenient to define the
following inner product

(f,g) =
∫ ∞

−d

f (x)g∗(x)dx, (11)

where f and g are functions of x over the interval of
integration. Multiplying Eq. (10a) by (h<

0 )∗ and Eq. (10b) by
(e>

0 )∗ and integrating both sides over the interval −d < x <

∞, the following expressions are found for τ

τ = (1 − r)(e<
0 ,h>

0 ) −
∫ ∞

0
rR(k)[e<(k),h>

0 ]dk, (12a)

τ = (1 + r)(h<
0 ,e>

0 ) +
∫ ∞

0
rR(k)[h<(k),e>

0 ]dk, (12b)

where we have used the normalization condition in Eq. (6a) for
the SPP modes and the orthogonality of the SPP and radiation
modes, which is discussed in Appendix A. By following a
similar procedure, it is easy to show that τR is determined by

τR(k) = (1 − r)[e<
0 ,h>(k)] −

∫ ∞

0
rR(k′)[e<(k′),h>(k)]dk′,

(13a)

τR(k) = (1 + r)[h<
0 ,e>(k)] +

∫ ∞

0
rR(k′)[h<(k′),e>(k)]dk′.

(13b)
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Equations (12) and (13) show that the exact determination
of the reflection and transmission coefficients is quite com-
plicated due to the presence of the integral terms. However,
for dielectric media with permittivities ε2 and ε3 of the same
order of magnitude, both reflection coefficients are expected
to be close to zero (r,rR → 0), and the electromagnetic modes
in the regions z < 0 and z > 0 are approximately orthogo-
nal {(e<(k),h>

0 ),[h<(k),e>
0 ],(e<

0 ,h>(k)),[h<
0 ,e>(k)]} → 0 and

[e<(k′),h>(k)] ≈ δ(k − k′). Under these conditions and a first-
order approximation of Eqs. (12) and (13), it is found that
the reflection and transmission coefficients of the SPP and
radiation modes are analytically given by

r = (e<
0 ,h>

0 ) − (h<
0 ,e>

0 )

(e<
0 ,h>

0 ) + (h<
0 ,e>

0 )
, (14a)

τ = 2(e<
0 ,h>

0 )(h<
0 ,e>

0 )

(e<
0 ,h>

0 ) + (h<
0 ,e>

0 )
, (14b)

2rR(k) = [e<
0 ,h>(k)] − [h<

0 ,e>(k)], (14c)

2τR(k) = [e<
0 ,h>(k)] + [h<

0 ,e>(k)]. (14d)

Note that while the SPP reflection and transmission co-
efficients depend only on inner products of SPP modes,
their radiation counterparts are determined by inner products
between the SPP modes in z < 0 with radiation modes in
z > 0. This means that the origin of the radiation fields is
the incident SPP field, as expected. After evaluating the inner
products in Eqs. (14a)–(14d) with the help of Eqs. (5)–(8)
and (11), the reflection and transmission coefficients can be
written explicitly as follows

r = ε2ε3(β< − β>)I1 + ε1(ε3β
< − ε2β

>)I2

ε2ε3(β< + β>)I1 + ε1(ε3β< + ε2β>)I2
, (15a)

τ = σ
(ε2I1 + ε1I2)(ε3I1 + ε1I2)

ε2ε3(β< + β>)I1 + ε1(ε3β< + ε2β>)I2
, (15b)

rR = σ

[
(β< − (β>

R )∗)
J1

ε1
+

(
β<

ε2
− (β>

R )∗

ε3

)
J2

]
, (15c)

τR = σ

[
(β< + (β>

R )∗)
J1

ε1
+

(
β<

ε2
+ (β>

R )∗

ε3

)
J2

]
, (15d)

where the parameters σ = 4
√

β<β>/δ<δ>, σR =√
ε1ε3d/(β<(β>

R )∗δ<η>), and the dimentionless integrals

I1 = 1

2

[
sinh[(p<

1 + p>
1 )d]

(p<
1 + p>

1 )d
+ sinh[(p<

1 − p>
1 )d]

(p<
1 − p>

1 )d

]
, (16a)

I2 = cosh(p<
1 d) cosh(p>

1 d)

(p2 + p3)d
, (16b)

J1 = 1

2

[
sinh{[p<

1 + (p>
1R)∗]d}

[p<
1 + (p>

1R)∗]d
+ sinh{[p<

1 − (p>
1R)∗]d}

[p<
1 − (p>

1R)∗]d

]
,

(16c)

J2 = cosh(p<
1 d)(

p2
2 + k2

)
d

[
p2 cosh[(p>

1R)∗d]

+ ε3

ε1
(p>

1R)∗ sinh[(p>
1R)∗d]

]
. (16d)

Equations (15a)–(15d) clearly show that the reflection and
transmission coefficients for the SPP and radiation fields

depend strongly on the permittivity mismatch of the semi-
infinite media, as well as on the permittivity and thickness of
the thin film. In absence of the dielectric interface (ε3 = ε2),
the in-plane wave vectors β< = β> and therefore r = 0,
τ = 1, and rR = τR = 0, as expected. For very thin (k0d �
1) and very thick (k0d 	 1) films, Eqs. (15a) and (15b)
becomes independent of the film thickness d and they can
be significantly simplified. In the first limiting case, Eqs. (15a)
and (15b) reduce to

r0 =
√

ε3 − √
ε2√

ε3 + √
ε2

, (17a)

τ0 = 4
4
√

ε2ε3√
ε2 + √

ε3

√
ε2ε3(ε2 − ε1)(ε3 − ε1)

ε2(ε2 − ε1) + ε3(ε3 − ε1)
, (17b)

where the subscript 0 indicates that the formulas are valid
for (k0d � 1). For thick films, on the other hand, Eqs. (15a)
and (15b) take the form

r∞ = ε2ε3(β< − β>) + ε1(ε3β
< − ε2β

>)χ

ε2ε3(β< + β>) + ε1(ε3β< + ε2β>)χ
, (18a)

τ∞ = ψ
(ε2 + ε1χ )(ε3 + ε1χ )

ε2ε3(β< + β>) + ε1(ε3β< + ε2β>)χ
, (18b)

χ = − ε1(p<
1 + p>

1 )

ε2p
<
1 + ε3p

>
1

, (18c)

ψ = − 4ε2ε3
√

β<β>p<
1 p>

1

(p<
1 + p>

1 )
√(

ε2
1 − ε2

2

)(
ε2

1 − ε2
3

) , (18d)

where β< = k0
√

ε1ε2/(ε1 + ε2), β> = k0
√

ε1ε3/(ε1 + ε3),
p<

1 = √−ε1/ε2β
<, p>

1 = √−ε1/ε3β
>, and the subscript ∞

stands for k0d 	 1. Note that both r0(ε2,ε3) = −r0(ε3,ε2)
and r∞(ε2,ε3) = −r∞(ε3,ε2), which means that when the
semi-infinite media are interchanged, the reflection coefficient
of the reflected SPP changes by a phase reversal only. This
behavior coincides with the one exhibited by the corresponding
Fresnel equation for normal incidence of plane waves [29]. By
contrast, this phase reversal is not present in the transmission
coefficient, which is invariant under the interchange of the
semi-infinite media [τ0(ε2,ε3) = τ0(ε3,ε2) and τ∞(ε2,ε3) =
τ∞(ε3,ε2)]. Given that the energy fractions of the reflected
and transmitted SPP are given by the square of the magnitude
of r and τ , respectively, as shown below, the aforementioned
features of the SPP reflection and transmission coefficients
establish that the energy of the reflected and transmitted SPP
keeps invariant under the interchange of the dielectric media.
This feature is exclusive of SPPs and is not present in the
radiation fields, as indicated by Eqs. (15c) and (15d).

The accuracy of the simple and approximate expressions for
the reflection and transmission coefficients in Eqs. (14a)–(14d)
can be evaluated by calculating the integrals in Eqs. (12)
and (13) with the estimated value of the reflection coeffi-
cient of the radiation modes in Eq. (14c). In doing this,
the following expressions for the differences �r , �τ , and
�τR(k) between the exact expressions of the reflection and
transmission coefficients [Eqs. (12) and (13)], and their
corresponding approximate results [Eqs. (14a), (14b), and
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(14d)] are obtained

�r = −
∫ ∞

0 rR(k){[e<(k),h>
0 ] + [h<(k),e>

0 ]}dk

(e<
0 ,h>

0 ) + (h<
0 ,e>

0 )
, (19a)

�τ =
∫ ∞

0 rR(k){(e<
0 ,h>

0 )[h<(k),e>
0 ] − (h<

0 ,e>
0 )[e<(k),h>

0 ]}dk

(e<
0 ,h>

0 ) + (h<
0 ,e>

0 )
, (19b)

�τR(k) = 1

2

∫ ∞

0
rR(k′){[h<(k′),e>(k)] − [e<(k′),h>(k)]}dk′. (19c)

Given the complicate dependence of rR(k) on the wave
vector k [Eq. (15c)], the integrals in Eqs. (19a)–(19c) cannot
be evaluated analytically. For very thin film (k0d � 1), which
is the case of major interest to enhance the propagation of
SPPs [4,11], these integrals simplify significantly and the
deviations exhibit the following behavior

�r and �τ ∝
√

(ε2 − ε1)(ε3 − ε1)(k0d)3 (20a)

�τR(k) ∝
√

(ε2 − ε1)(k0d)2, (20b)

which explicitly indicate that for k0d � 1, our approximate
results in Eqs. (14a)–(14d) are accurate and their accuracy is
expected to increase as the film thickness decreases. The fact
that the SPP coefficients are proportional to the third power
of the film thickness, while radiation one is proportional to
the second power of this thickness shows that the approximate
expression of the reflection and transmission coefficients of
the SPP modes become more accurate than the transmission
coefficient of the radiation modes as the film thickness is scaled
down.

The power flow per unit film width of the reflected and
transmitted SPP and radiation fields can now be calculated
through the Poynting vector S along the propagation direction
(z axis), which is defined by

S = 1

2
Re

(∫ ∞

−d

Ex(x,0)H ∗
y (x,0)dx

)
. (21)

Based on Eqs. (9) and (21), we can determine the power of
the incident (S inc), reflected (Sref), and transmitted (S tran) SPP
as well as the power of the reflected (Sref

R ) and transmitted
(S tran

R ) radiation fields. The reflectivity and transmissivity
of the SPP and radiation fields are therefore defined as
R = −Sref/S inc, T = S tran/S inc, RR = −Sref

R /S inc, and TR =
S tran

R /S inc. In terms of the reflection and transmission coeffi-
cients, these relations yield

R = |r|2, (22a)

T = |τ |2, (22b)

RR =
∫ ∞

0
|rR(k)|2dk, (22c)

TR =
∫ ∞

0
|τR(k)|2dk. (22d)

Given that all the energy of the incident SPP is transferred
to the reflected and transmitted SPP and radiation fields, the
principle of conservation of energy establishes that

R + T + RR + TR = 1. (23)

We will show below that the approximate, simple, and an-
alytical results for the reflection and transmission coefficients
involved in Eqs. (22a)–(22d) are able to satisfy Eq. (23) with
an error less than 2%.

III. RESULTS AND DISCUSSIONS

The reflectivity and transmissivity of the SPP and radiation
fields generated by an incident SPP crossing the dielectric
interface shown in Fig. 1 are quantified and analyzed in
this section. Special emphasis is put on the effects of the
film thickness and permittivities of the dielectric media.
We consider a film of amorphous SiO2 (silica), which is
an abundant polar material in nature and widely used in
electronic applications [1,4]. Furthermore, SiO2 is commonly
employed in the manufacturing of electrical circuits, in which
thermal sources generated by Joule effect might be cooled via
SPPs. For the dielectric media, we are going to use air, as a
natural surrounding medium, in contact with BaF2 or Al2O3

(alumina), which are transparent crystals in a wide range of
frequencies [33] and are used in many applications related
to optics, infrared spectroscopy, and electronics. All of these
materials behave as lossless materials (with real permittivities)
at the frequency ω = 210 × 1012rad/s (k0 = 0.7μm−1), which
is going to be used in this work, to guaranty the orthogonality
of the SPP and radiation modes and to simplify the energy
distribution analysis based on the Poynting vector, as discussed
in Appendix A.

Figure 2 shows the film-thickness dependence of the wave
vector β along the propagation direction of a SPP traveling
via the interface of a film of SiO2 and a dielectric medium, as
shown in Fig. 1. Calculations were done using the dispersion
relation in Eq. (4) and its analysis in Appendix B. It is
seen that β increases with the film thickness, such that it
reaches asymptotic values for very thin (k0d � 1) and very
thick (k0d 	 1) films. The thick-film limit is given by the
well known dispersion relation β = √

ε1ε2/(ε1 + ε2)k0, and
the thin-film one is described by the simple solution of the
dispersion relation in Eq. (29). Given that k0 = 0.7 μm−1,
this latter limit holds for films with thicknesses (d � 1.4 μm)
from hundreds of nanometers downwards, which represent
the regime of major energy transport by SPPs [6,7,11]. Note
that irrespective of the the film thickness, the in-plane wave
vector increases with the permittivity of the dielectric media
and it is greater than the one in vacuum (β > k0), which
indicates that the SPP is propagating with a wave vector to
the right of the light line [11]. Furthermore, it is clear that
β → k0, when the thickness and/or the dielectric permittivity
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FIG. 2. (Color online) Normalized in-plane wave vector of a SPP
propagating along the interface of a thin film of SiO2 and a dielectric
medium, as a function of the normalized film thickness. Calculations
were performed for ε(Air) = 1, ε(BaF2) = 2, ε(Al2O3) = 1.5, and
ε(SiO2) = −3.3; which occur at k0 = 0.7 μm−1 [11,33].

reduces, which implies a photonlike nature of the SPP. As
these parameters increase, β/k0 separates from the unity and
tends to a phononlike behavior.

The film-thickness dependence of the normalized trans-
verse wave vectors in the regions z < 0 (p<

1 ,p2) and z > 0
(p>

1 ,p3) are shown in Fig. 3, for the air/BaF2 dielectric
interface. As in the case of the in-plane wave vector β,
the transverse wave vectors increase with the film thickness
and they become independent of this thickness for very thin
(k0d � 1) and very thick (k0d 	 1) films. For a given film
thickness, these wave vectors are larger in the medium with
higher absolute value of permittivity, as established by the
dispersion relation in Eq. (4) and its analytical solution in
Eq. (29). The fact that all transverse wave vectors are positive
indicates that the electrical and magnetic fields of the SPPs
decay spatially as they travel away from the propagation
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FIG. 3. (Color online) Normalized transverse wave vector of a
SPP propagating along the surface of a SiO2 film and crossing a
dielectric interface of air/BaF2 (see Fig. 1), as a function of the
normalized film thickness. Calculations were performed with the data
used in Fig. 2.
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FIG. 4. (Color online) Reflectivity and transmissivity of a SPP
propagating along the surface of a SiO2 film and crossing a dielectric
interface, as a function of the normalized film thickness. Calculations
were done for two dielectric interfaces of Air/BaF2 and Air/Al2O3,
and with the data used in Fig. 2.

interface x = 0, which guaranties the existence of SPPs [4,11].
Given that |ε(SiO2)| > ε(BaF2) > ε(air), the transverse spatial
attenuation inside the thin film is stronger than the one in
BaF2, which in turn is more intense than the one within air. It
is therefore clear that the SPP fields within the SiO2 film are
more confined to the propagation interface than those in the
dielectric media.

Figure 4 shows that reflectivity R and transmissivity T

of the SPP fields as a function of the normalized film
thickness and for two dielectric interfaces. For both cases,
R decreases as the film thickness increases, while T exhibits
the opposite trend; and they tend to thickness-independent
values for very thin (k0d � 1) and very thick (k0d 	 1)
films, which is consistent with the behavior of the SPP wave
vectors shown in Figs. 2 and 3. For nanofilms, R and T are
described by the simple and symmetrical formulas in Eqs. (17)
and (20), while for microfilms, they are determined by a little
more complicated but still analytical formulas in Eqs. (18)
and (20). Equations (17) and (18) can thus be considered as
the Fresnel-like equations for the reflection and transmission
of SPPs across the dielectric interface shown in Fig. 1. Note
that the reflectivity (transmissivity) for the dielectric interface
of Air/BaF2 is higher (lower) than the corresponding one of
the interface Air/Al2O3. This is quite reasonable due to the fact
that the permittivity mismatch between the dielectric media in
the Air/BaF2 interface (ε3 − ε2 = 1) is higher than that for the
another interface (ε3 − ε2 = 0.5). For this modification on the
dielectric interface (�ε3 = 0.5) and k0d = 0.1 (d = 143 nm),
the change on the reflectivity is �R = 1.9%, which rises to
�T = 13.2% for the transmissivity. The SPP transmissivity
is therefore more sensitive than the SPP reflectivity to
the changes on the permittivity mismatch of the dielectric
interface.

The magnitudes |�r| and |�τ | of the deviations defined
in Eqs. (19a) and (19b) for the reflection and transmission
coefficients of the SPP modes are shown in Fig. 5, as a function
of the normalized film thickness. For thin (k0d � 1) and thick
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FIG. 5. (Color online) Deviations of the reflection and transmis-
sion coefficients of the SPP modes propagating along the surface of
a SiO2 film and crossing a dielectric interface, as a function of the
normalized film thickness. Calculations were done for two dielectric
interfaces of Air/BaF2 and Air/Al2O3, and with the data used in Fig. 2.

(k0d 	 1) films, both |�r| and |�τ | becomes independent of
the film thickness and they take smaller values for thinner films.
This is consistent with Eq. (20a) and the predictions of the
principle of conservation of energy shown below in Fig. 8. The
deviations of the reflection and transmission coefficients for the
Air/BaF2 interface are greater than their corresponding ones
for the Air/Al2O3 interface, due to the fact that the permittivity
mismatch of the first interface (ε3 − ε2 = 1) is greater than
that of the latter one (ε3 − ε2 = 0.5). This confirms that
Eqs. (14a) and (14b) become more accurate as the difference of
permittivities of the dielectric media reduces. Furthermore, the
fact that |�τ | < |�r| < 3.6% for both dielectric interfaces,
indicates that the reflectivity and transmissivity shown in
Fig. 4 have high accuracy, with a slight deviation from their
corresponding exact values comparable or smaller than 3.6%,
as established by Eqs. (22a) and (22b).

The spectra of the reflectivity and transmissivity of the
radiation fields generated by the incident SPP at the dielec-
tric interface Air/BaF2 are shown in Figs. 6(a) and 6(b),
respectively, as a function of the normalized radiation wave
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FIG. 7. (Color online) Reflectivity and transmissivity of the ra-
diation fields generated by a SPP propagating along the surface of
a SiO2 film and crossing a dielectric interface, as a function of the
normalized film thickness. Calculations were done for two dielectric
interfaces of Air/BaF2 and Air/Al2O3, and with the data used in Fig. 2.

vector k/k0. Both spectra follow a similar behavior, which
does not vary significantly for film thicknesses k0d > 1 and
k/k0 <

√
ε3. Within this range of the radiation wave vector,

the wave vector β>
R is real, as established just below Eq. (7)

while for k/k0 >
√

ε3, β>
R becomes an imaginary number,

which leads to the oscillations of the spectra. In this latter
interval of the radiation wave vector both spectra decay fast
to zero as k/k0 increases, which indicates that the major
contributions to RR and TR (area under the curves) arise
from wave vectors within the interval k/k0 <

√
ε3. Note that,

for a given film thickness, the values of the transmissivity
spectrum are higher than those of the reflectivity one, and
hence the transmissivity is expected to be higher than the
reflectivity (TR > RR). This is confirmed by Fig. 7, not
only for the Air/BaF2 dielectric interface but also for the
Air/Al2O3 one. For both interfaces, the radiation reflectivity
(transmissivity) increases (decreases) as the film thickness
increases, which is opposite to the behavior exhibited by the
SPP counterpart shown in Fig. 4. This is reasonable given that
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wave vector. Calculations were performed for three thicknesses of a film of SiO2 and a dielectric interface of Air/BaF2.
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FIG. 8. (Color online) Reflectivity and transmissivity of the SPP
and radiation fields, as a function of the normalized film thickness.
Calculations were performed with the results shown in Figs. 4 and 7.

the energy of the incident SPP must be conserved. Both RR

and TR increase as the permittivity mismatch of the dielectric
interface increases from ε3 − ε2 = 1/2, (for Air/Al2O3) to
ε3 − ε2 = 1 (for Air/BaF2), as expected. For this change of the
dielectric interface (�ε3 = 0.5) and k0d = 0.1 (d = 143 nm),
the variation of the reflectivity is �RR = 0.5%, which rises
to �TR = 12.2% for the transmissivity. These changes are
smaller than the corresponding ones of the SPP reflectivity
and SPP transmissivity shown in Fig. 4. Furthermore, the
comparison of Figs. 4 and 6, for a particular thickness and
dielectric interface, shows that R > RR and T > TR , which
indicates that reflected and transmitted SPP fields carry more
energy than their radiation equivalents.

Figure 8 shows the film-thickness dependence of the
reflected and transmitted power fractions involved in the
SPP (R + T ) and radiation (RR + TR) fields, as well as their
overall sum, for the Air/BaF2 dielectric interface. The fact
that R + T 	 RR + TR means that the major part of energy
of the incident SPP is distributed between the reflected and
transmitted SPPs, while less than 20% of its energy goes to
the radiation fields. Note that R + T + RR + TR ≈ 1, which
satisfies quite well the principle of conservation of energy, with
a deviation of less than 2% that occurs at k0d = 0.36 (d =
514 nm). This deviation reduces to less than 0.5% for the
dielectric interface of Air/Al2O3, due to its smaller permittivity
mismatch than the one of the Air/BaF2 interface. It is therefore
clear that, when the permittivities of the dielectric media are of
the same order of magnitude, the proposed formalism is able
to analytically describe with good accuracy the reflection and
transmission of both the SPP and radiation fields generated
at a dielectric interface. Given that Eqs. (15) and (20) have
been derived assuming that the permittivities of the dielectric
media are not so dissimilar, in general, this simple approach
is expected to yield deviations higher than 2%, from the
conservation of energy, as the difference of permittivities
of the dielectric media increases to values larger than the
unity (ε3 − ε2 > 1). In these cases, Eqs. (15a)–(15d) are not
longer suitable and the determination of the reflection and
transmission coefficients is much more complicated due to the
presence of the radiation modes, as established by Eqs. (12)

and (13), which still hold and can be conveniently solved by
means of a numerical approach.

IV. CONCLUSIONS

The reflection and transmission of a surface phonon-
polariton propagating along the surface of a thin film of
SiO2 and crossing the interface of two dielectric media has
been analysed by means of an analytical approach based on
the expansion of the electrical and magnetic fields in terms
of normal modes. Fresnel-like formulas for the reflectivity
and transmissivity of both the polariton and radiation fields
generated at the dielectric interface have been explicitly deter-
mined. For the dielectric interfaces of air/BaF2 and air/Al2O3,
it has been shown that: (i) The polariton reflectivity (transmis-
sivity) decreases (increases) as the film thickness increases,
while its radiation equivalent follows the opposite behavior.
(ii) In the polariton and radiation fields, the transmissivity is
significantly more sensitive than the reflectivity to the changes
on the permittivity mismatch of the dielectric interface.
(iii) The reflectivity and transmissivity of the radiation fields
are smaller than their polariton counterparts, which together
account for around 82% of the energy of the incident surface
phonon-polariton. The proposed formalism accurately fulfils
the principle of conservation of energy and could be used
for quantifying the polariton energy and radiation losses at a
dielectric interface.

APPENDIX A: ORTHOGONALITY OF MODES

Let us consider that (en,hn) and (em,hm) are two different
modes propagating along the system shown in Fig. 1 with
ε3 = ε2, they then satisfy Eqs. (1a) and (1c)

∂2hn

∂x2
− p2

nhn = 0, (A1a)

∂2hm

∂x2
− p2

mhm = 0. (A1b)

We can see that Eqs. (A1a) and (A1b) define a classical Sturm-
Liouville problem, and hence the orthogonality of the nth and
mth modes can be easily proved multiplying Eq. (A1a) and the
complex conjugate of Eq. (A1b) by h∗

m and hn, respectively.
The subtraction of the resulting equations yields

(
p2

n − (
p2

m

)∗)
hnh

∗
m = ∂

∂x

(
h∗

m

∂hn

∂x
− hn

∂h∗
m

∂x

)
. (A2)

By using Eqs. (1a) [e = (β/ωε)h] and (1b) [ez =
(1/iωε)∂h/∂x] for each mode and integrating both sides of
Eq. (A2), we obtain the following

p2
n − (p2

m)∗

iβn

∫ ∞

−d

enh
∗
mdx =

[
eznh

∗
m + ε∗

ε
e∗
zmhn

]∞

−d

. (A3)

The right-hand side of Eq. (A3) can be evaluated and simplified
by splitting it for positions inside the thin film (−d < x < 0)
and the dielectric medium (x > 0), applying the corresponding
boundary conditions at x = −d and x = 0, and taking into
account the disappearance of the fields at x = ∞. The final
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result is

p2
n − (

p2
m

)∗

iβn

∫ ∞

−d

enh
∗
mdx =

(
ε∗

1

ε1
− ε∗

2

ε2

)
e(1)∗
zm h(1)

n

∣∣
x=−d

.

(A4)

Equation (A4) thus indicates that when the permittivities of
the thin film and the dielectric medium are real, the integral in
its left-hand side vanishes∫ ∞

−d

enh
∗
mdx = 0 (A5)

for any n �= m. This orthogonality relation holds for any
combination of SPP modes as well as for an inner product
between SPP and radiation modes. Taking into account the
definition of the Poynting vector in Eq. (21), Eq. (A5) estab-
lishes that the power cannot be transferred among different
modes in lossless media. Even though real materials always
exhibit losses, these becomes negligible at certain excitation
frequencies, as is the case of SiO2 and SiC [11,33]. This is the
reason why in this work, we are considering lossless media, for
which Eq. (A5) is valid. On the other hand, the normalization
conditions of the SPP [Eq. (6a)] and radiation [Eq. (8a)] modes
are straightforward to determine by direct integration of the
modes in Eqs. (5) and (7), respectively.

APPENDIX B: SOLUTION OF THE SPP
DISPERSION RELATION

By writing the in-plane wave vector as β = √
εk0, the trans-

verse wave vectors pn = √
ε − εnk0 and the SPP dispersion

relation in Eq. (4) reads
√

ε − ε2

ε2
+

√
ε − ε1

ε1
tanh(

√
ε − ε1λ) = 0, (B1)

where λ = k0d is the normalized film thickness. Considering
that λ < 1, which is the case of interest to enhance the
SPP energy transport [11], Eq. (B1) can be solved through
perturbation theory. For an approximation up to λ4, Eq. (B1)
takes the form√

ε − ε2

ε2
+ ε − ε1

ε1
λ

(
1 − ε − ε1

3
λ2

)
= 0, (B2)

which indicates that the effective permittivity ε of the system
has the following expansion

ε = ε2 + ε(2)λ2 + ε(4)λ4. (B3)

The combination of Eqs. (B2) and (B3) yields the following
values for the parameters ε(2) and ε(4)

ε(2) = ε2
2

(
1 − ε2

ε1

)2

, (B4a)

ε(4) = 2ε1

(
1 − ε2

ε1

)[
1

3
−

(
ε2

ε1

)2]
ε(2). (B4b)

Equations (B4a) and (B4b) are valid for any complex permit-
tivity ε1 of the film. For a lossless film (ε1 is a real number),
however, these equations hold for ε1 < 0 only. This is the
condition of existence and propagation of SPPs along very thin
films (λ � 1), which differs from the well known constraint
ε1 < −ε2, valid for thick films (λ 	 1).
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